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Abstract: In hypotheses testing, such as other statistical problems, we may
confront imprecise concepts. One case is a situation in which both hypotheses
and observations are imprecise.

In this paper, we redefine some concepts about fuzzy hypotheses testing, and
then we give the sequential probability ratio test for fuzzy hypotheses testing
with fuzzy observations. Finally, we give some applied examples.

Zusammenfassung:Bei Hypothesentests wie auch bei anderen statistischen
Problemen k̈onnten wir mit unpr̈azisen Konzepten konfrontiert sein. Ein
Beispiel daf̈ur ist die Situation in der beides, Hypothesen und Beobachtun-
gen, unpr̈azise sind.

In diesem Artikel definieren wir einige Konzepte bei unscharfen Hypothesen-
tests neu. Dann geben wir den sequentiellen Wahrscheinlichkeits-Quotienten-
test f̈ur unscharfes Hypothesentesten mit unscharfen Beobachtungen an. Zum
Schluss f̈uhren wir einige angewandte Beispiele an.

Keywords: Critical Region, Type I and II Error Rates, Fuzzy Random Vari-
able.

1 Introduction

Fuzzy set theory is a powerful and known tool for formulation and analysis of imprecise
and subjective situations where exact analysis is either difficult or impossible. Some
methods in descriptive statistics with vague data and some aspects of statistical inference
is proposed in Kruse and Meyer (1987). Fuzzy random variables were introduced by
Kwakernaak (1978), or Puri and Ralescu (1986) as a generalization of compact random
sets, Kruse and Meyer (1987) and were developed by others such as Juninig and Wang
(1989), Ralescu (1995), López-D́ıaz and Gil (1997), Ĺopez-D́ıaz and Gil (1998), and Liu
(2004).

In this paper, because of our main purpose (statistical inference about a parametric
population with fuzzy data), we only consider and discuss fuzzy random variables asso-
ciated with an ordinary random variable.

Decision making in classical statistical inference is based on crispness of data, ran-
dom variables, exact hypotheses, decision rules and so on. As there are many different
situations in which the above assumptions are rather unrealistic, there have been some
attempts to analyze these situations with fuzzy set theory proposed by Zadeh (1965).

One of the primary purpose of statistical inference is to test hypotheses. In the tradi-
tional approach to hypotheses testing all the concepts are precise and well defined (see,
e.g., Lehmann, 1994, Casella and Berger, 2002, and Shao, 1999). However, if we in-
troduce vagueness into hypotheses, we face quite new and interesting problems. Arnold
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(1996) considered statistical tests under fuzzy constraints on the type I and II errors. Test-
ing fuzzy hypotheses was discussed by Arnold (1995) and Arnold (1998), Delgado et
al. (1985), Saade and Schwarzlander (1990), Saade (1994), Watanabe and Imaizumi
(1993), Taheri and Behboodian (1999), Taheri and Behboodian (2001), and Taheri and
Behboodian (2002), and Grzegorzewski (2000) and Grzegorzewski (2002). Kruse and
Meyer (1987), Taheri and Behboodian (2002) considered the problem of testing vague
hypotheses in the presence of vague hypothesis. Up to now testing hypotheses with fuzzy
data was considered by Casals et al. (1986), and Son et al. (1992). For more references
about fuzzy testing problem see Taheri (2003). Also, for more details about ordinary
sequential probability ratio test, see e.g. Hogg and Craig (1995) and Mood et al. (1974).

This paper is organized in the following way. In Section 2 we provide some defini-
tions and preliminaries. Fuzzy hypotheses testing is defined in Section 3. The sequential
probability ratio test for fuzzy hypotheses testing with vague data is introduced in Section
4. Finally, some applied examples are given in Section 5.

2 Preliminaries

Let (Ω,F ,P) be a probability space. A random variable (RV)X is a measurable function
from (Ω,F ,P) to (R,B,PX ), wherePX is the probability measure induced byX and is
called the distribution of the RVX, i.e.,

PX(A) = P (X ∈ A) =

∫

X∈A

dP , A ∈ B .

Using “the change of variable rule”, (see e.g. Billingsley, 1995, p. 215 and 216, or Shao,
1999, p. 13), we have

PX(A) =

∫

A

dPoX−1(x) =

∫

A

dPX(x) , A ∈ B .

If PX is dominated by aσ-finite measureν, i.e.,PX << ν, then using the Radon-Nikodym
theorem, (see e.g. Billingsley, 1995, p. 422 and 423, or Shao, 1999, p. 14), we have

PX(A) =

∫

A

f(x) dν(x) ,

wheref(x) is the Radon-Nikodym derivative ofPX with respect toν and is called the
probability density function (PDF) ofX with respect toν.

In statistical texts, the measureν is usually a “counting measure” or a “Lebesgue
measure”; hencePX(A) is calculated by

∑
x∈A f(x) or

∫
A

f(x) dx, respectively.
Let X = {x ∈ R|f(x) > 0}. The setX is usually called “support” or “sample

space” ofX. A random vectorX = (X1, . . . , Xn) is said a random sample of sizen from
a population with PDFf(x), if the Xi’s are independent distributed all with PDFf(x)
(Xi’s are identically distributed). In this case, we have

f(x) = f(x1) · · · f(xn) , ∀xi ∈ R ,

wherex = (x1, . . . , xn) is an observed value ofX.
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In the following we present two definitions from the introduction of Casals et al.
(1986), but in a slightly different way.

Definition 1 A fuzzy sample spacẽX is a fuzzy partition (Ruspini partition) ofX , i.e., a
set of fuzzy subsets ofX whose membership functions are Borel measurable and satisfy
the orthogonality constraint:

∑
x̃∈X̃ µx̃(x) = 1, for eachx ∈ X .

Definition 2 A fuzzy random sample (FRS) of sizen X̃ = (X̃1, . . . , X̃n) associated with
the PDFf(x) is a measurable function fromΩ to X̃ n, whose PDF is given by

f̃(x̃1, . . . , x̃n) = P̃ (X̃ = x̃) =

∫

Xn

n∏
i=1

µx̃i
(xi)f(xi) dν(xi) .

The densityf̃(x̃) is often called the fuzzy probability density function ofX̃.
The above definition is according to Zadeh (1968). Note that using Fubini’s theorem

(see Billingsley, 1995, p. 233-234), we obtain independency of theX̃i’s, i.e.,

f̃(x̃1, . . . , x̃n) = f̃(x̃1) · · · f̃(x̃n) , ∀x̃i ∈ X̃ ,

where

f̃(x̃i) =

∫

X
µx̃i

(xi)f(xi) dν(xi) ,

andf̃(x̃i) is the PDF of the fuzzy random variable (FRV)X̃i, for eachi = 1, . . . , n. For
eachi, f̃(x̃i) really is a PDF onX̃ , because by the orthogonality of theµx̃i

’s, we have

∑

x̃i∈X̃
f̃(x̃i) =

∑

x̃i∈X̃

∫

X
µx̃i

(xi)f(xi) dν(xi)

=

∫

X
f(xi)


∑

x̃i∈X̃
µx̃i

(xi)


 dν(xi)

=

∫

X
f(xi) dν(xi) = 1 .

Theorem 1 If g is a measurable function from̃X n to R, thenY = g(X̃) is an ordinary
random variable.

Proof: X̃ is a measurable function fromΩ to X̃ n andg is a measurable function from̃X n

toR. Hence,g(X̃(ω)) = goX̃(ω) is a composition of two measurable functions, therefore
is measurable fromΩ toR (see Billingsley, 1995, p. 182).¥

Note that using Theorem 1, we can define and use all related concepts for ordinary
random variables, such as expectation, variance, etc.

Theorem 2 Let X̃ be a fuzzy random sample with fuzzy sample spaceX̃ n, andg be a
measurable function from̃X n toR. The expectation ofg(X̃) is calculated by

E
[
g(X̃)

]
=

∑

x̃∈X̃n

g(x̃)f̃(x̃) .
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Proof: Using the change of variable rule and the Radon-Nikodym theorem, we have

E
[
g(X̃)

]
=

∫

Ω

g(X̃(ω)) dP (ω)

=

∫

X̃n

g(x̃) dPoX̃−1(x̃)

=
∑

x̃∈X̃n

g(x̃)f̃(x̃) . ¥

For more details about properties of ordinary RV’s and their moments see, e.g., Ash
and Doleans-Dade (2000), Billingsley (1995), Chung (2000), Feller (1968), or Ross (2002).

In this paper, we suppose that the PDF of the population is known but it has an un-
known parameterθ ∈ Θ. In this case, we index̃f by θ and writef̃(x̃; θ).

Example 1Let X be a Bernoulli variable with parameterθ, i.e.,

f(x; θ) = θx(1− θ)1−x , x = 0, 1 , 0 < θ < 1 .

We haveX = {0, 1}. Let x̃1 andx̃2 be two fuzzy subsets ofX with membership functions

µx̃1(x) =

{
0.9 , x = 0
0.1 , x = 1 ,

and µx̃2(x) =

{
0.1 , x = 0
0.9 , x = 1 .

Note thatx̃1 and x̃2 are stated “approximately zero” and “approximately one” values,
respectively. Here, the support of̃X is X̃ = {x̃1, x̃2}. Therefore the PDF of̃X is

f̃(x̃; θ) =
∑
X

µx̃1(x)f(x; θ) =

{
0.9(1− θ) + 0.1θ , x̃ = x̃1

0.1(1− θ) + 0.9θ , x̃ = x̃2

=

{
0.9− 0.8θ , x̃ = x̃1

0.1 + 0.8θ , x̃ = x̃2 .

Let

Y =

{
0.1 , x̃ = x̃1

0.9 , x̃ = x̃2 .

Note thatY is a measurable function from̃X to R and therefore is a classical random
variable. In the following, we calculate the mean and the variance ofY . The PDF ofY is

fY (y; θ) =

{
0.9− 0.8θ , y = 0.1
0.1 + 0.8θ , y = 0.9 .

Therefore, the expectation and the variance ofY are

E(Y ) = 0.1(0.9− 0.8θ) + 0.9(0.1 + 0.8θ) = 0.18 + 0.64θ

E(Y 2) = 0.01(0.9− 0.8θ) + 0.81(0.1 + 0.8θ) = 0.09 + 0.64θ

Var(Y ) = 0.09 + 0.64θ − (0.18 + 0.64θ)2 = 0.0576 + 0.4096θ − 0.4096θ2 .
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3 Fuzzy Hypotheses Testing

In this section we introduce concepts about fuzzy hypotheses testing (FHT).

Definition 3 Any hypothesis of the form “H : θ is H(θ)” is called a fuzzy hypothesis,
where “H : θ is H(θ)” implies thatθ is in a fuzzy set ofΘ, the parameter space, with
membership functionH(θ), i.e., a function fromΘ to [0, 1].

Note that the ordinary hypothesisH : θ ∈ Θ is a fuzzy hypothesis with membership
functionH(θ) = 1 at θ ∈ Θ, and zero otherwise, i.e., the indicator function of the crisp
setΘ.

Example 2 Let θ be the parameter of a Bernoulli distribution. Consider the following
function:

H(θ) =

{
2θ , 0 < θ < 1/2
2− 2θ , 1/2 ≤ θ < 1 .

The hypothesis “H : θ is H(θ)” is a fuzzy hypothesis and it means that “θ is approxi-
mately 1/2”.

In FHT with fuzzy data, the main problem is testing
{

H0 : θ is H0(θ)
H1 : θ is H1(θ)

(1)

according to a fuzzy random samplẽX = (X̃1, . . . , X̃n) from a parametric fuzzy popu-
lation with PDFf̃(x̃; θ). In the following we give some definitions in FHT theory with
fuzzy data.

Definition 4 The normalized membership function ofHj(θ) is defined by

H∗
j (θ) =

Hj(θ)∫
Θ

Hj(θ) dθ
, j = 0, 1

providing to
∫
Θ

Hj(θ) dθ < ∞. Replace integration by summation in discrete cases.
Note that the normalized membership function is not necessarily a membership func-

tion, i.e., it may be greater than 1 for some values ofθ.
In FTH with fuzzy data, like in traditional hypotheses testing, we must give a test

functionΦ̃(X̃), which is defined in the following.

Definition 5 Let X̃ be a FRS with PDF̃f(x̃; θ). Φ̃(X̃) is called a fuzzy test function, if it
is the probability of rejectingH0 providedX̃ = x̃ is observed.

Definition 6 Let the FRVX̃ have PDFf̃(x̃; θ). UnderHj(θ), j = 0, 1, the weighted
probability density function (WPDF) of̃X is defined by

f̃j(x̃) =

∫

Θ

H∗
j (θ)f̃(x̃; θ) dθ ,

i.e., the expected value of̃f(x̃; θ) overH∗
j (θ), j = 0, 1. If X̃ is a fuzzy random sample

from f̃(·; θ), then the joint WPDF of̃X is

f̃j(x̃) =
n∏

i=1

f̃j(x̃i) .
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Remark 1 f̃j(x̃) is a PDF, sincẽfj(x̃) is nonnegative and

∑

X̃
f̃j(x̃) =

∑

X̃

∫

Θ

H∗
j (θ)f̃(x̃; θ) dθ

=

∫

Θ

H∗
j (θ)


∑

X̃
f̃(x̃; θ)


 dθ

=

∫

Θ

H∗
j (θ) dθ = 1 .

Hence,f̃j(x̃1, . . . , x̃n) is also a joint PDF.

Remark 2 If Hj is the crisp hypothesisHj : θ = θj, then f̃j(x̃) = f̃(x̃; θj) and
f̃j(x̃1, . . . , x̃n) = f̃(x̃1, . . . , x̃n; θj), j = 0, 1.

Definition 7 Let Φ̃(X̃) be a fuzzy test function. The probability of type I and II errors
of Φ̃(X̃) for the fuzzy testing problem (1) is defined byαΦ̃ = E0[Φ̃(X̃)] and βΦ̃ =
1−E1[Φ̃(X̃)], respectively, whereEj[Φ̃(X̃)] is the expected value of̃Φ(X̃) over the joint
WPDF f̃j(x̃), j = 0, 1.

Note that in the case of testing a simple crisp hypothesis against simple crisp alterna-
tive, i.e., {

H0 : θ = θ0

H1 : θ = θ1

and for crisp observations, the above definition ofαΦ̃ andβΦ̃ gives the classical probability
of errors.

Regarding to definitions of error sizes, it is concluded that fuzzy hypotheses testing
(1) is equivalent to the following ordinary hypotheses testing

{
H ′

0 : X̃ ∼ f̃0

H ′
1 : X̃ ∼ f̃1

(2)

Definition 8 A fuzzy testing problem with a test functioñΦ is said to be a test of (signifi-
cance) levelα, if αΦ̃ ≤ α, whereα ∈ [0, 1]. We callαΦ̃ the size ofΦ̃.

4 Sequential Probability Ratio Test for FHT

In this section, first, we define the sequential probability ratio test(SPRT) for the ordi-
nary simple hypotheses testing with crisp observations and then concerning Section 3, we
extend the SPRT to the FHT with fuzzy observations.

Consider testing a simple null hypothesis against a simple alternative hypothesis. In
other words, suppose a sample can be drawn from one of two known distributions and it
is desired to test that the sample came from one distribution against the possibility that it
came from the other. IfX1, X2, · · · denote the iid RV’s, we want to testH0 : Xi ∼ f0(·)
versusH1 : Xi ∼ f1(·). For a sample of sizem, the Neyman-Pearson criterion rejects
H0 if Rm(x) = L0(x)/L1(x) < k, for some constantk > 0, wherex = (x1, . . . , xm),
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Lj(x) =
∏m

i=1 fj(xi), j = 0, 1. Compute sequentiallyR1, R2, . . .. For fixedk0 andk1

satisfying0 < k0 < k1, adopt the following procedure: Take observationx1 and compute
R1; if R1 ≤ k0, rejectH0; if R1 ≥ k1, acceptH0; and if k0 < R1 < k1, take observation
x2, and computeR2; if R2 ≤ k0, rejectH0; if R2 ≥ k1, acceptH0; and ifk0 < R2 < k1,
take observationx3, etc. The idea is to continue sampling as long ask0 < Rj < k1

and stop as soon asRm ≤ k0 or Rm ≥ k1, rejectingH0 if Rm ≤ k0 and accepting
H0 if Rm ≥ k1. The critical region of the described sequential test can be defined as
C =

⋃∞
n=1 Cn, where

Cn = {(x1, . . . , xn)|k0 < Rj(x1, . . . , xj) < k1 , j = 1, . . . , n−1 , Rn(x1, . . . , xn) ≤ k0} .

Similarly, the acceptance region can be defined asA =
⋃∞

n=1 An, where

An = {(x1, . . . , xn)|k0 < Rj(x1, . . . , xj) < k1 , j = 1, . . . , n−1 , Rn(x1, . . . , xn) ≥ k1} .

Definition 9 For fixedk0 andk1, a test as described above is defined to be a sequential
probability ratio test (SPRT). Therefore for the SPRT, the probability of type I and II errors
is calculated byα =

∑∞
n=1

∫
Cn

L0(x) dx, andβ =
∑∞

n=1

∫
An

L1(x) dx, respectively.
In the following, we briefly state some results about the classical SPRT without proofs.

For more details see Mood et al. (1974) or Hogg and Craig (1995).
Let k0 andk1 be defined so that the SPRT has fixed probabilities of type I and II errors

α andβ. Thenk0 andk1 can be approximated byk′0 = α/(1 − β) andk′1 = (1 − α)/β,
respectively. Ifα′ and β′ are the error sizes of the SPRT defined byk0 and k1, then
α′ + β′ ≤ α + β.

If zi = log(f0(xi)/f1(xi)), an equivalent test to the SPRT is given by the following:
continue sampling as long aslog(k0) <

∑m
i=1 zi < log(k1), and stop sampling when∑m

i=1 zi ≤ log(k0) (and rejectH0) or
∑m

i=1 zi ≥ log(k1) (and acceptH0).
Let N be the RV denoting the sample size of the SPRT. The SPRT with error sizes

α andβ minimizes bothE[N |H0 true ] andE[N |H1 true ] among all tests (sequential or
not) which satisfy

P (H0 rejected|H0 true) ≤ α , and P (H0 accepted|H0 false) ≤ β .

Using Wald’s equation we obtainE[N ] = E[Z1+· · ·+ZN ]/E[Z1]. ButE[Z1+· · ·+ZN ] ≈
ρ log(k0) + (1− ρ) log(k1), whereρ = P (rejectH0). Hence,

E[N |H0 true ] ≈ α log[α/(1− β)] + (1− α) log[(1− α)/β]

E[Z1|H0 true]
,

E[N |H1 true] ≈ (1− β) log[α/(1− β)] + β log[(1− α)/β]

E[Z1|H1 true ]
.

Now, we are ready to state the SPRT for fuzzy hypotheses testing with vague data.

Definition 10 Let X̃1, X̃2, . . . be an iid sequence of FRV’s from a population with PDF
f̃(·; θ). We propose to consider testing

{
H ′

0 : X̃ ∼ f̃0

H ′
1 : X̃ ∼ f̃1
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as a SPRT for fuzzy hypotheses testing (1), in whichf̃j(x̃) is the WPDF off̃(x̃; θ) under
H∗

j (θ), j = 0, 1 (see Definition 6). Thus, the critical region of the described SPRT for
fuzzy hypotheses testing (1) is defined asC =

⋃∞
n=1 Cn, where

Cn = {(x̃1, . . . , x̃n)|k0 < R̃j(x̃1, . . . , x̃j) < k1 , j = 1, . . . , n−1 , R̃n(x̃1, . . . , x̃n) ≤ k0} .

Similarly, the acceptance region can be defined asA =
⋃∞

n=1 An, where

An = {(x̃1, . . . , x̃n)|k0 < R̃j(x̃1, . . . , x̃j) < k1 , j = 1, . . . , n−1 , R̃n(x̃1, . . . , x̃n) ≥ k1} ,

in which

R̃m(x̃1, . . . , x̃m) = f̃0(x̃)/f̃1(x̃)

=
m∏

i=1

[
f̃0(x̃i)/f̃1(x̃i)

]

=
m∏

i=1

[∫

Θ

H∗
0 (θ)f̃(x̃i; θ) dθ

/∫

Θ

H∗
1 (θ)f̃(x̃i; θ) dθ

]
.

Regarding to the definition of WPDF,α, β and other related concepts, all results of
the ordinary SPRT are satisfied for this case, of course with the following modifications.
In this case, we have

k′0 =
αΦ̃

1− βΦ̃

, k′1 =
1− αΦ̃

βΦ̃

Zi = log

∫
Θ

H∗
0 (θ)f̃(X̃i; θ) dθ∫

Θ
H∗

1 (θ)f̃(X̃i; θ) dθ
, i = 1, 2, . . .

and

E[Zi|Hj true] =
∑

x̃i∈X̃
log

∫
Θ

H∗
0 (θ)f̃(x̃i; θ) dθ∫

Θ
H∗

1 (θ)f̃(x̃i; θ) dθ
f̃j(x̃i) , j = 0, 1 .

Hence,

E[N |H0 true] ≈ αΦ̃ log(k′0) + (1− αΦ̃) log(k′1)
E[Z1|H0 true]

E[N |H1 true] ≈ (1− βΦ̃) log(k′0) + βΦ̃ log(k′1)
E[Z1|H1 true]

.

Note thatZi is an ordinary RV.

5 Some Examples

In this section, we present four important examples to clarify the theoretical discussions
so far.
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Example 3Let X1, X2, . . . be a sequence of iid RV’s from Bernoulli(θ), 0 < θ < 1. We
want to test {

H0 : θ ≈ θ0

H1 : θ ≈ θ1

where

Hj(θ) = θαj(1− θ) , ∀θ ∈ (0, 1) , j = 0, 1, for α0 = 7 , α1 = 1/7

according to two fuzzy data (fuzzy subsets ofX = {0, 1}) x̃I andx̃II where their mem-
bership functions are defined by

µx̃I
(x) =

{
0.9 , x = 0
0.1 , x = 1 ,

µx̃II
(x) =

{
0.1 , x = 0
0.9 , x = 1 .

The normalized membership function ofHj(θ) is

H∗
j (θ) = (αj + 2)(αj + 1)θαj(1− θ) .

If we denote this FRV, its fuzzy observation and its PDF byX̃, x̃, andf̃(x̃; θ), respec-
tively, then using Example 1, we have

f̃(x̃; θ) =

{
0.9− 0.8θ , x̃ = x̃I

0.1 + 0.8θ , x̃ = x̃II .

It is easy to show that

f̃0(x̃) =

{
0.26 , x̃ = x̃I

0.74 , x̃ = x̃II ,
f̃1(x̃) =

{
0.609 , x̃ = x̃I

0.391 , x̃ = x̃II .

Hence, fori = 1, 2, . . ., we obtain

zi = log
f̃0(x̃i)

f̃1(x̃i)
=

{−0.85114 , x̃i = x̃I

0.63794 , x̃i = x̃II .

Assume thatαΦ̃ = 0.1 andβΦ̃ = 0.01. Then we obtainlog(k′0) = −2.2925, log(k′1) =
4.4998, E[Zi|H0 true ] = 0.25078, andE[Zi|H1 true] = −0.26891. Hence,E[N |H0 true] =
15.235, then we taken = 16 andE[N |H1 true] = 8.273, thus we taken = 9.

Example 4Let X1, X2, . . . be a sequence of iid RV’s from a N(µ, σ2) population, i.e.

f(x; θ) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
, x, µ ∈ R , σ > 0 .

We want to test {
H0 : µ ≈ µ0

H1 : µ ≈ µ1

with membership functions

Hj(µ) = exp

(
−(µ− µj)

2

2σ2
0

)
, j = 0, 1 , µ ∈ R , σ0 > 0 ,
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using the SPRT, according to three fuzzy data (fuzzy subsets ofX = (−∞, +∞)) x̃I ,
x̃II , andx̃III , where their membership functions are defined by

µx̃I
(x) =

{
1− e−x2/2 , x < 0
0 , x ≥ 0 ,

µx̃II
(x) = e−x2/2 , x ∈ R ,

µx̃III
(x) =

{
0 , x < 0

1− e−x2/2 , x ≥ 0 .

The fuzzy subsets̃xI , x̃II , andx̃III can be interpreted as the values of “very small”, “near
to zero”, and “very large”.

Note that theµ’s are measurable and satisfy the orthogonality constraint (see Defini-
tions 1 and 2).

The normalized membership function ofHj(θ) is

H∗
j (µ) =

1

σ0

√
2π

exp

(
−(µ− µj)

2

2σ2
0

)
, j = 0, 1 , µ ∈ R , σ0 > 0 .

Denote this FRV, its fuzzy observation and its PDF byX̃, x̃, andf̃(x̃; θ), respectively. Let
µ0 = 0, µ1 = 1, σ2 = 4, andσ2

0 = 0.5. It is easy to show that

f̃0(x̃) =





0.3796 , x̃ = x̃I

0.2408 , x̃ = x̃II

0.3796 , x̃ = x̃III ,
f̃1(x̃) =





0.2907 , x̃ = x̃I

0.2339 , x̃ = x̃II

0.4754 , x̃ = x̃III .

Hence, fori = 1, 2, . . ., we get

zi = log
f̃0(x̃i)

f̃1(x̃i)
=





0.2668 , x̃i = x̃I

0.0291 , x̃i = x̃II

−0.2250 , x̃i = x̃III .

Suppose thatαΦ̃ = βΦ̃ = 0.1. We havelog(k′0) = −2.19722, log(k′1) = 2.19772,
E[Zi|H0 true] = 0.02287, and E[Zi|H1 true] = −0.02261. Thus, E[N |H0 true ] =
76.815, then in this case, we taken = 77 andE[N |H1 true] = 77.658, thus we must
taken = 78.

Example 5 Let X1, X2, . . . be a sequence of iid RV’s from an Exponential population
with meanθ, i.e.

f(x; θ) =
1

θ
exp (−x/θ) , x, θ > 0 .

We want to test {
H0 : θ ≈ 1/2
H1 : θ ≈ 3/2 ,

where the membership functionsH0(θ) andH1(θ) are defined by

H0(θ) =





2θ , 0 < θ ≤ 1/2
2− 2θ , 1/2 < θ < 1
0 , otherwise,

H1(θ) =





2θ − 2 , 1 < θ ≤ 3/2
4− 2θ , 3/2 < θ < 2
0 , otherwise
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using the SPRT, according to three fuzzy data, fuzzy subsets ofX = (0, +∞), x̃I , x̃II ,
andx̃III , where their membership functions are defined by

µx̃I
(x) =

{
e−x , 0 < x < 1
0 , x ≥ 1 ,

µx̃II
(x) =





1− e−x , 0 < x < 1
1 , 1 ≤ x < 2
e−x , x ≥ 2 ,

µx̃III
(x) =

{
0 , 0 < x < 2
1− e−x , x ≥ 2 .

We can interpret the fuzzy subsetsx̃I , x̃II , andx̃III as the values of “near to zero”, “near
to 3/2”, and “very large”. Note thatµ’s are measurable and satisfy the orthogonality
constraint.

The normalized membership function ofHj(θ) is

H∗
j (θ) = 2Hj(θ) , j = 0, 1 .

Denote this FRV, its fuzzy observation and its PDF byX̃, x̃, andf̃(x̃; θ), respectively.
It can be shown that

f̃(x̃; θ) =





1
θ+1

[
1− e−(θ+1)/θ

]
, x̃ = x̃1

1− 1
θ+1

[
1− e−(θ+1)/θ

]− e−2/θ + 1
θ+1

e−2(θ+1)/θ , x̃ = x̃2

e−2/θ − 1
θ+1

e−2(θ+1)/θ , x̃ = x̃3

and hence,

f̃0(x̃) =





0.648 , x̃ = x̃I

0.326 , x̃ = x̃II

0.026 , x̃ = x̃III ,
f̃1(x̃) =





0.328 , x̃ = x̃I

0.425 , x̃ = x̃II

0.247 , x̃ = x̃III .

Thus, fori = 1, 2, . . ., we obtain

zi = log
f̃0(x̃i)

f̃1(x̃i)
=





0.681 , x̃i = x̃I

−0.265 , x̃i = x̃II

−2.251 , x̃i = x̃III .

If αΦ̃ = βΦ̃ = 0.05 we getlog(k′0) = −2.9444, log(k′1) = 2.9444, E[Zi|H0 true] = 0.296,
andE[Zi|H1 true] = −0.445. Hence,E[N |H0 true] = 8.95, and we therefore taken = 9,
whereasE[N |H1 true] = 5.95 and we taken = 6.

Example 6Let X be a RV with PDF

f(x; θ) = 2θx + 2(1− θ)(1− x) , 0 < x < 1 , 0 < θ < 1 .

We want to test {
H0 : θ ≈ 1/4 (θ is approximately1/4)
H0 : θ ≈ 3/4 (θ is approximately3/4) .

where the membership functions are defined as

H0(θ) =





4θ , 0 < θ ≤ 1/4
2− 4θ , 1/4 < θ < 1/2
0 , otherwise,

H1(θ) =





4θ − 2 , 1/2 < θ ≤ 3/4
4− 4θ , 3/4 < θ < 1
0 , otherwise,
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according to three fuzzy data (fuzzy subsets ofX = (0, 1)) x̃I , x̃II , andx̃III , with mem-
bership functions

µx̃I
(x) =

{
0.8− 0.8x , 0 < x ≤ 1/2
0 , 1/2 < x < 1 .

µx̃II
(x) =

{
0.2 + 0.8x , 0 < x ≤ 1/2
1− 0.8x , 1/2 < x < 1 .

µx̃III
(x) =

{
0 , 0 < x ≤ 1/2
0.8x , 1/2 < x < 1 .

We can interpret the fuzzy subsetsx̃I , x̃II , andx̃III as the values of “near to zero”,
“near to 0.5”, and “near to 1”. It is clear that allµ’s are measurable and satisfy the
orthogonality constraint of Definition 1.

If we denote this FRV, its fuzzy observation and its PDF byX̃, x̃, andf̃(x̃; θ), respec-
tively, then using Definition 2, we have

f̃(x̃; θ) =

∫ 1

0

µx̃(x)f(x; θ) dx =





0.467− 0.333θ , x̃ = x̃I

0.400 , x̃ = x̃II

0.133 + 0.333θ , x̃ = x̃III .

On the other hand, the normalized membership function ofHj(θ) is

H∗
j (θ) = 4Hj(θ) , j = 0, 1 .

It is easy to show that the WPDF’s of̃X are

f̃0(x̃) =

∫ 1

0

H∗
0 (θ)f̃(x̃; θ) dθ =





0.383 , x̃ = x̃I

0.400 , x̃ = x̃II

0.217 , x̃ = x̃III ,

f̃1(x̃) =

∫ 1

0

H∗
1 (θ)f̃(x̃; θ) dθ =





0.217 , x̃ = x̃I

0.400 , x̃ = x̃II

0.383 , x̃ = x̃III .

Therefore, we get

zi = log
f̃0(x̃i)

f̃1(x̃i)
=





0.570 , x̃i = x̃I

0.000 , x̃i = x̃II

−0.570 , x̃i = x̃III .

Let αΦ̃ = 0.05 and βΦ̃ = 0.01. We obtainlog(k′0) = −2.9857, log(k′1) = 4.5539,
E[Zi|H0 true] = 0.095, andE[Zi|H1 true] = −0.095. Hence,E[N |H0 true] = 43.968,
and we must taken = 44, whereasE[N |H1 true] = 30.635, thus we taken = 31.
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