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Abstract. A Sequential Probability Ratio Test (SPRT) algorithm for reliable 
and fast determination of a relative radiation level in a field environment has 
been developed. The background and the radioactive anomaly are assumed to 
follow the normal and Poisson distributions, respectively. The SPRT 
formulation has been derived and simplified based on these assumptions. The 
preliminary evaluation suggests that the algorithm, while offering confident 
estimations for the log-scaled radiation level, promises the additional advantage 
of reduction in sampling sizes, particularly in areas with a high radiation level.  

1   Introduction 

Reliable and fast estimation of the local relative radiation level with respect to that of 
the regional natural background, under prescribed confidence levels, is the central 
focus of many environmental radiological surveys. A local relative radiation level can 
be conventionally interpreted as a number of standard deviations away from the 
background radiation mean. The key issues are reliability and speed. In order to 
obtain a reliable estimate for a local relative radiation level, the conventional 
statistical wisdom teaches us that we need more samples. However, a high radiation 
anomaly may pose a significant health threat to the field surveyors. Conventional 
health wisdom tells us to leave the high radiation area as soon as possible. Therefore, 
we need a radiation level estimation algorithm that is both reliable for given 
confidence levels and fast for high radiation areas.  

In our recent research, we tailored Wald’s Sequential Probability Ratio Test 
(SPRT) [1] and developed an algorithm for the dynamic determination of the local 
relative radiation level. A preliminary experiment in the laboratory environment, 
using a common industrial radiation source, suggests that the algorithm is promising. 
It provided a confident estimate for the local radiation level, and reduced the sampling 
size requirement for high radiation spots. 

2   Population Assumptions 

Reconnaissance environmental radiation surveys are commonly performed by hand-
held gamma-detection devices, such as Geiger counters. These gamma-detection 
devices produce readings of gross gamma ray counts, or the gross count (GC) 
detected during a given time interval [2].  
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For a given high radiation anomaly, GC may be assumed to follow a Poisson 
Distribution [2] with PDF: 

fm1 HxL = PHX = xL =
m1

x e-m1

x !
, x = 0, 1, 2, ..., n

  (1) 

Where  np=1μ  n  is a large number (number of atoms in the observed physical 

sample) and p  is the decay rate for an individual particle for a given observation time 

interval.  When n is large, it can be shown that: 

fm1 HxL Ø N Hm1, m 1L     (2) 

Where 1μ is the mean GC of the physical sample. 

For regional radiation background, we assume that GC follows a simple Normal 

distribution ),( 2
00 σμN  with probability distribution function (PDF): 
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This different treatment is due to uncertainty about the number of counts in the 
background sample, and if it is large enough for Poison-Normal approximation that 
offers only one parameter for distribution fitting. Normal distribution, on the other 
hand, has two parameters to choose and should always make a better fit to the 
background samples. 

3   Absolute and Discrete Radiation Levels 

For measuring the absolute radiation level, the sample mean 1μ is a natural choice. In 

a field survey, we are usually more interested in a discrete measure relative to the 
background radiation. For this reason, we shall introduce Log Departing Coefficient 
(LGC) as follows. Suppose that b (> 0) is a pre-selected log base, and r (>0) is a pre-
selected scaling factor. Define (for l ≥ 1): 

LGC = l, if m0 + bl-1  rs0 < m1 b m0 + bl  rs0   (4) 

For LGC¥1, we have 

LGC = CeilingBLogbB m1 - m0

r s0
FF

    (5) 

Particularly, for a region with low radiation background, we may take b=2 and 
r=1, then: 

LGC = CeilingBLog2B m1 - m0

s0
FF    (6) 
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When LGC=0, we can say the sample mean is no more than two standard 
deviations from the regional mean. When LGC=1, we say that the sample mean is at 
least two standard deviations from the regional mean, but no more than four standard 
deviations from the regional mean, etc. For a region with higher radiation 
background, we may adjust factor r, making r=0.5 for compensating the growing 
speed of LGC. LGC defined this way can be used as a log-scaled discrete measure for 
the radiation departing level (L) from the regional background.  

4   Alternative Hypotheses 

Let's assume that we collect observations one at a time, using a handheld device such 
as a Geiger Counter, in an environmental reconnaissance radiological survey 
situation. We denote ix the i'th observation, where the observation is the Gamma 

Gross Counts (GC) for fixed-length time intervals. Essentially for a sample, we have 
two possibilities:  

(1) That the sample was from the background radiation population – the Null 

Hypothesis ( 0H ); and  

(2) That the sample was from an anomaly population with higher radiation 
strength – the Alternative Hypothesis ( 1H ).  

If we accept the null hypothesis 0H , then we continue our field survey. If we 

accept the alternative hypothesis 1H , then we mark the area as an anomaly for future 

detailed work and move on to the next spot. 
Let a and b be the type I (false positive) and type II (false negative) errors 

associated with the decisions respectively, 

a = P 8Accept H1 when H0 is true< = PH H1 » H0L    (7) 

b = P 8Accept H0 when H1  is true< = PHH0 »H1L    (8) 

then 1-a is the confidence level of accepting 0H and 1-b is the confidence level of 

accepting 1H . 

5   SPRT Basis 

Wald's SPRT method [1] has the advantage of handling sequential sampling data. Let 
},...,,,{ 321 nxxxx be an (independently identically distributed) fresh data set collected 

since the last decision and a new decision is yet to be made. Assuming )(0 xf and 

)(1 xf are the PDFs for 0H  and 1H  respectively, we can construct a conventional 

Logarithmic Likelihood Ratio (LLR): 

Ln = LLRHx1, x2 , ..., xnL = Log 
¤i=1

n f1HxiL¤i=1
n f0HxiL = ‚

i=1

n

Log 
f1HxiL
f0HxiL  (9) 
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The Wald's SPRT has the following form (although his original A and B are 
somehow reversed from what are commonly used today): 

1)  If An <Λ  then accept 0H , (and directly move on to next spot). 

2)  If BA n ≤Λ≤ , request additional measurement made for the same spot. 

3)  If Bn >Λ then accept 1H , (and mark anomaly etc., move on to the next spot). 

Where A and B are two constants satisfying inequalities: 

Log 
b

1 - a
§ A < B § Log 

1 - b

a    (10) 

A common practice is simply to take: 

A = Log 
b

1 - a     (11) 

B = Log 
1 - b

a     (12) 

It is clear that the parameters A and B are related only to the strengths (a, b), or 
confidences (1-a, 1-b), of the test, but are independent of the actual forms of the 
distribution functions. 

6   SPRT Formulation 

If using the PDFs discussed early for 0H  and 1H  respectively (using normal 

approximation for Poisson distribution), then  

Log 
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f0HxL = Log 
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Substitute these PDFs in the Log-Likelihood Ratio, we have: 

Ln = LLRHx1, x2 , ..., xnL
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Denote sample mean and sum of squares respectively: 
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1

n
 ‚
i=1

n

xi

  
    (15) 

S = ‚
i=1

n Hxi - xê L2

 
   (16) 
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Through some simplification, and using sample mean x  for estimating 1μ , we 

should finally have: 

Ln =
D

Vn
H0L - Vn

H1L
     (17) 

where 

Vn
H0L = n Log s0 +

S + nHxê - m0L2

2 s0
2

   (18) 

Vn
H1L =

n

2
Log xê +

S

2 xê     (19) 

7   Computational Details 

We assume that the regional background population mean 0μ  and the standard 

deviations 0σ have been estimated, and also also assume that the test strengths (a, b), 

or confidences (1-a, 1-b) are given. Subsequently constants A and B can be calculated 
using formula (11) and (12). For a new spot or physical sample, we take first mini   

independent measures, then compute: 

xHnL =
1

n
 ‚
i=1

n

xi

    (20) 
m1 = xHnL

     (21) 

S HnL = ‚
i=1

n Ixi - xHnLM2

    (22) 
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S HnL
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Vn
H0L = n Log s0 +

S HnL+nIxHnL - m0 M2
2 s0

2
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Ln = Vn
H0L - Vn

H1L
             (25) 

The decision and estimation for the local radiation level L are made as follows: 

1)  If An <Λ then accept 0H  and assign 0=L , output both 1μ and L ; 

2)  If BA n ≤Λ≤ , request additional measurement made for the same spot. 

3)  If Bn >Λ then accept 1H  and compute: 

L = LGC = CeilingBLogbB ml - m0

r s0
FF

    (26) 

Now output both 1μ and L , and move to the next physical sample or spot. 
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Although SPRT sampling sequence terminates with probability 1, it does require a 
stop limit. For case 2, we adapted Wald’ s stop limit[1]: if maxin = and we still have 

BA n ≤Λ≤ , then: 

if 
2max

BA
i

+≤Λ , we accept 0H  and assign 0=L ;   (27) 

if 
2max

BA
i

+>Λ , we accept 1H and compute LGCL =   (28) 

Apparently, all local radiation level Ls computed this way had confidence levels 
(1-a, 1-b). 

This algorithm was implemented in Mathematica[3] for quick evaluation. In the 
implementation, we set 5min =i , 11max =i , a=0.05 and  b=0.05. 

8   Experimental Data 

Experimental data were collected in a laboratory environment using a typical 
industrial Cs137 source. A device similar to a Geiger counter was used for 
measuring gamma GC. The counting interval of the device was set at half of a 
second. Figure 1 shows the half-second background gamma GC data measure of the 
lab ground. Background radiation has a mean 7730 =μ  and standard 

deviation 330 =σ . (This also suggests 2833 00 =≠= μσ  for background 

radiation, and therefore anomaly source and background should be handled by 
different types of distributions.) 

50 100 150 200 250 300

500

1000

1500

2000

2500

3000

K
B

Background Gross Counts

 

Fig. 1. Background gamma GC data, where the x-axis is the data-point position in the sequence 



 Sequential Probability Ratio Test (SPRT) for Dynamic Radiation Level Determination 185 

During the experiment, a common industrial source, Cs137, was placed on top of a 
table in the lab.  The source gamma strength was measured at different distances from 
1 to 50 feet for simulating sources of different strengths (Figure 2).  

50 100 150 200 250 300

500

1000

1500

2000

2500

3000

C
G

Sample Gross Counts

 

Fig. 2. Physical sample gamma GC data measured at different distances, where the x-axis is the 
data-point position in the sequence 

9   Results and Analysis 

The SPRT derived radiation levels (LGC) of the experimental data at different 
strengths (or distances) are shown in Figure 3. Comparing Figure 2 and 3, it is clear 
that the SPRT radiation level or LGC is exponentially correlated to the relative 
strength of the anomaly with respect to the background.  
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Fig. 3. SPRT derived anomaly radiation level (LGC) from the experimental data 
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Fig. 4. Plot of the SPRT estimated radiation levels (LGC) vs. the SPRT cycle length (the 
number of observations needed for deriving a LGC estimate) of the experimental data 

Further, the relationship between the estimated radiation level (LGC) and the 
SPRT cycle length, (i.e., the number of observations needed for deriving an estimate 
for radiation level) is analyze in Figure 4. 

It is clear that for high-radiation anomaly ( 2≥LGC ), the SPRT needs the 
minimum sample size 5min =i  to derive the needed LGC with the given confidence 

levels. For low-radiation anomaly ( 1=LGC ), the SPRT needs no more than seven 
observations. For background confirmation ( 0=LGC ), the SPRT may need a longer 
observation cycle, anywhere from 6 to 11 observations. This is precisely a property 
we would like to have for a field radiation instrument, minimizing the time needed for 
high radiation anomaly sampling.  

10   Summary 

Preliminary assessment suggests that the SPRT method described in this paper is a 
promising algorithm for quick determination of field radiation levels. While 
maintaining prescribed confidence levels for its estimations, it reduces the sample 
sizes for high radiation regions or spots. This implies that it could reduce the exposure 
time for the field radiation surveyors.  
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