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SEQUENTIAL PROBABILITY RATIO TEST FOR COLLISION

AVOIDANCE MANEUVER DECISIONS

J. Russell Carpenter* and F. Landis Markleyt

When facing a conjunction between space objects, decision makers must chose
whether to maneuver for collision avoidance or not. We apply a well-known deci-
sion procedure, the sequential probability ratio test, to this problem. We propose
two approaches to the problem solution, one based on a frequentist method, and
the other on a Bayesian method. The frequentist method does not require any
prior knowledge concerning the conjunction, while the Bayesian method assumes
knowledge of prior probability densities. Our results show that both methods
achieve desired missed detection rates, but the frequentist method’s false alarm
performance is inferior to the Bayesian method’s.

INTRODUCTION

We often hear it said that “space is big” by which we think decision makers mean that collisions

between space objects are so rare that many collision avoidance maneuver (CAM) decisions are the

result of false alarms. Nevertheless, the consequences of a missed detection might be catastrophic.

It is our understanding of current CAM decision procedures that they do not explicitly account for

the costs and risks of false alarms and missed detections. It seems to us that a utilitarian decision

making procedure that balances the costs and risks of false alarms and missed detections would

provide some benefit to decision makers. We propose herein such a procedure that is applicable to

a common class of CAM decision problems.

The remainder of this paper is organized as follows. In the next section, we review how the

full CAM decision problem reduces under certain assumptions to the comparison of hypotheses

concerning parameters of Rician densities; assumptions on which at present, our proposed method

depends. Then, we briefly discuss collision avoidance as a decision problem involving equalizing

utilities based on cost and risk. Next, we review Wald’s Sequential Probability Ratio Test (SPRT), 1

which forms the basis of our proposed method. While the SPRT involves a likelihood ratio between

two simple hypotheses, the CAM decision problem as we define it involves a comparison among

two continuous sets of hypotheses. In the subsequent section, which we believe involves the main

technical contribution of this paper, we discuss two methods to reduce the compound hypotheses

to simple ones. In the penultimate section, we illustrate and compare our methods using a static

example based on the Magnetospheric Multi-Scale (MMS) mission, and finally we conclude with a

summary and suggestions for follow-on work.
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PROBLEM STATEMENT

The Simplified CAM decision problem

Our approach to the CAM decision problem starts with the ideas of Foster and Estes. 2 In their

study of the need for CAMs by the International Space Station, they showed that under conditions

typical of many conjunctions, only the projection of the three-dimensional relative position error

ellipsoid onto the conjunction plane at the time of closest approach need be considered when com-

puting the probability of collision. Akella and Alfriend3 later showed that a more general problem

explicitly considering collision probability as a function of time throughout the conjunction reduces

under certain conditions to the static problem considered by Foster and Estes. Chan4 later showed

that in many cases, the problem could be further simplified to that of evaluating Rician densities. 5

In this section, we summarize the results of the cited works.

Let {Rz , Vz }, i = 1, 2 represent the inertial position and velocity of two space objects. Then, the

relative position and velocity between the objects in a frame fixed to the orbital velocity and orbit

normal vectors of object 1 are

r=R2 — R1
	

(1)

v=V2 — V1 — w1 × r
	

(2)

where w1 is the instantaneous orbital angular velocity of object 1. The relative position is uncertain

due to knowledge errors, e,

r=r¯+e
	

(3)

where r̄ = E [r] is the nominal relative position vector. The associated error covariance matrix is

P = E [(r — r̄)(r — r̄)T
]	 (4)

= PR1 + PR2 — PR1 R2 — PR1R2	 (5)

where

PRz = E [(Rz — E [Rz])(Rz — E [Rz])
T ]	 (6)

PRzRj = E [(Rz — E [Rz])(Rj — E [Rj ] )T]	 (7)

The cross-covariance matrix PRzRj is often negligible unless common measurements such as ranges

between the objects have been used in the estimation process.

Figure 1 depicts a dangerously close approach between two satellites flying in formation. The

large red ellipsoid in the figure represents the relative position knowledge uncertainty, which is the

propagation of post-maneuver state error uncertainty over approximately half an orbit period. One

can see from the figure that the largest component of the knowledge uncertainty is generally along

the velocity direction; however, there is a significant projection of the uncertainty into the conjunc-

tion plane, i.e. the plane containing the relative position vector at the time of closest approach. The

figure shows this projection as a blue empty ellipse in the isometric projection on the left. On the

right, the figure shows the view normal to the conjunction plane, and the overlap between the knowl-

edge error ellipse (“one sigma”) and the green sphere enclosing the combined hard-body radius of

the two spacecraft.

For such encounters, the probability of collision at the time of closest approach is the triple inte-

gral over the hard-body volume of the density function associated with the knowledge error. The key
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Figure 1 Stress-case simulated conjunction geometry for two MMS satellites near
perigee. The green sphere encloses the combined tip-to-tip radius (120 m) of the two
satellites. The red ellipsoid represents the relative position knowledge error covari-
ance. The VNB coordinate frame on the left is aligned with the orbit velocity, orbit
normal, and orbit bi-normal directions at the time of time of closest approach, and the
view on the right projects the encounter into the conjunction plane. Units are meters.

simplifying insight of Foster and Estes, 2 which was clarified and refined by Akella and Alfriend,3

is that the probability of collision reduces to an integration only within the conjunction plane, un-

der certain conditions. Akella and Alfriend 3 specify the conditions under which this simplification

holds during the short interval of the encounter, as follows:

1. The trajectories of the objects are straight lines.

2. Velocity uncertainty integrates into negligible position uncertainty, and consequently the po-

sition uncertainty is constant.

3. The knowledge error density is Gaussian.

Figure 2 illustrates the procedure whereby Chan 4 converted the double integral over Gaussian

densities in the conjunction plane into a single integral of a Rician density governing the scalar miss

distance. As Papoulis5 describes, a Rician sample can be viewed as the root-sum-square of two

samples drawn from Gaussian densities with the same mean and variance. Viewing the Gaussian

samples as coordinates in a plane, the Rician sample can be viewed as a polar radius coordinate; the

corresponding angle coordinate is free. As Figure 2 shows, Chan’s idea is to re-scale the coordinates

of the conjunction plane so as to circularize the knowledge error ellipse. Now, the re-scaled miss

distance has an isotropic density, and the Rician density applies. However, the region of integration,

i.e. the hard body disk, is now elliptical, making its evaluation more difficult. To avoid this compli-

cation, Chan suggests that we replace the now-elliptical hard body region with a circle of equivalent

area. The result is that the probability of collision, Pc , is approximated by

Pc 
= JpR U

2 
exp 

(

_
z 

2U2 

2) 

to 

\ 

U2 ) 
d z 

g I
R

ric(z l ν, U) d z	 (8)
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where R represents the re-scaled hard-body radius, and I o denotes the modified Bessel function

of the first kind, of order zero. We identify the Rician’s non-centrality parameter, v, with the true

re-scaled miss distance, and view samples drawn from the Rician as representing observations of

the re-scaled predicted miss distance. Figure 3 depicts two examples of the Rician density function.

Figure 2 Conversion to Rician Problem. The left pane shows the conjunction geome-
try in the original coordinates (meters); in the middle pane, the coordinates have been
compressed along the major axis of the knowledge error ellipse so as to circularize it,
and the hard-body sphere has therefore been squashed into an ellipse; in the final
pane, the elliptical hard-body has been replaced by a circle of equivalent area.

CAM as a Decision Problem

Assume that we receive a sequence of independent observations Z" _ {z1 , z2 ,..., z" } of the

re-scaled miss distance, each with known re-scaled variance, σ2
i  . We wish to design a procedure

that will use the observations to inform a decision concerning the need for a collision avoidance

maneuver. In this procedure, we will compare two hypotheses, H0 and H1 . The null hypothesis,

H0 , is that the miss distance is unsafe; that is, that the true re-scaled miss distance, v, is less than or

equal to the re-scaled hard-body radius, R. The alternative hypothesis, H 1 , is that v > R. Figure 4

illustrates the two hypotheses as families of Rician densities.

Since we have to make this decision prior to the time of closest approach, based on a prediction

of the miss distance, there are four possible outcomes:

A correct decision to maneuver: our miss distance prediction indicated an unsafe conjunction,

and an unsafe conjunction really would have occurred. We will call this condition a true

alarm, or a true positive, and denote the associated probability of detection as Pd .

2. An incorrect decision to maneuver: our miss distance prediction indicated an unsafe conjunc-

tion, but the miss distance was actually large enough to be safe. We will call this condition a

false alarm, or a false positive, and denote the associated probability offalse alarm as Pfa.

This type of error creates a nuisance, but is not catastrophic.
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Figure 3 Two examples of Rician densities, with u = 1000. For large v, the Rician
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Figure 4 Families of Rician Densities for u = 500. The red Ricians correspond to
Ho : v < R, and the blue Ricians to Hl : v > R, where R = 50.
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3. A correct decision not to maneuver: our predicted miss distance was large enough to be safe,

and the actual miss distance was also large enough to be safe. We will call this condition a

true dismissal, or a true negative, and denote the associated probability of rejection as Pr .

4. An incorrect decision not to maneuver: our predicted miss distance was large enough to be

safe, but the actual miss distance was small enough to be unsafe. We will call this condition a

missed detection, or afalse negative, and denote the associated probability of missed detection

as Pmd. This type of error may be catastrophic.

In principle, it should be possible to determine the cost of performing a CAM, c m , and it is also

possible to determine the value of the objects involved in the conjunction, V. Thus, it is possible

to associate a cost with each of the outcomes just described. Table 1 illustrates the mapping of

decisions and conditions to outcomes and decision costs. Here, we have assumed that the cost of

a rejection is minimal, although perhaps not zero, since there may be a cost associated with CAM

operations regardless of whether a maneuver occurs. The expected cost of each outcome is therefore

the product of the cost each time it occurs, and the probability with which it might occur.

Table 1. Decision Matrix.

Decision

Accept Ho & maneuver Reject Ho & dismiss

Ho is true: True Positive: Missed Detection:

o
collision Probability = Pd = 1— Pmd Probability = Pmd

will occur Cost = cm Cost = V

o Ho is false: False Alarm: True Negative:
U trajectory Probability = Pfa Probability = Pr = 1 — Pfa

is safe Cost = cm Cost = 6

Since the probabilities that Ho is true, and false, are Pc , and 1 —Pc , respectively, the total expected

cost, c, of employing this decision procedure is

E [c] = Pc [(1 — Pmd)cm + PmdV] + (1 — Pc) [Pfacm + (1 — Pfa ) 6]	 (9)

Neyman-Pearson theory6 shows that for any particular fixed number of observations, there exists a

Pareto optimal relationship between Pmd and Pfa; that is, if for example one fixes Pmd = P
*

md,
then there exists a corresponding minimal P *

fa (P*

md) . Letting P,*
fa = ∂P*

fa/∂P*

md , optimization of

Eq. 9 shows that the minimal cost occurs when

	

P,* = — 
Pc (V — cm

) Pz —Pc V	 (10)fa
	(1 — Pc) (cm — 6)	cm

Since in general, one cannot arbitrarily decrease Pmd without increasingPfa , we can assume that

P*

fa (P
*
md) has the form

P
*

fa (P*

md) Pz —k/P
md	(11)

where k is some given constant; this implies that P ,*
fa Pz P*fa /P

*
md. Combining this with Eq. 10

results in the approximation that

PcPmdV Pz Pfacm( 1 — Pc)	 (12)

which shows that we minimize CAM costs by choosing Pmd and Pfa such that the expected costs

of missed detection will approximately balance the costs of false alarms.
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WALD’S SPRT

Let f (in I H0) be the probability density associated with having obtained the set of sequential

observations in given that the null hypothesis, i.e. that the miss distance is unsafe, were true*.

Let f (in I H1) be the probability density associated with obtaining the same set of observations

given that the alternative hypothesis, i.e. that the miss distance is safe, were true. Wald’s SPRT

compares the ratio of these probabilities to thresholds related to the false alarm and missed detection

probabilities, as follows. 1

Define the likelihood ratio as:

__ f (in I H1) = 
f (in I v>R)

An 
f (in I H0) f (in I v < R)

Wald recommends that we establish decision limits A and B such that whenever B < An < A we

will, if possible, seek another observation. If An < B, then we will accept the null hypothesis and

maneuver. If An > A, then we will accept the alternative hypothesis and dismiss the alarm. Wald’s

explanations for the thresholds A and B are that we will accept the alternative hypothesis if it is A

times more likely than the null, and accept the null hypothesis if it is 1/B times more likely than

the alternative. Wald shows that such a procedure will terminate with probability one, and that

A < 
1 — Pfa 

and B > 
Pfa	

(14)
P,.d	 1 — P,.d

which implies that the Pfa and P,.d resulting from such a procedure will be constrained by

Pfa < B( 1 — P,.d )	 (15)

Pfa < 1 — P,.dA	 (16)

Note that unlike a Neyman-Pearson test which employs a fixed number of observations, the number

of observations required for the SPRT to terminate is a random variable.

To see how we could apply Wald’s procedure to the CAM decision problem, suppose we knew

that the re-scaled true miss distance, v, could take on only two definite values: v0 = 0 and v1 = 6R.

Then, our hypotheses would be H0 : v = v0 = 0, and H1 : v = v1 = 6R. Since the observations

in are independent, Eq. 13 becomes

f (in I v = v1) 
= 71771a 1 ric(zi I v1 , ai )

An =
f (in I v = v0 )	lli=1 ric(zi I v0 , ai )

from which we can see that if the zi are more consistent with v1 than with v0 , the product in the

numerator of Eq. 17 will tend to dominate the product in its denominator, and the test will terminate

with An > A, and vice versa. Wald points out that it may be numerically superior to use the

log-likelihood ratio, rather than Eq. 17,

n	 n

log An =	log ric(zi I v1 , ai ) —
	

log ric (zi I v0 , ai )	 (18)

i=1	 i=1

and we employ this suggestion where applicable below.

* Here, and subsequently, we use the function f (·) to refer to a generic probability density function.

(13)

(17)
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maxv
E (R,00

) ric (zB I v, Q1 )

maxvE [0,R] ric (zB I v, Q1 )
BF = (23)

In reality, we do not have simple hypotheses of this sort; so, in order to make use of Wald’s

procedure, we must reduce the compound hypotheses H0 : v < R, and H1 : v > R, which Figure 4

illustrates, to simple hypotheses. That is, we must reduce the family of red Ricians in Figure 4 to

a single hypothesis that we can use in the denominator of Eq. 13, and reduce the family of blue

Ricians in Figure 4 to a single hypothesis that we can use in the numerator of Eq. 13. In the next

two subsections, we propose a frequentist and a Bayesian method to accomplish this reduction.

Frequentist Approach

Suppose we find the v1 E (R, oc) that maximizes the product in the numerator of Eq. 17, and also

the v0 E [0, R] that maximizes the product in the denominator of Eq. 17. Using these maximum

likelihood estimates, v̂1 and v̂0 , respectively, in each region would accomplish our goal of reducing

the compound hypotheses H0 : v < R and H1 : v > R to the simple hypotheses H0 : v = v̂0 and

H1 : v = v̂1 . A simple, bounded, line search will produce such estimates.

Next, we need to determine the decision ratios A and B. Suppose we define critical measurement

thresholds, zA and zB , such that we would accept the alternative hypothesis, v > R, if a single

measurement z1 exceeds zA , and we would accept the null hypothesis, v < R, if z1 < zB . We

would want zA to be large enough that the probability is Prynd or less that the null hypothesis were

true when z1 > zA . Refer to the upper pane of Figure 5 for an illustration of this idea. Thus,

zA = max ric-1 (1 — Prynd I v, Q1 )	 (19)
vE [0,R]

where
z*

z* = ric-1 (P I v, Q) = f (P) : P — 
J 

ric(z I v, Q) d z = 0	 (20)
0

Similarly, we would want zB to be small enough that the probability is Pfa or less that the

alternative hypothesis were true when z1 < zB , as the lower pane of Figure 5 depicts. Thus,

zB = max ric- 1 (Pfa I v,Q1 )	 (21)
vE (R,00 )

Then, to find A and B we merely evaluate Eq. 17 at zA and zB respectively:

AF = maxvE(R,00) ric (zA I v, Q1 )	 (22)

maxvE [0,R] ric (zA I v, Q1 )

Thus, the frequentist version of our decision procedure consists of the following methodology.

As each predicted re-scaled miss distance becomes available, accumulate the log-likelihood ratio:

	

n	 n

log AF
n  = max
	

log ric (zi I v, Qi) — max
	

log ric (zi I v, Qi )	(24)

	

vE (R,00) i=1	 vE [0,R] i=1

Then, if log AF
n > log AF, dismiss the conjunction; if log AF

n < log BF, consider performing a

CAM; otherwise, if log BF < log AF
n  < log AF, attempt to obtain another observation. If it is not

possible to obtain another observation, then it is presumably preferable to perform the CAM, with

the understanding that the false alarm probability will be increased.
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Figure 5. Critical measurement thresholds for frequentist Wald test.
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Bayesian Approach

Suppose there exists a prior density for the re-scaled true miss distance, f (v). This may be

the case, for example, if the conjunction occurs between two formation flying spacecraft whose

trajectories have been designed to approach to within a specified distance, v* , which has some

standard deviation u* , reflecting the precision to which the formation can maneuver to achieve the

design goal. Then, Bayes’ Rule rule says that the probability density for a single measurement being

z1 conditioned on the distance of closest approach being less than or equal to R is

f (z1 Iv < R) = f 
(z = z1 , v < R) 

= 
fo ric(z1 Iv, u1 ) f (v) d v	

(25)
Pr (v < R)

f

o
 f (v) d v

The probability density conditioned on the distance of closest approach being greater than R is

similarly found to be

f (z1 Iv > R) = 
f (

Pr (v > R)) R) 
= fR ri 

fR^ 
I f	

(v) d v	
(26)

(v) d v

The integrals in Eqs. 25 and 26 must be evaluated numerically, and the infinite upper limits can be

problematical. One way to make the integrals tractable is to assume that the prior density is also

Rician,

f (v) = ric(v I v* , u* ) .	 (27)

Figure 6 illustrates a particular example, and should be compared with Figure 4.

Figure 6 Convolution of the families of densities shown in Figure 4 with a prior Rician
density. Here, the prior re-scaled miss distance is v* = 3000, and the corresponding
u. = 3000, and the plot has been scaled by 1:1000 to clarify the labels.

With this assumption, the integral in the denominator of Eq. 26 can be found using Marcum’s Q 1

function.7 The numerator can be expressed as the integral over all v minus the integral from 0 to
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R, and Eq. 6.633.4 in Gradshteyn and Ryzhik 8 provides an analytic solution to the infinite integral.

With the substitution [9, Eq. 9.6.3] J0 (iz) = I0 (z) , it gives

Jx

00	 1	 0γ )
exp(—αx2 )I0 (0x)I0 (γx) d x = 2α exp

 

(
024+γ2

) I0

 

(2α	(28)
0

Straightforward algebra then leads to the intuitively pleasing result that the convolution of two

Rician densities is a Rician density with variance equal to the sum of the variances of the component

densities, and in particular

ric(z1 lv, U1 ) ric(v lv* , U* ) d v = ric(z1 lv* , 
q

U*
2 + U2

1 )	 (29)
0

The ratio of the probabilities of Eqs. 26 and 25 then gives the likelihood ratio for a single measure-

ment as

"

A1B f (z1 lv > R) 
=
	ric(z1 lv* , U2

* + U1 )	
— 1 

R
o ric(v lv* , U* ) d v	

30)= 
f (z1 lv < R)	

R
o ric(z1 lv, U1 ) ric(v lv* , U* ) d v	

R00

0 
ric(v lv* , U* ) d v

(

Assuming the measurements are independent gives the likelihood ratio for the set of n measurements

as

	

^

AB = 
f (Zn lv>R

)=
 R R ric(v lv* , U*)d v 

nn
	

ric(zz lv* ,
q

U* + U2	
— 1n	f (Zn lv < R)	

R
o ric(v lv* , U* ) d v 

z=1 

R

0
R ric(zz lv, Uz ) ric(v lv* , U* ) d v

(31)

Finding the decision ratios AB and BB in the Bayesian approach parallels the frequentist ap-

proach in basing these values on the results of a single measurement. We choose zA to give the

desired probability of a missed detection,

R
^ 

R
o ric(z lv,U1)ric(v lv* , U*)d v d z

Pmd = Pr (z>zA lv < R)=	
RR

0 
ric(v lv* , U* ) d v

1— 

R
0

A
 

R
R0 ric(z lv,U1)ric(v lv* , U*)d v d z	

32( )R
o ric(v lv* , U* ) d v

and choose zB to give the desired probability of false alarm,

Pfa = Pr (z < zB lv > R) = 

R

0
B

 

R

R 
r c(z l

ic(v lv* C(*

lv* ,

v

*)d v d z
R00

R

= 

R
o B ric(z lv*, U2

* + Ui ) d z — 
R

o B 
R
o ric(z lv, U1 ) ric(v lv* , U* ) d v d z

R00

R 
ric(v lv* , U* ) d v

(33)

Then, we substitute zA and zB into Eq. 30 to find AB and BB respectively.
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EXAMPLE PROBLEM

Example Problem Description

To test our approach, we developed a static example problem based on the MMS close approach

described previously. For this example, the re-scaled hard-body radius, R, is 37 units, corresponding

to 120 m for the particular close encounter geometry shown in Figure 1. The re-scaled uncertainty,

Q1 , is 377 units, which corresponds to the minor axis of the unscaled 377 by 3882 meter conjunction

plane error ellipse shown in Figure 1. We assume that a small number of additional observations of

the miss distance would be available subsequent to the prediction in Figure 1. These observations

could be more accurate, if they were based on additional tracking from assets other than those used

for the initial observation; in any case they would be more recent as well, hence reducing error due

to propagation. To approximate this decrease in uncertainty, we have assumed Qz = Q1 /i for this

example. To determine the decision tresholds A and B, we used desired missed detection and false

alarm probabilities of 1/1000 and 1/20, respectively.

To test the frequentist approach, we generated 3000 samples of the true re-scaled miss distance

from a uniform distribution spanning [0, 2v'
r

3Q1]. For each case, we generated a sequence of Rician

samples, zz , using the true v for that case. For the prescribed missed detection and false alarm

probabilities, the resulting thresholds were log10 (AF) = 2.04 and log10 (BF ) = —.002.

To test the Bayesisan approach, we generated 3000 samples of the true re-scaled miss distance

from a Rician distribution assuming v* = 3000 and Q* = 3000. The former is motivated by the

unscaled design limit for close approaches for MMS of 6 km. As for the frequentist example,

for each case, we generated a sequence of Rician samples, z z , using the true v for that case. For

the prescribed missed detection and false alarm probabilities, the resulting thresholds were A B =

42.8 = 101.63 and BB = 0.136 = 10- .866.

Example Problem Results and Discussion

We repeated the 3000-case trials several times to verify repeatable results. We determined from

these trials that the frequentist approach reliably produces a false alarm probability of 15 f 1%, and

we never observed a missed detection. The average number of measurements required to resolve

a decision, inclusive of the first observation, was two to three. In cases where the true v was very

close to R, the frequentist approach often required many more observations; as many as 50 were

observed. In all cases, the false alarms occurred when v Pz R.

Because the frequentist approach does not assume a prior density for v, when v Pz R, its maxi-

mum likelihood estimation produces estimates of v under both hypotheses that are close to v = R.

Thus, it appears to be difficult for the frequentist approach to distinguish between the hypotheses.

We believe this is the reason why the test fails to come closer to the desired false alarm specification

of 1/20. Note that the limits shown by Eq. 14 apply to the actual false alarm and missed detection

probabilities for the test, not the desired probabilities used to derive A and B, and hence they are

trivially satisfied by the results of our trials.

For the Bayesian approach, we also observed zero missed detections in 3000 trials, and we ob-

served a false alarm rate of 2.8%. The average number of measurements required to resolve a

decision was just over one, and the maximum in 3000 trials was four.

Because the Bayesian approach has access to prior information, it appears that it is better able

to distinguish between the two hypotheses. However, since the samples of the true v were drawn

12



from a Rician centered at 3000 units, we expect that many fewer observations near R occurred.

Therefore, we re-ran the Bayesian case with 50,000 trials. Once again, we observed a false alarm

rate of 2.8%, and a missed detection rate of 0.

SUMMARY

In this paper, we stated the case that the CAM decision problem might beneficially be viewed

as a problem of decisions. We then applied a well-known decision procedure, Wald’s SPRT, to the

CAM decision problem. When prior densities are available, we described a Bayesian approach to

resolving the CAM decision problem into two simple hypotheses that applicable to the SPRT. For

other cases, we described a frequentist approach that does not require prior information. We found

from our examples, that, due to the nature of its reduction to Rician densities, the CAM decision

problem is a challenging application of Wald’s theory with the frequentist approach, but that the

Bayesian method works quite well. We believe our results show that our approaches for applying

the SPRT to the CAM decision problem have the potential to help decision makers better understand

the trades they face when confronted by a looming CAM decision.

In future work, we hope to further validate and refine our method using additional MMS close ap-

proach simulations, including if possible CAM’s to avoid other resident space objects. We also plan

to examine the sensitivity of each of our approaches to different prior densities, to the assumption

of independence of the measurements, and to relaxation of the some of the assumptions inherent in

the reduction of the full CAM decision problem to the evaluation of Rician densities.
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