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Sequential probability ratio tests when using 

randomized play-the-winner allocation. 

Anna Ekman 

Abstract 

In many clinical experiments there is a conflict between ethical de

mands to provide the best possible medical care for the patients and the 

statisticians desire to obtain an efficient experiment. 

Play-the-winner allocations is a group of designs that, during the ex

periment, tends to place more patients on the treatment that seems to 

be better. Using a randomized play-the-winner allocation and making a 

suitable inference for the design, is a suggestion to perform a reasonable 

experiment for the above mentioned considerations. 

In this paper we will concentrate on sequential inference, for the case of 

simple hypotheses and for the case with simple hypotheses with a nuisance 

parameter. 

The response to treatment is assumed to be dichotomous. We proceed 

from Wald's sequential probability ratio test, SPRT, and Cox's maximum 

likelihood SPRT, for the two hypothesis cases above. 
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1. Introduction 

In many clinical trials, patients enter the study sequentially. The outcome can be 

examined repeatedly, so that early termination of the study can be considered, 

when sufficient information is obtained from the experiment. 

Consider an experiment where two treatments, say A and B, are compared. 

The response to the treatment is dichotomous, namely success or failure. The 

question arises how to allocate patients to the two treatments. A simple allocation 

rule is to randomly choose a treatment for each patient. Because of ethical consid

erations the randomized play-the-winner, RPW, allocation has been developed. 

Play-the-winner allocations was first suggested by Zelen (1969).A characteristic 

of the Play-the-winner allocations is that the probability for a treatment increases 

as the number of successes for the treatment increases. Therefore, we can assume 

that less patients are allocated to the inferior treatment than to the superior one. 

Three Play-the-winner allocation rules, Play-the-winner (PW) allocation, modi

fied Play-the-winner (MPW) allocation and randomized Play-the-winner (RPW) 

allocation, are summarized in Section 2. 

The RPW will be examined for comparing two treatments, A and B. In Sec

tions 3, 4 and 5 we will examine the case of simple hypotheses, 

Ha : PA = PB = PAa = PBa vs. HI : PA = PAI,PB = PBI , 

using Wald's sequential probability ratio test, SPRT. It will be assumed that 

PAa =1= PAl and PBa i= PBI· 

Wald's SPRT is originally presented in the case of independent identically 

distributed random variables. If a play-the-winner allocation is used the variables 

are not independent and identically distributed: the treatment of the current 

patient depends on the treatment,and the response to the treatment, of one 

or more of the previous patients. We will present a generalization of the test 

which is suitable for this more complicated situation. We will assume immediate 

responses, to simplify the calculations. In Section 3 we recall Wald's SPRT 

and some of its basic properties. In Section 4 the test is generalized to our 

experimental situation, where the random variables are not independent and 

identically distributed. As main result, of the first part of the paper, we will 

show that the error probabilities have a certain bound, for inference based on 

Wald's SPRT, when the RPW allocation rule is used in the experimental setting 

of allocating patients to the two treatments. In Section 5 we compare two Play

the-winner allocation rules, the RPW and the MPW, and total randomization 

(TR), when using the SPRT, by means of expected sample size and expected 

number of patients allocated to the inferior treatment. TR assigns treatment 

A with probability ~ and treatment B with probability ~, each time a patient 
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arrives. Hence, TR represents an allocation rule for which the random variables 

are independent and identically distributed. The expectations are calculated 

through simulations. 

In Sections 6, 7 and 8 we will discuss a test of simple hypotheses, 

in the presence of a nuisance parameter, f-l. The parametrization used is 

e = in PA _ in P B 
1 - PA 1 - PB 

This can easily be extended to testing a composite hypothesis in the presence 

of a nuisance parameter. The test, to be investigated, is the maximum likeli

hood SPRT proposed by Cox (1963). Bartlett (1946) also proposed a maximum 

likelihood SPRT. These two test are closely related. In both tests the maximum 

likelihood estimation of the nuisance parameter is used in the likelihood ratio. In 

Bartlett's test both the maximum likelihood estimation under the null hypothe

sis and the maximum likelihood estimation under the alternative hypothesis are 

used in the likelihood ratio, and in Cox's test the maximum likelihood estimation 

obtained by solving the normal equations for both the parameter of interest and 

the nuisance parameter is used in the likelihood ratio. The tests are asymptot

ically equal. For a further discussion of this and of the asymptotic behavior of 

these tests, a paper by Holm (1985) is recommended. 

In Section 6 we recall Cox's maximum likelihood SPRT. We give a quite de

tailed derivation of it and describe the connection with the theory of Wald's 

SPRT. Cox's test in the RPW-case is derived in Section 7. The properties of 

Cox's test, when using RPW allocation, are discussed in Section 8. To inves

tigate the behavior of the error probabilities, the expected sample size and the 

expected number of patients assigned to the inferior treatment, a simulation study 

is performed. The result and a discussion can also be found in Section 8. 

2. Play-the-winner allocations 

The first Play-the-winner allocation was introduced by Zelen (1969). Zelen's 

allocation, denoted by PW, is best described by an urn. For each successful 

treatment, we put a ball in the urn representing this treatment, and for each 

failure we put a ball representing the other treatment. When a patient is to be 

allocated to a treatment we draw a ball from the urn, without replacement. If 

the urn is empty, as it is at the start, each treatment has probability!. This 
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method allows the responses to be delayed, but if many responses are delayed for 

substantial time treatments will mostly be assigned with probability ~ each. 

In the same paper Zelen introduced another allocation rule, where the re

sponses were assumed to be immediate. When allocating the first patient, the 

treatments have probability ~ each to be assigned to the patient. For the follow

ing allocations one keeps on assigning the same treatment until it gives a failure, 

then switches to the other treatment and keeps assigning this one until it gives 

a failure. The allocation rule is denoted by MPW, modified play-the-winner. 

Note that with immediate responses the PW allocation is identical to the MPW 

allocation. 

Later, a randomized play-the-winner allocation was introduced by Wei and 

Durham (1978). Now we can think of an urn with WA balls representing treatment 

A and WB balls representing treatment B, at the start. When a patient is to be 

assigned to a treatment a ball is drawn from the urn, with replacement. If the 

response "success" is received, from a patient assigned to treatment A (or B 

respectively), we add p A-balls (or p B-balls) to the urn. If the response is a 

"failure" we add p B-balls (or p A-balls) to the urn. Note that here, the history 

of successes and failures will affect every allocation, even if the responses are 

delayed. This last allocation rule is denoted by RPW(WA,WB,p). A special case 

of the RPW(WA, WB, p) is when WA = WB = w, which is denoted by RPW(w, p). 

The statistical analysis of results from experiments where RPW(w,p) alloca

tion rules have been used has been discussed by several authors. Wei and Durham 

(1978) suggested an inverse stopping rule for deciding which of two treatments is 

the better one. They also compared the RPW(O, 1) with PW, with respect to the 

expected number of patients treated by the inferior treatment, the average sample 

size and the estimated probabilities of correct selection of the inferior treatment. 

The comparison of the average sample sizes was done when the inverse stopping 

rule was used. Wei and Durham concluded that the RPW(O,l) seemed to be 

approximately equal to the PW for practical use. 

Wei (1988) used the inverse stopping rule to stop the experiment, and pro

posed a fixed sample permutation test for the analysis. For comments on the 

work of Wei (1988), and general comments on difficulties with the inference after 

using the RPW(w, p) allocation, the discussion by Begg (1990) is recommended. 

In Wei, Smythe, Lin and Park (1990) exact conditional, exact unconditional and 

approximate confidence intervals were studied. One of their conclusions was that 

the design should not be ignored in the analysis. However, in many suggested 

analyses the authors have chosen either not to include the stopping rule (see 

the articles mentioned above) and therefore, by our opinion, leaving part of the 

design out or concentrated on fixed sample sizes (see Rosenberger (1996) for a 

summary). An interesting collection of reports, on adaptive designs and infer

ence in combination with these, was published after a 1992 joint AMS-IMS-SIAM 

Summer Conference, Flournoy and Rosenberger (1995). 

In the present paper we will use sequential analysis as a suggestion to include 
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a stopping rule and to handle the inference problem that arises. We have chosen 

significance tests since these are commonly used and asked for in clinical trials. 

Where nothing else is mentioned we concentrate on the RPW(l, 1) allocation. 

3. Wald's Sequential Probability Ratio Test 

In this section Wald's sequential probability ratio test, SPRT, and some of its 

basic properties are described. The theory below follows unpublished lecture 

notes, Holm (1990). A good introduction to the theory of sequential analysis 

can be found, for example, in Govindaraluju (1981), Ghosh (1970) or Siegmund 

(1985). 

3.1. The test 

We are interested in discriminating between two simple hypotheses 

with a sequential probability ratio test, with desired significance level a and 

desired power in the alternative 1 - 13. The test is constructed as follows. 

Assume that Xl, ... ,Xn are independent identically distributed random vari

ables with probability distribution function fe (.), and with joint probability dis

tribution function jn,(J (.). Then the likelihoods ratio An can be written as 

where Xn = (x!," .,xn ). 

Let A and B be absorbing barriers. Then we have three possibilities: 

B < An < A continue with an additional observation 

An ::; B stop the experiment and accept Ho 

An :::: A stop the experiment and reject Ho 

Often it is more practical to work with the log likelihood ration In An , a = In A 

and b = InB. 

3.2. Some important properties 

The following results enable us to choose the bounds A and B, so that the true 

significance level, a*, and the true power under the alternative, 1 - 13*, will be 

close to the desired ones. Equations 3.2.1 and 3.2.2 give us the bounds of the 

true a* and 1 - 13*, while a and 1 - 13 are desired. 
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The proofs of the propositions below are included to illustrate that the proof 

of Proposition 3.2 is the only one that requires the assumption of independent 

and identically distributed random variables. 

Proposition 3.1 :Assume that P (N < (0) = 1. Then for given A and B 

1 - (3* (3* 
A :S * and B ~ 1 *' a -a 

where a* and (3* are the true type- I and type-II errors. 

Proof. Let 

Rn = {xn;N = n,)w ~ A} . 

Therefore, the R~s are mutually disjoint. Now we can write 

a* = P(Jo (>.'N ~ A) = f P(Jo (Rn) = f J In,(Jo (xn) dXn . 
n=l n=IRn 

Remembering that 

on Rn we obtain 

Hence, 

Similarly we can show that 

o 

In,(Jl > A 
In,(Jo -

1 - (3* 
A<---

- a* 

(3* 
B~---

1- a* 

Proposition 3.2 : If Xl, ... ,Xn are independent and identically distributed 

random variables and 

then 

P(N<00)=1. 
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Proof. Let .6. > O. Then 

implies that 

3.6. ; P ( In j:: ~~:~ ~.6.) = , < 1 for some, > 0 . 

Furthermore, 

and hence, 

Let 

[
a - b] 

no= ~ . 

Then 

Furthermore, let us denote 

c = (1 ~ ') no 

We now have that 

P (N > kno) ~ (1 - c)k , 
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that implies 

lim P (N > kno) = 0 . 
k-+oo 

Therefore 

P(N<oo)=l. 

D 

Proposition 3.3 : Assume that P (N < 00) = 1. If A and B are chosen to 

be 
1-(3 (3 

A = -- and B = --
a 1- a ' 

where a and (3 are the desired levels of error probabilities, then the true level 

of significance, a*, and the true power under the alternative, 1 - (3*, satisfy 

a* + (3* ~ a + (3 . 

Proof. As P (N < 00) = 1 is assumed, the requirement of Proposition 3.1 is 

satisfied. Hence 

Now it follows that 

which implies that 

Thus, 

{ 
Aa* < 1 - (3* 

(3* ~ B (1 - a*) 

{ 
a* (1 - (3) ~ a (1 - (3*) 

(3* (1 - a) ~ (3 (1- a*) 

a* (1 - (3) + (3* (1 - a) ~ a (1 - (3*) + (3 (1 - a*) 

and finally 

a* + (3* ~ a + (3 . 

D 

Note that Proposition 3.2 implies Proposition 3.1, which implies Proposition 

3.3. The allocation rule TR, where the two treatments are allocated with prob

ability ~ each, satisfy the requirement for Propositions 3.1-3.3, as the random 

variables in this case are independent and identically distributed. 

By using Proposition 3.1 and Proposition 3.3 we obtain 

I-B < a* < I-B-
A+-B - - A-B- (3.2.1) 

and 
A + I-B < 1 - (3* < A I-B-

A+-B - - A-B- (3.2.2) 

where A + is the maximum value of the likelihood ratio, when stopping and re

jecting Ho, and B- is the minimum value of the likelihood ratio, when stopping 

and accepting Ho. 
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4. SPRT for a response dependent allocation 

We investigate an allocation rule that creates dependence between the random 

variables. Therefore we need to generalize the theory of Wald's SPRT to this situ

ation. We do this for our specific experimental setting, where we want to compare 

two treatments that both have two possible responses, success and failure. 

In Section 4.1 we derive the log likelihood ratio, In An, and in Section 4.2 we 

show that the properties, discussed in Section 3.2, are true also for the generalized 

SPRT. These properties enable us to construct a generalized test in the same way 

as the ordinary Wald's SPRT is constructed. 

4.1. The log likelihood ratio 

To simplify the calculations immediate responses are assumed. From now on we 

use the following notations : 

PT = the probability of success for treatment T 

ST(i-l) = number of successes of treatment T among the (i - 1) first patients 

FT(i-l) = number of failure of treatment T among the (i - 1) first patients 

where T is either A and B. Furthermore, it is assumed that 0 < PA < 1 , 

o < PB < 1 and that PA 2: PB· 

Simple hypotheses of the following kind are considered 

Ha : PA = PB = PAa = pBa versus HI : PA = PAl, PB = PBl . 

It is assumed that 

PAa #- PAl and PBa #- PBl . 

Our response variables are 

y: = { 1 if patient i was allocated to treatment A 

2 0 if patient i was allocated to treatment B 

X. = { 1 if the treatment on patient i resulted in a success 

2 0 if the treatment on patient i resulted in a failure 

In the following we will use the notation {X}{ = {Xi, . .. , X j }. 

The likelihood function can be determined as 

N 

* II {p (Yi = Yi I{y}~-l = {y }~-l ,{X}~-l = {x }~-l) P (Xi = Xi IYi = Yi)} 
i=2 
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N 

= P (Yi = Yl) * II p~Xi (1 - PA)Yi(l-X;) pg-Yi)Xi (1 - PB )(l-Y;)(l-Xi) 

i=2 

* (p (Yi = II{y}~-l = {y }~-l ,{X}~-l = {x }~-l ) yi 

* (1- P (Yi = 11{y}~-1 = {y}~-l ,{X}~-l = {X}~-l))(l-Y;) 

Hence, the likelihood ratio is 

AN = II PAl - PAl PBl - PBl 
N ( )YiXi (1 )Yi(l-X;) ( ) (l-Yi)Xi (1 ) (l-Yi)(l-x;) 

i=2 PAO 1 - PAO PBO 1 - PBO 

The test statistic we use is the log likelihood ratio, the same as in Wald's 

SPRT. It can be written as 

~ [(PAl) (1 -PAl) In AN = ~ Yixiln - + Yi (1- xi)ln 
i=2 PAO 1 - PAO 

+ (1 - yd xdn - + (1 - Yi) (1 - Xi) In (
PBl) (1- PBl)] 
PBO 1 - PBO 

(
PAl) (I-PAl) (PBl) (I-PBl) =SA(N)ln - +FA(N)ln +SB(N)ln - +FB(N)ln 
PAO 1 - PAO PBO 1 - PBO 

4.2. Some properties 

Assuming that Condition 1 below holds we will show Proposition 4.1, the corre

spondence to Proposition 3.2. This implies Proposition 3.1, which implies Propo

sition 3.3. 

Condition 1 : 

P(Yi+l = liN> i):::; P(Yi+2 = liN> i,Yi+! = 1,Xi+! = 1):::; ... 
< P (y; = liN> i {y}i+m-l = {I}~+m-l {x}~+m-l = {I}~+m-l) 
- ~+m 't+l t+l' t+l t+l 

and 

P (Yi+! = 0 IN> i) :::; P (Yi+2 = 0 IN > i, Yi+l = 0, Xi+! = 1) :::; ... 

< P (y; = 0 IN > i {y}i+m-l = {O}~+m-l {x}~+m-l = {l}~+m-l) 
- t+m 't+l t+l' t+l t+l' 

\1m 

That is, we will assume that, given that the process has not stopped at stage i, 

the probability to allocate treatment A to a patient will increase, given that we 

allocate treatment A to every patient from stage i and on and that the responses 

all turn out to be successes. 

Proposition 4.1 : If Condition 1 is satisfied, then P(N < 00) = 1. 

11 



Proof. The following is true for all values of i. 

L t - [a-b] 1 h t - [ the absolute value of the possible 1 
e m - t +, were - increments of the log likelihood, in one step . 

By the assumptions that PAO =J PAl and PBO =J PEl, we have that 

Let us denote 

and 

CB,i+l = {(Yi+1 = 0, Xi+1 = 1), ... , (Yi+m = 0, Xi+m = 1)} . 

That is, we look at two events such that one treatment is allocated for m steps 

in a row and the responses from all these allocations are successes. 

The probability of the union of these two events, given that the process has 

not stopped at or before stage i, is then 

P (CA,i+1 U CB,i+lIN > i) = P (CA,i+lIN > i) + P (CB,i+1IN > i) 

= P(Yi+l = liN> i)P(Xi+1 = 11Yi+1 = 1) 

m 

* IT P (Yi+j = liN> i, {y}~!{-l = {1}~!{-1 ,{X}~!{-l = {1}~!{-1) P (Xi+j = 11Yi+j = 1) 
j=2 

+P (Yi+l = 0 IN> i) P (Xi+1 = 11Yi+1 = 0) 
m 

* IT P (Yi+j = 0 IN> i, {y}~!{-l = {O}~!{-l ,{X}~!{-l = {1}~!{-1) P (Xi+j = 11Yi+j = 0) 
j=2 

As a result of condition 1 we obtain 

and therefore 

Note that CA,i+1 and CB,i+1 are two possible events, but not the only ones, for 

hitting the boundary in m steps. Hence, 

P (N = (0) ::; P (N > no + m, N > no + 2m, ... ) 
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r 

= rl~~ P (N > no + m) II P (N > no + j miN > no + (j - 1) m) 
j=2 

r 

= }~~ (1 - P (N ~ no + m)) II (1 - P (N ~ no + j miN > no + (j - 1) m ) ) 
j=2 

r 

~}~~ II (1 - P (C A,no+U-I)m+1 U CB,no+U-I)m+1 IN > no + (j - 1) m)) 
j=2 

We then have that 

P(N=oo)=O, 

and hence 

P(N<oo)=l. 

o 
This implies Proposition 3.1. We can now construct the SPRT in the same 

way as the original Wald's SPRT. 

4.3. Properties when using RPW and MPW 

In Sections 4.3.1 and 4.3.2 we show that Condition 1 is satisfied for RPW and 

MPW, and for PW, as we assume immediate responses. 

4.3.1. RPW 

At the start of the experiment we have w balls representing each treatment in 

the urn. When receiving a response p balls are added to the urn : balls of type 

A if we received a success for treatment A or a failure for treatment B and balls 

of type B if we received a success for treatment B or a failure of treatment A. 

In the RPW case the probability of allocating a patient to treatment A is 

w + P (SA(i-I) + FB(i-I)) 

P (Yi = 1) = 2w + p (i - 1) . 

To see that Condition 1 is satisfied for the RPW allocation we need to check 

both inequalities. To show that the first one holds we first write 

P (Y; = liN .) = P (Yi+1 = liN> i) (2w + pi) + pP (Yi+1 = liN> i) 
z+1 > 2 (2w + p (i + 1)) 
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< p (Yi+1 = liN> i)(2w + pi) + p 

- (2w+p(i+1)) 

= p (Yi+2 = liN> i, Yi+1 = 1, Xi+1 = 1) , 

and, for j = 2,3,. " , 

P ("/ 1 \N '{y}i+j-I {l}i+j -1 {X}i+j-1 {1}i+j-1) (2 (" 1)) < L i+j = > Z, HI = i+1' i+1 = i+1 w + P Z + J - + p 

- (2w+p(i+j)) 

P (Yi+J+1 = 1 \N > i, {y}~!{ = {1}~!{, {X}~!{ = {l}~!O . 

Hence, 

P (Yi+1 = liN> i) :; P (Yi+2 = liN> i, Yi+1 = 1, Xi+1 = 1) :; ... 

< P (1': = 1 \N > i {y}~+m-1 = {1}~+m-1 {X}~+m-1 = {1}i+m-1) - t+m 't+1 t+1' t+1 t+1 

Now we want to show the second part of Condition 1. Note that 

P (1': = liN ') = P (Yi+1 = liN> i) (2w + pi) + pP (Yi+1 = liN> i) 
t+1 > Z (2w + p (i + 1)) 

> P (Yi+1 = liN> i)(2w + pi) 

- (2w + p (i + 1)) 

= P(Yi+2 = liN> i,Yi+1 = O,Xi+1 = 1) 

Note also that, for j = 2, 3, ... 

P ("/ 1 \N '{y}i+j-1 {O}i+j-1 {X}i+j-1 {1}i+j-1) (2 (" 1)) > L i+j = > Z, i+1 = i+1' i+1 = i+1 w + P Z + J -

- (2w+p(i+j)) 

14 



Hence, 

1 - P (Yi+1 = liN> i) ::; 1 - P (Yi+2 = liN> i, Yi+1 = 0, Xi +1 = 1) ::; ... 

< 1 - P (y; = liN> i {y}~+m-l = {O}~+m-l {X}~+m-l = {l}i+m-l) - ~+m '~+l ~+l' ~+l ~+l' 

which is equivalent to 

P (Yi+l = 0 IN > i) ::; P (Yi+2 = 0 IN > i, Yi+l = 0, X i+1 = 1) ::; ... 

::; P (Yi+m = 0 IN> i, {y}~!~-l = {O}~!~-l, {X}~!~-l = {1}~!~-1) 

Hence, it is proved that Condition 1, and therefore Proposition 4.1, 3.1 and 

3.3, are satisfied for the RPW allocation. 

4.3.2. MPW 

In the MPW case the probability of allocating a patient to treatment A equals 1 

given that the previous treatment was A and the response was a success or if the 

previous treatment was B and the response was a failure, and for the probability 

of allocating a patient to treatment B, respectively. Therefore it is easy to see 

that the MPW, and therefore also the PW, satisfies Condition 1, as shown below. 

To show the first inequality of Condition 1 note that 

P (Yi+l = liN> i) = 1 =} P (Yi+2 = liN> i, Yi+l = 1, Xi+1 = 1) = 1 

and, for j = 2,3, ... , 

P (Yi+j = liN> i, {y}~!{-l = {1}~!{-1 ,{X}~!{-l = {1}~!{-1) 

= P (Yi+J+l = liN> i, Yi+j-l = 1, Xi+j- 1 = 1) = 1 . 

Hence, the first part of Condition 1 is satisfied. To show the second part of 

Condition 1 note that 

P (Yi+l = 0 IN> i) ::; 1 = P (Yi+2 = 0 IN> i, Yi+1 = O,Xi +1 = 1) 

and for j = 2,3, ... , 

= P (Yi+j+l = 0 IN > i, Yi+j-l = 0, Xi+j-l = 1) = 1 . 

Therefore, Condition 1 is satisfied also for the MPW allocation. 
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5. Comparison of three allocation rules 

The RPW(w, p) is constructed to allocate more patients to the treatment that, 

during the experiment, seems to be better. We would like to know if the RPW(w, p) 

allocates fewer patients to the inferior treatment, than to the treatment superior 

in reality. 

Each allocation to the treatment inferior in reality can be viewed as a loss. 

It is therefore of interest to minimize the number of patients allocated to that 

treatment. 

Another important question is how the expected sample size behaves when 

one uses a RPW(w, p) allocation, compared to other allocation rules. 

We compare the RPW(w,p) with the MPW and with total randomization, 

TR. TR is the simplest randomized allocation rule used and satisfies the require

ments for Wald's SPRT (independent identically distributed random variables). 

MPW, on the other hand, is one of the simplest play-the-winner allocation rules, 

but given that the response from the previous patient is known, the next alloca

tion is deterministic. RPW(w, p) is response dependent, but not deterministic. 

We study differences between the allocation rules by means of the expected 

sample size, E [N], and the expected number of patients allocated to the inferior 

treatment, E [NBJ. These expectations are complicated to compute for the MPW 

and RPW, since we do not have independent identically distributed random vari

ables. The probability that patient i is allocated to treatment A depends on all 

the earlier allocations and responses. Simulations were therefore conducted to 

investigate the behavior of the expected values E [NBJ and E [NJ. 

5.1. Description of the simulation study 

The RPW was simulated with five different combinations of the parameters 

wand p, namely RPW(100.000,1), RPW(10,1), RPW(1,l), RPW(1,10) and 

RPW(l, 100.000). 

At the start of the experiment the allocation probability is ~ for each treat

ment, for every value on wand p. The larger the ratio t is, the faster the response 

affects the allocation probability. 

Large response dependency, in the early states of the experiment, could be 

hard to get accepted when the allocation rule is used in a real practical setting, 

but to get a good understanding of how the RPW allocation behaves, extreme 

response dependency is included. 

As w increases the RPW gets closer to total randomization. High values of w 

let the play-the-winner quality come slower into the experiment. Correspondingly 

for p, the RPW gets closer to the MPW as p increases. 

For each of the three allocation rules two different hypothesis cases were 

tested, namely 
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1. Ho : PA = PB = 0.7 vs. H1 : PA = 0.8 ,PB = 0.6 

and 

2. Ho : PA = PB = 0.6 vs. H1 : PA = 0.8 , PB = 0.4 

Hypothesis case 1. represents a small treatment difference, while 2. represents 

a larger treatment difference. Simulations were done in these two cases both under 

the assumption that Ho is false and H1 is true, and under the assumption that 

Ho is true and H1 is false. 

We used Wald's sequential probability ratio test, with significance level a = 

0.05 and power under the alternative 1 - (3 = 0.95. 

The true significance level, a*, and the true power under the alternative, 

1 - (3*, are bounded as below (see equations 3.2.1 and 3.2.2). 

Hypothesis case 1 : 

0.0375 ~ 1::1 :::; a* :::; 1~~1 ~ 0.0509 

0.9493 ~ :~~~ :::; 1 - (3* :::; i~~~ ~ 0.9667 

Hypothesis case 2 : 

0.0333 ~ 1~~1 :::; a* :::; ':;1 ~ 0.0513 

0.9491 ~ ig;~ :::; 1 - (3* :::; ~~i ~ 0.9750 

For each of the four cases, two hypothesis under two different assumptions, 

500.000 independent experiments were simulated. 

5.2. Results of the simulations 

For hypothesis case 1. (see figure 5.2.1), the sample sizes were about the same 

for total randomization and RPW(100.000, 1). The sample size seems to decrease 

with decreasing w. Values of p seem not to affect the sample size in a major way: 

when w is held constant, w = 1, and p is increasing there is no difference in 

sample size for the chosen values of p. 

The results for Hypothesis case 2. were similar, see figure 5.2.2, but the 

differences in the average sample sizes were small, and might therefore not be of 

importance in practical settings. 
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FIGURE 5.2.1 : The mean, ± two times the standard error. On the x-axis: 

TR, RPW(100.000, 1), RPW(10, 1), RPW(l, 1), RPW(l, 10), RPW(1, 100.000), 

MPW. x = HI is true, + = Ho is true. 
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FIGURE 5.2.2 : The mean, ± two times the standard error. On the x-axis: 

TR, RPW(100.000, 1), RPW(10, 1), RPW(l, 1), RPW(l, 10), RPW(l, 100.000), 

MPW. a = HI is true, b = Ho is true. 

Note that the sample size follows approximately the same pattern both under 

the null hypothesis and under the alternative hypothesis, but that it is slightly 

smaller under the null hypothesis. That is, when the treatments are as good the 
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sample size is smaller than when there is a true difference between them. Note 

that treatment B is the inferior treatment when there is a treatment difference. 

The behavior of the number of patients allocated to treatment B follows a 

different pattern than the sample size, see figures 5.2.3 and 5.2.4, except for 

total randomization and RPW(100.000, 1). These two allocation rules behave 

quite similarly, and they are the allocation rules that allocate more patients to 

treatment B than the others, both when B is inferior to A and when A and B 

are equal. 

When there is a treatment difference MPW seems to allocate the least number 

of patients to treatment B, the inferior treatment, and the number of patients 

allocated to B decreases with increasing ~, which was expected. 

When there is no difference between the treatments one could think that the 

number of allocations to the two treatments would be the same. This is true 

for total randomization and for RPW(100.000, 1). On the other hand, the RPW 

allocations and the MPW allocation still allocates fewer patients to treatment B 

than to A. This can be understood by looking at the Wald statistic for the RPW 

and the MPW. Note that the increments of the Wald statistic are not symmetric, 

but differs for the four possible events in one step. 
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FIGURE 5.2.3 : The mean, ± two times the standard error. On the x-axis: 

TR, RPW(100.000, 1), RPW(10, 1), RPW(l, 1), RPW(l, 10), RPW(1, 100.000), 

MPW. 0 = HI is true, 0 = Ho is true. 
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FIGURE 5.2.4 : The mean, ± two times the standard error. On the x-axis: 

TR, RPW(100.000, 1), RPW(10, 1), RPW(l, 1), RPW(l, 10), RPW(l, 100.000), 

MPW. a = HI is true, b = Ho is true. 

For all allocation rules the true significance level and the true power under the 

alternative are close to the intended quantities (see the tables in the appendix). 

Note also that for all allocation rules the standard errors of the means seems to 

be small (see the figures and the tables in the appendix). 

Some interesting remarks are that the RPW gets closer to total randomization 

as w increases, and for the smaller treatment difference the sample size is slightly 

larger for total randomization than for the allocations with response dependency, 

even under Ho. It means that even if there is no treatment difference we obtain a 

slightly smaller sample size by using a response dependent allocation rule rather 

than the total randomization. For the large treatment difference the sample sizes 

are about the same for all allocation rules compared, but there is, as expected, a 

large difference in the number of patients allocated to the inferior treatment. 

For the case with less treatment difference, PA = 0.8 and PB = 0.6, the actual 

number of patients allocated to the inferior treatment differs slightly more, be

tween the allocation rules (note especially between RPW(l, 100.000) and MPW), 

than in the case with the greater treatment difference, PA = 0.8 or PB = 0.4. 
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5.3. Discussion 

Wald's sequential probability ratio test is originally presented for independent 

identically distributed random variables. As shown in Section 4 some important 

properties of the test, holds for a certain class of response dependent allocation 

rules, like RPW and MPW. 

We compare the RPW allocation rule to the MPW allocation rule and to 

total randomization. Two important quantities are the expected sample size 

and the number of patients allocated to the inferior treatment. However, both 

expectations are hard to derive theoretically, and thus they were estimated by 

simulations. 

Regarding the expected sample size and the number of patients allocated to 

the inferior treatment, the MPW is slightly better than the others, for the cases 

studied. After the MPW comes the RPW, in this aspect. There is, however, a 

negative characteristic of the MPW to consider. The MPW allocation is non

random in the following sense : 

Given that the response from the previous patient is known, the next alloca

tion is deterministic. In addition, the MPW requires immediate responses. 

Non-randomness could, for example, lead to selection bias. By selection bias 

we mean that when the experimenter knows, for certain, which treatment will 

be assigned to the next patient he may, consciously or unconsciously, bias the 

experiment by letting this knowledge influence the decision of who is or is not a 

suitable experimental subject. 

One could argue that the disadvantages, non-randomness and immediate re

sponses, could be reduced by using Zelen's PW allocation. It allocates the treat

ments with probability ~ if there are a lot of delayed responses, and it tends to 

be close to the MPW allocation if there are few delayed responses. 

The RPW(w, p) allocation, for the cases studied, was quite good, both in terms 

of the expected sample size and in terms of minimizing the number of patients 

allocated to the inferior treatment, and it does not have the disadvantage of 

Zelen's MPW allocation, mentioned above. 

A general remark on the comparisons, in the cases with simple hypotheses, 

indicated here, is that if the responses are allowed to affect the allocation enough 

the play-the-winner rules decreases the number of patients allocated to the inferior 

treatment, but also decreases the sample size, compared to total randomization. 

For the RPW (1,1), and for the rules with even more response dependence, the 

simulations indicated the statement above. 
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6. Maximum Likelihood SPRT procedures 

6.1. The parametrization 

Two treatments A and B are of interest to compare. The probability of success 

is denoted, Pi , i = A, B. The aim is to see if the two treatments differ or if they 

are equally good. We will use the parametrization 

o = In PA _ In P B 
1 - PA 1 - PB 

ln~+ln~ 
I-PA I-PB 

f1= 
2 

where f1 is the nuisance parameter. The parameter 0 of interest, then is the 

log odds ratio. In this way we will get a parameter of interest with suitable 

properties and a good covering of the whole space of possible values (PA, PB). 

.c 
Co 
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'<t 
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o 
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0.0 0.4 0.8 

pa 

FIGURE 6.1.1 Each arc represents a specific value on 0, 

and along each arc f1 takes values between -00 and 00. 

Se also Lehman (1991) for discussion of the odds ratios. 

6.2. Cox's maximum likelihood SPRT 

Suppose we are interested in testing Ho : 0 = 00 against HI : 0 = 01 and that f1 

a nuisance parameter. 

Maximum likelihood SPRT's have been proposed by Bartlett (1946) and Cox 

(1963).Whether Bartlett's or Cox's test is the most suitable in a specific situation 

mainly is determined by the maximum likelihood estimations. In our case the 

maximum likelihood estimation for the nuisance parameter has a quite complex 
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expression for Bartlett's test. Below Cox's procedure will be introduced. First 

the log likelihood ratio will be approximated by Taylor's expansion. 

Let f(x,y;(),f-L) be the common probability density of a sequence of inde

pendent identically distributed random variables Xi, where () E e and f-L E .6... 

Let 

[) [ [)2 1 Jee = Var([)() lnf(x,y;(),f-L)) = -E [)()2Inf(x,y;(),f-L) 

/\ /\ 

Let ()n and f-Ln denote the maximum likelihood estimates of () and f-L based on 

(xn,Yn)' The Taylor's expansions for Infn(xn,Yn;()i,~n) for i = 0,1 about the 

true ((), f-L) yield 

1 [ 2 [)2 (/\ ) [)2 1 +"2 (()i - ()) [)()2In fn(xn, Yn; (), f-L) + 2 (()i - ()) f-Ln -f-L [)()[)f-L In fn(xn, Yn; (), f-L) 

+ (~n -f-L) 2 ::2 In fn(xn' Yn; (), f-L) + R2 ((()i - ()), (~n -f-L)) 

whereR2 (e, - e), (~n -1')) = (e i - e)' + (~n -I' n 3/2 H (e i - e), (~n -1')) 
The function H is bounded in a neighbourhood of (0,0). 

Now remember that Wald's SPRT is based on the difference of the log likeli

hood function under the alternative hypotheses and under the null hypotheses. 

Using the Taylor expansion above 
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= (01-00) :oln!n(xn'Yn;O,ft)+~ [(Oi- 05+ 20 (00-01)) ::2 In !n(Xn,Yn;0,ft)] 

fJ 1 fJ2 
= 01fJOln!n(xn,Yn;0,ft) +"2 (Oi -2001) fJ02ln!n(Xn,Yn;0,ft) 

+01 (~n -ft) fJ:~ft In!n(xn,Yn;O,ft) +R~((xn,Yn)) 

where R~ ((xn' Yn))involves the differences ofthe second order derivatives, and it 

converges to zero in probability when 10i - 01 , i = 0,1 are sufficiently small and 

the second derivatives are smooth (see remark 3.7.1 in Govindaraluju, page182). 
/\ 

Next expanding + In !n(xn,Yn;On,ft) = ° about the true (O,ft) 
BOn 

+ (~n -ft) fJ:~ft In !n(xn, Yn; 0, ft) + R2 ( (en -0) , (~n -ft) ) 

This gives 

fJ (/\ ) fJ2 (/\ ) fJ2 
fJOln!n(xn,Yn;O,ft) ~ - On -0 fJ02In !n(xn,Yn;0,ft)- ftn -ft fJOfJftln!n(xn,Yn;O,ft) 

Substituting the equation above into the expansion of 
/\ /\ 

In!n(xn,Yn;Ol,ftn) -In!n(xn,Yn;Oo,ftn) gives Cox's test statistic, which will be 

denoted by C, and the following Theorem. 

Theorem: When 10i - 01, i = 0,1, is sufficiently small and the second partial 

derivatives are smooth, then we have 

where nOn is asymptotically normal with mean nO and variance nloo , where 

1
00 

= 100 - Ijp,/lp,w 

For large n, nOn is the sum of i.i.d. random variables {Ii}, i = 1, ... ,n, where 

see Govindaraluju (1981, p. 182-185). 
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Now, we can use Wald's approximations for the boundary values in terms of 

error probabilities, see Govindaraluju (1981, p.185). That is 

loo ~ ~ 
InB = -In-- ~ Cnln--

lOO 1 - a 1 - a 

In A = loo In 1 - ~ ~ Cn In 1 - ~ 
lOO a a 

and 

Or equivalently would be to use the test statistic 

and the limits 
I ~ 

InB ~ In-
I-a 

I 1- ~ 
InA ~ln--

Rigorous asymptotic treatment can be found in Holm (1985). 

7. Cox's SPRT in the RPW case 

To derive Cox's SPRT first the test statistic 

need to be derived, which includes to estimate loo with the sample, by substituting 

e with the maximum likelihood-estimate. Note that Cox assumed the random 

variables to be independent and identically distributed, which gives that loo is 

the same for all random variables in the sample. In the RPW case the random 

variables are dependent and have different probability distributions, call them 

!(i)(Xi, Yi; e, fl). Note that !n(xn, Yn; e, fl) is the joint probability function. Hence, 

let 

lOO(i) = Var(:e In!(i)(xi,Yi;e,fl)) = -E [:;2 In !(i)(Xi,Yi;e,fl)] 

25 



and let 

Ieen = -E [:;2 Infn (xn,Yn;O,/-l)] 

Iep,n = -E [a:;/-llnfn(xn,Yn;O,/-l)] 

Therefore the test statistic, in the RPW case, will be defined as 

The limits for continuing sampling needs to be derived. These will be defined as 

by the same reason as above. 

For simplifying the coming calculations the following rewriting of the expres

sion will be used. Let 

where I~e = (Ieen1p,p,nn - 15p,n) /Ip,p,n. 
Then sampling is continued as long as 

and the limits are 

b* = In_(3_ 
I-a 

a* = In 1 - (3 
a 

7.1. The maximum likelihood estimates 

To get the maximum likelihood estimate for (0, /-l )solve the equation system 
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where 

= -5 A(n) In (1 + e-I"-*) - FA(n) In (1 + el"+*) -5B (n) In (1 + e-I"+~) - FB(n) In (1 + el"-~) 

That is to solve 

which yields 

Hence 

{:=:::} 

FA(n) = 0 
He-I'-~ 

FE(n) = 0 
He-I'+~ 

{:=:::} 

{ 

5A(n) - FA(n)el"+: = 0 

5 B (n) - F B (n)el"-'2 = 0 

{:=:::} 

On= In 5 A(n) -In 5 B (n) 

FA(n) FB(n) 

In SA(n) + In SEen) 

FA(n) FE(n) 

2 

/\ 5 A(n) 
PA(n)=-N 

A(n) 

/\ 5B (n) 
PB(n)=-N 

B(n) 
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7.2. The test statistic 

From Section 7.1 we have that the test statistic, in the RPW case, is as follows. 

C(n) = (8
1 

- 8
0

) + leenlJtJtn - I5Jtn (In SA(n)FB(n) _ (80 + 81)) 

lJtJtn FA(n)SB(n) 2 

The test statistic involves the expression 

Below the identities will be derived and expressed both in terms of (8, f-l) and 

(PA,PB)' Then approximations ofthe expectations of SA(n) , FA(n) , SB(n) and FB(n) 

will be presented and expressed in terms of PA and PB. These approximations 

will then be used to approximate leen - IItJ-Ln. 
J-LJ-Ln 
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e~+! e~-! 

( 
e)2 (E [SA] + E [FA]) + ( e)2 (E [SB] + E [FB]) 

1+e~+2 1+e~-2 

= 4IIJIJn 

I I~~n = 4IIJIJn I 

Let us now express the identities above in terms of PA and PB. First, note 

that 
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Hence, we have that 

I Ieen = ~ (PA (1- PA) E [NA(n)] + PB (1 - PB) E [NB(n)]) I 

I IeJLn = ~ (PA (1 - PA) E [NA(n)] - PB (1 - PB) E [NB(n)]) I 

Then 

The numerator is 

and the denominator is 

Expressed in terms of PA and PB the numerator is 
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And the denominator then is 

7.3. Approximation of the test statistic 

Approximate the earlier expression of leon - ;tp.n by using the below results for p.p.n 
P(Ii = 1) and P(Ii = 0). 

1- PB 
~im P (Ii = 1) = almost surely 
~-+oo 2-PA-PB 

. 1- PA 
~lm P (Ii = 0) = almost surely 
~-+oo 2 - PA - PB 

These limit results are discussed in Wei (1979). 

n n 

E [FB(n)] = LE [(1-Ii)(1- Xi)] = L (1- PB) P (Ii = 0) 
i=l i=l 

Hence 

Now let us use these approximations, of the identities, in the expressions 

obtained earlier. That is 
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_~n2 (PA (1 - PA)(l- PB) _ PB (1- PB) (1 - PA))2 

4 2 - PA - PB 2 - PA - PB 

n2 (1 - PA? (1 - PB)2 (PA + PB)2 - (1 - PA)2 (1 - PB)2 (PA - PB)2 

4 (2-PA-PB? 

n2 (1- PA)2 (1 - PB)2 ((PA + PB)2 - (PA - PB)2) 

4 (2 - PA - PB)2 

And the denominator then is 

Hence 

41 
PA (1 - PA) (1- PB) PB (1 - PB) (1 - PA) 

een ~ n + n ------'-:---'--'-------'-
2 - PA - PB 2 - PA - PB 

4I§en - I§/ln 

4Ieen 

"-' n2 (1 - PA)2 (1 - PB? ((PA + PB)2 - (PA - PB)2) 2 - PA - PB 

"-' 4 (2 - PA - PB)2 n (1 - PA) (1 - PB) (PA + PB) 

n (1- PA)(l - PB) ((PA + PB)2 - (PA - PB?) 

"4 (2 - PA - PB)(PA + PB) 

Sampling is continued as long as 

where 

4I§en - I§/ln n (1- PA) (1 - PB) ((PA + PB? - (PA - PB)2) 

4Ieen ~ "4 (2 - PA - PB)(PA + PB) 
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7.3.1. The approximation of the test statistic with the maximum like

lihood estimates 

Substituting the maximum likelihood estimates into the approximation of the 
412 _12 

expression een ep.n yields 
41een 

4I§en - Tt/1n 

41een 

FA(n) FB(n) (( SA(n) + SB(n))2 _ (SA(n) _ SB(n)) 2) 

n NA(n) NB(n) NA(n) NB(n) NA(n) NB(n) 

~ "4 (FA(n) + FB(n)) (SA(n) + SB(n)) 

NA(n) NB(n) NA(n) NB(n) 

This is the expression that is actually used in the test statistic, when the 

simulations are run. 

8. Properties of Cox's SPRT in the RPW case 

It would be satisfying if Cox's SPRT worked as well in the RPW-case as we 

earlier showed that Wald's SPRT did. Unfortunately this is harder to show 

strictly mathematically in this case. 

Cox's test is based on 

Under the assumption of independent identically distributed observations the 

process Tn is a random walk with independent increments of mean 8 - ~ (81 + 80 ) 

and variance 1/1/1/ (Iee1flfl) - 15/1' In the RPW case we do not have a constant 

variance since it depends on which n we have reached. The problem, in this 

case, is to know how closely related Tn is to a random walk with independent 

increamants and constant variance. How rough is the assumption of asymptotic 

normality is as an approximation (the adjustment of the test limits is based on 

this assumption)? 

Figure 8.1 shows three realizations (when 8 = 1, fl = In(3/2)) of the Cox's 

statistic under some restrictions on the simulations, described in Section 8.2.1. 

Briefly described these restrictions are that we take some minimum number of 

observations before we allow the experiment to stop and we put an upper limit 

to the sample size. The figure shows a case when there is a treatment difference. 

The first illustrates an experiment of expected length. The second illustrates 

an "unexpectedly" long experiment and the third illustrates an "unexpectedly" 

short experiment. Note that the longest experiment starts at a negative value on 

the test statistic. 
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Cox's statistic when using RPW 

~ C\I 

I 0 

('I) , 

0 50 100 150 

N 

~ 
C\I 

0 
~ 
III 

0 ~ 

.e 
III 

C') , 

0 50 100 150 

N 

C\I 7' 
0 • 
~ 0 1ij 
iii 

('I) , 

0 50 100 150 

N 

FIGURE 8.1 

8.1. A heuristic discussion of properties 

As mentioned in Section 6.2, njjn is, for large n, approximately a sum of inde

pendent identically distributed random variables. To prove this five equations 

are used, see Govindaraluju (1981, p. 182-185). Two of the equations are Taylor 

expansions, but the other three are a collection of limit results, namely 
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~ ~2 In!n(xn,Yn;O,f1) ---+ -11l-1l- in probability 
nUf12 n_oo 

In the RPW case there is no immediate equivalence as the informations in 

the RPW case are not constant for all n. The correspondence for lee is the one 

dimensional l ee(n), equivalently for lell- and 11l-w 

We think that the properties are still approximately true since the following 

is true in the RPW case. 

and 

1 1 (PA + PB)(l - PA) (1 - PB) 
--l(}(}n ---+ -

n n-oo 4 2 - PA - PB 

Correspondingly for lell- and 11l-w 

These limit results hold due to the following argumentation. 

In Section 7.2 we saw that 

From Wei (1979) we have that 

NA(n) 1 - PB 
-- ---+ almost surely 

n n-oo 2 - PA - PB 

NB(n) 1 - PA 
-- ---+ almost surely 

n n-oo 2 - PA - PB 

for the RPW (1, 1) case. 

That implies 
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The second limit result follows the argumentation below. 

Remember that 

Note that 

IN~(n)l::;l 

By the Dominated-Convergence Theorem (see for example Williams 1991, p. 

54) the below statement follows. 

lim E [NA(n)] 
n-+oo n 

1- PB 

2 - PA - PB 

A similar reasoning implies that 

lim E [NB(n)] 
n-+oo n 

1- PA 

2 - PA - PB 

Therefore 

1 
-- Ieen ----+ 

n n-+oo 

1 (PA + PB) (1 - PA) (1 - PB) 

4 2 - PA - PB 

Correspondingly with IeJ-i(n) and IJ-iJ-i(n). 

The proportions of A- and B-balls in the urn converge to 

1- PB 
~im P (Yi = 1) = almost surely 
~-+oo 2 - PA - PB 

. 1- PA 
~lm P (Yi = 0) = almost surely 
~-+oo 2 - P A - P B 

see Wei (1979). 

As n -+ 00 observation of the two kinds A and B tend to be taken in those 

proportions, which is seen above since NA(n) ----+ I-PB almost surely and 
n n-+oo 2-PA-PB 

NB(n) ----+ I-PA almost surely. 
n n-+oo 2-PA-PB 

In Section 8.2 some of the properties of the Cox test in the RPW case will be 

investigated with help of simulations and these results seems to agree with the 

heuristic discussion above. 
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8.2. A simulation study of properties 

8.2.1. Description 

When performing the simulations we hade to decide on some special cases, namely 

Ho : ()o = 0 vs. HI : ()I = 0.6 

and 

Ho : ()o = 0 vs. HI : ()I = 1 

In both cases we let the nuisance parameter J-l take the values In ~ ,In ~,ln §, In ~,ln 4 

and In 9. Figure 8.2.1 illustrates the simulated cases in the PA-PB-space. 
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/I. /I. 

This estimation can be expressed in terms of P A(n) and PB(n)l which are defined as 

soon as patients have been allocated to both treatments (see Section 7.3.1). This 

suggests that the experiment should not stop until a fixed number of patients,say 

no, have been allocated to both treatments. The estimation of () is not defined if 

one or more of the values SA(n), FA(n)l SB(n) or FB(n) is equal to zero. This was 

solved by substituting each of the values, SA(n), FA(nj, SB(n) or FB(n), that were 
/I. 

equal to zero with one in ()n' 

Hence, we decided to first allocate no patients to each treatment. Denote 

these first 2no observations the starting period. During the starting period the 

allocation were not adaptive. After the starting period the RPW allocation was 

used, but the first 2no observations were allowed to affect the urn. We then 
/I. /I. /I. 

calculated the values of ()n, PAin) and PB(n)' Now the sequential procedure started 

and the use of Cox's statistic. 
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To select a suitable no we simulated the case when ()I = 1 and used a starting 

period of length 10, no = 5, but this number seemed to be too small. Too many 

experiments (about 10 %) ended at the first possible stage. This behavior can 

still be observed, with about 1 % of the observations, in the case when ()I = 0.6 

and no = 10. The fact that experiments stop too early leads to a lowered power. 

In the actual simulations no were set at ten. 

An advantage of a starting period of length no = 10, is that the parameters 

are estimated based on 20 observations, at the start of the sequential procedure. 

A disadvantage is that the RPW allocation will not be used until the 21 'st step. 

In reality it is often required that the sample size will not exceed a certain 

fixed number. This cut-of point were 300 in these simulations. 

All results in this section are based on 100.000 independently simulated ex

periments. In the simulations the allocation RPW(l, 1) were used. 

8.2.2. Results 

We think of studies that are preferred to be of a size of about 150 observations. 

For an experimenter samples of this sizes could seem large, but one should bear 

in mind that a smaller sample could be taken if one can accept a lower power. 

For ()I = 1 the sample sizes seems to be reasonable for values of the nuisance 

parameter, /1, between -1.5 and 1.5, see Figure 8.2.2. For the situation with 

()I = 0.6 the sample sizes seems to be quite large for all values of the nuisance 

parameter, /1, investigated, see Figure 8.2.2. 

Sample size of Cox's test 

CI> 0 

* ~ * N L!) 

* 'u; C\I 
0 CI> 0 

a. 0 0 
E 
as 8 ~ en 

0 
0 g g 
or-

-2 -1 0 1 2 

Nuisance parameter 

FIGURE 8.2.2 ()I = 0.6 {+ Ho ~s true ()I = 1 {D Ho is true 
x HI IS true ' 0 HI is true 
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For both values on ()1 the significance level is below the intended level, 0.05, 

in the area investigated, see Figure 8.2.3. 

Significance level of Cox's test 

Qi <::t 
> 0 

..9:! c:i 
C 

0 0 OJ 

CiS X 0 
0 x 

0 x c:i )[ , 

-2 -1 0 2 

Nuisance parameter 

FIGURE 8.2.3: X : ()1 = 0.6 , 0 : ()1 = 1. 

The power under the alternative is unfortunately below the intended level, 

0.95, but for 11 around zero it is quite close to the intended level for the case with 

()1 = 1, see Figure 8.2.4. In the case with ()1 = 0.6 the power is around 0.65 and 

below, for the investigated values of 11, see Figure 8.2.4. 

Power of Cox's test 

to 0 
0 0 

0 c:i 
Qj x x 
~ 0 0 
0.. 

X X 
C\I 

c:i 
)[ , , x 

-2 -1 0 1 2 

Nuisance parameter 

FIGURE 8.2.4 : X : ()1 = 0.6 , 0 : ()1 = 1. 

A comment on the low power, for ()1 = 0.6, is that if a larger cut-off point, 

than N = 300, were chosen we would get a better power. The power should also 
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slightly be raised by choosing a longer starting period as a small proportion of 

experiments still stops too early. These comments can be summarized by saying 

that ()1 = 0.6 requires a larger sample size then ()1 = 1, to obtain the same power. 

Let us observe the number of experiments of different length. Four cases, 

()1 = 0.6 when either J.L = In ~ or J.L = In 9 and ()1 = 1 and J.L = In ~ or J.L = In 9 are 

shown in Figure 8.2.5. There it is clear that, when ()1 = 0.6, a large proportion 

of the experiments are truncated at N = 300. Note that the scales on the y-axes 

are different for ()1 = 0.6 and ()1 = 1. 
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FIGURE 8.2.5 

In Figure 8.2.6 we can see that the number of patients assigned to the inferior 

treatment is fewer in the case of ()1 = 1 than in the case of ()1 = 0.6. Note that this 

is probably due to the smaller sample sizes in the case of ()1 = 1. When considering 

the ethical perspective we are both interested in minimizing the actual number 

of patients receiving the inferior treatment and also to minimize the proportion 

of patients, in one experiment, receiving the inferior treatment. 
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8.2.3. Further results for a special case 

It is also of interest to see how the test behaves if the true 0 diverge from the 

value under the null hypothesis and from the value under the alternative. We 

have chosen to investigate the case where 01 = 1 and J1 = In ~ ~ 0.4055. 

Figure 8.2.7 illustrates the power curve for different values of 0, where J1 = ln~. 

When 0 is equal to or higher then 0.8 the power is greater then 0.8. 

The power 
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FIGURE 8.2.7 

In Figure 8.2.8 below it is illustrated were the chosen values J1 = In ~ ~ 0.4055 

and 0 < () < 1.4 are placed in the PA -Pa-space. 
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FIGURE 8.2 .. 8 : * symbolizes the simulated points. At the diagonal () = O. 

In Figure 8.2.9 the sample size and the number of patients on the inferior 

treatment are shown. It seems to be for values of () roughly between 0.3 and 1.3 

that the number of patients on the inferior treatment is less then half the sample 

SIze. 
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FIGURE 8.2.9 :0 represents the sample size, N, and * represents the number 

of patients on the inferior treatment, NB. 

We would shortly like to comment on the fact that the test is a bit on the 

conservative side. If the test limits were adjusted, how would this effect the error 

probabilities and the sample size? 

In a brief investigation, of the cases where () = 1 and either 11 = In ~ or 

11 = In 9, we varied the planned 0:' between 0.0.5, 0.06 and 0.07. In Figure 8.2.10 
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we can see how this effected the obtained significance level, a*, the obtained 

power, 1 - (3*, and the sample size. 

The significance level The power 
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FIGURE 8.2.10 :0 (0 when Hltrue) when ()1 = 0.6, x (+ when H1true) 
when ()1 = 1. 

For a = 0.07 as the "intended" level we obtained a* ~ 0.046 as the true level 

and the sample size decreased from about 99 observations to about 86 observa

tions. This indicates that we could decrease the sample sizes, when Cox's test is 

used, by working more on the adjustment of the test limits. 

8.2.4. Wald's SPRT and Cox's SPRT 

To make a brief comparison between Wald's SPRT and Cox's SPRT the two 

hypothesis cases from Section 5 were simulated when using Cox's SPRT for the 

analysis. That is when ()1 ~ 0.98 and ()1 ~ 1. 79. 

Figure 8.2.11 summarizes the results. 
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FIGURE 8.2.11 :0 (0 when Ho true) when ()1 = 0.98 and x (+ when Ho 
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Not surprisingly the loss for Cox's test is regarding the power in the alter

native. The test is however constructed for a more complex situation. Note 

that Cox's test is more conservative then Wald's SPRT, and that is probably the 

reason why it requires a larger sample. 

8.3. Discussion 

The power, 1 - (3, for different values on J.l is more close to the nominal power 

for the case with ()1 = 1. than for the case with ()1 = 0.6. The significance 

levels were quite close in the two cases and considerably under the planned level. 

That means that the test is rather conservative, and this makes the sample sizes 

larger than they need to be. We would have preferred that the test was not 

this conservative and that the sample sizes had been reduced instead. One way 

to reduce the sample size could be to choose a higher Q then what is actually 

intended, and use this Q in the computations of the test limits. It is, however, 

necessary to investigate further how much one should depart from the intended 

Q. The most desirably approach would be to learn more about the behavior, for 

example the convergence speed, of the estimations and approximations used in 

the test statistic. That is, learn how the process Tn, discussed in Section 8, is 
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effected by using a RPW. We know that the increments are not independent and 

that their variances are not constant for all n. From this we should be able to 

proceed and gain theoretical knowledge which would help us to understand how 

to adjust the test limits. 

The sample sizes are less in the case of 01 = 1. This, and the above discussion, 

indicate that the test, in the present form, is more suitable for testing the null 

hypothesis against the alternative 01 = 1, rather than 01 = 0.6. As commented 

above in Section 8.2.2, the test, if used for 01 = 0.6, needs a larger sample size 

and therefore the starting period and the cut-off point need to be adjusted if used 

in this situation. 

9. Summary 

When starting the work with play-the-winner designs we had two main questions. 

<) Does the theory of known sequential analysis results hold when play-the

winner designs are used ? 

<) Is it possible to develop results useful in practice? 

The last question is probably very important to work with to make play

the-winner designs easy of access for conceivable users. It is, for example, of 

importance to adjust the test procedure to practical requirements and to identify 

the situations when the specific test procedure obtained is suitable. 

We had considerations on how the RPW design worked in general, but one 

has to specify a more concrete problem. We concentrated on the behavior of the 

error probabilities, the sample size and the number of unfavorable allocations. 

We started to investigate the RPW design, and to compare it with two other 

designs, using Wald's sequential probability ratio test, SPRT, for the analysis. 

Some important properties of Wald's SPRT were proved to hold for a broad class 

of play-the-winner designs. The comparison, of the three designs, was made to get 

a brief indication of how the RPW design worked in terms of the above mentioned 

quantities. We found that it seemed to work well, when used with Wald's SPRT 

for the analysis. This is the work mentioned in Sections 3, 4 and 5. 

After this we wished to proceed to a more, in practice, useful situation, namely 

when a nuisance parameter is present. Here Cox's SPRT was used for the analysis 

and we tried, for some special parameter values, to identify when and how it 

worked, in terms of the error probabilities, the sample size and the number of 

unfavorable allocations. The results were basically that when 01 2: 1 the larger 

01 is the smaller the sample size and the shorter the starting period (2no ::; 20) 

can be. The truncation could also be set at a lower value than 300. If 01 < 1 the 

sample size needed to be increased, but for values of 0 roughly from 0.8 and larger 

the test with 01 = 1 worked quite well. Though the larger 0 we have the larger 

we should set 01 to get minimal sample and still get good properties. What we 

saw in this work was also that in order to test 01 = 0.6 (or smaller 01 ) a sample 
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size of , for many applications, unreasonable size is needed. This is discussed in 

Sections 6, 7 and 8. 

Note that we have not let the power, 1 - /3, vary. This could of course be 

done, and we expect that the sample size would decrease with decreasing power. 

The chosen power level of 0.95 is a common choice in statistical literature, but 

one should reflect on that this is probably a stronger requirement than what is 

often true when significance tests are used in practice. That is, it is not fair to 

compare our sample sizes with sample sizes from commonly used tests, without 

also remembering to compare the power of the tests. 

Let us close this summary by comment on the asked questions above. For 

the first question we have a positive answer for Wald's SPRT in general and 

heuristically seen for Cox's SPRT. The second question can also be positively 

answered, but we here only did the real development for some special cases. 

46 



ACKNOWLEDGMENT 

I would like to thank my supervisor Sture Holm, for supporting and guiding 

me in this work. I also would like to thank Goran Brostrom, for sharing his 

knowledge about FORTRAN. Aila Sarkka and Kasra Afsarinejad have been most 

helpful with valuable comments on the draft manuscript. 

47 



APPENDIX 

The tables to follow contain the arithmetic mean and the standard error of 

the mean. 

Simulation results for Wald's SPRT, presented in figures 5.2.1-4. 

Ho : PA = PB = 0.7 vs. HI : PA = 0.8 , PB = 0.6 when HI true. 

TR 
RPW RPW RPW RPW RPW 

MPW 
(100.000,1) (10,1) (1,1) (1,10) (1,100.000) 

N 114.82 114.76 113.53 112.69 112.55 112.42 110.77 

s.d. 0.12 0.12 0.11 0.11 0.11 0.11 0.11 

NB 57.40 57.39 49.51 44.64 42.97 42.58 38.46 

s.d. 0.06 0.06 0.05 0.05 0.05 0.05 0.04 

1-f3 0.955872 0.955538 0.955976 0.955760 0.956034 0.955692 0.952918 

s.d. 0.000290 0.000292 0.000290 0.000291 0.000290 0.000291 0.000299 

Ho : PA = PB = 0.7 vs. HI : PA = 0.8 , PB = 0.6 when Ho true. 

TR 
RPW RPW RPW RPW RPW 

MPW 
(100.000,1) (10,1) (1,1) (1,10) (1,100.000) 

N 112.37 112.32 111.51 111.10 111.03 111.12 109.41 

s.d. 0.12 0.12 0.11 0.11 0.11 0.11 0.11 

NB 56.19 56.15 52.97 51.82 51.53 51.52 53.34 

s.d. 0.06 0.06 0.05 0.05 0.05 0.05 0.04 

a 0.045782 0.045936 0.045710 0.045922 0.046012 0.046292 0.047334 

s.d. 0.000296 0.000296 0.000295 0.000296 0.000296 0.000297 0.000300 

Ho.: PA = PB = 0.6 vs. HI : PA = 0.8 , PB = 0.4 when HI true. 

TR 
RPW RPW RPW RPW RPW 

MPW 
(100.000,1) (10,1) (1,1) (1,10) (1,100.000) 

N 33.34 33.33 32.94 32.52 32.30 32.30 31.88 

s.d. 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

NB 16.66 16.67 14.15 11.42 10.24 10.03 9.12 

s.d. 0.02 0.01 0.01 0.01 0.01 0.01 0.01 

1-f3 0.959464 0.959676 0.959786 0.959530 0.960056 0.959102 0.957672 

s.d. 0.000279 0.000278 0.000278 0.000279 0.000277 0.000280 0.000284 

Ho : PA = PB = 0.6 vs. HI : PA = 0.8 , PB = 0.4 when Ho true. 

TR 
RPW RPW RPW RPW RPW 

MPW 
(100.000,1) (10,1) (1,1) (1,10) (1,100.000) 

N 31.26 31.34 31.08 30.82 30.79 30.85 30.46 

s.d. 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

NB 15.29 15.66 14.62 13.84 13.68 13.69 14.27 

s.d. 0.03 0.02 0.01 0.01 0.01 0.01 0.01 

a 0.042368 0.042310 0.042254 0.04288 0.042574 0.04342 0.042822 

s.d. 0.000285 0.000285 0.000285 0.000286 0.000285 0.000288 0.000286 
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Simulation results for Cox's SPRT, presented in figures 8.2.2, 8.2.3, 8.2.4 and 

8.2.6. 
80 0 

81 0.6 

8 = 0.6 , that is HI true. 

J-l 1-(3 s.d. N s.d. NB s.d. 

In .! 
9 

0.06658 0.000788 269.51 0.26 130.76 0.13 

In .! 
4 

0.40495 0.001552 261.68 0.18 123.79 0.09 
In ~ 

3 
0.65027 0.001508 216.66 0.24 98.05 0.12 

In ~ 
2 

0.65289 0.001505 214.59 0.24 93.84 0.12 

In4 0.41601 0.001559 256.99 0.20 111.68 0.11 

In 9 0.09265 0.000917 266.96 0.27 119.39 0.14 

Ho true 

J-l a s.d. N s.d. NB s.d. 

In .! 
9 

0.00093 0.000096 260.90 0.28 130.28 0.14 
In .! 

4 
0.01317 0.000361 249.69 0.21 124.03 0.10 

In ~ 
3 

0.02643 0.000507 207.11 0.26 101.63 0.12 
In ~ 

2 
0.02783 0.000520 206.22 0.26 100.17 0.12 

In4 0.17410 0.000414 247.18 0.22 120.92 0.11 

In9 0.00345 0.000185 258.44 0.28 128.26 0.15 

80 0 

81 1 

HI true 

J-l 1-(3 s.d. N s.d. NB s.d. 

In .! 
9 

0.54599 0.001574 224.94 0.26 107.20 0.13 
In .! 

4 
0.86498 0.001081 161.70 0.22 74.07 0.11 

In ~ 
3 

0.93685 0.000769 111.36 0.18 47.91 0.09 
In ~ 

2 
0.93624 0.000773 110.24 0.19 45.60 0.09 

In4 0.86141 0.001093 157.97 0.23 64.93 0.11 

In9 0.55244 0.001572 218.46 0.27 92.69 0.14 
Ho true 

J-l a s.d. N s.d. NB s.d. 
In .! 

9 
0.01029 0.000319 193.29 0.30 95.96 0.15 

In .! 
4 

0.02481 0.000492 142.65 0.25 70.04 0.12 
In ~ 

3 
0.03100 0.000548 99.01 0.20 47.54 0.09 

In ~ 
2 

0.03268 0.000562 98.80 0.20 46.64 0.08 

In4 0.02702 0.000513 140.76 0.25 66.58 0.11 

In9 0.01406 0.000372 189.74 0.30 91.61 0.15 
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Simulation results for the case where {)l = 1 and f-l = In ~ ~ 0.4055 (() is not 

constant), presented in figures 8.2.7 and 8.2.9. 

e 1 - jJ ({)) s.d. N s.d. NB s.d. 

0.0 0.03268 0.000562 98.80 0.20 46.64 0.08 

0.1 0.05987 0.000750 112.25 0.22 52.12 0.10 

0.2 0.10921 0.000986 127.20 0.25 58.04 0.11 

0.3 0.18375 0.001225 140.23 0.26 63.12 0.11 

0.4 0.28875 0.001433 150.53 0.27 66.85 0.12 

0.6 0.55695 0.001571 153.98 0.27 66.73 0.12 

0.8 0.80207 0.001260 135.39 0.24 57.41 0.11 

0.9 0.88394 0.001013 122.89 0.21 51.48 0.10 

1.0 0.93624 0.000773 110.24 0.19 45.60 0.09 

1.3 0.99237 0.000275 82.54 0.11 32.76 0.05 

1.4 0.99638 0.000190 76.71 0.09 29.99 0.05 

Simulation results for different values on a, presented in Figure 8.2.10. 

PA = PB 0.6 

{)l 1 

eo 0 

1-jJ a a* s.d. N s.d. NB s.d. 

0.95 0.06 0.03917 0.000613 92.28 0.19 43.50 0.08 

0.95 0.07 0.04565 0.000660 86.45 0.18 40.71 0.08 

PA 0.7121 

PB 0.4764 

eo 0 

e1 1 

1-jJ a 1 - jJ* s.d. N s.d. NB s.d. 

0.95 0.06 0.93373 0.000787 102.85 0.18 42.82 0.08 

0.95 0.07 0.93062 0.000804 96.32 0.17 40.29 0.08 

PA =PB 0.9 

eo 0 

e1 1 

1-jJ a a* s.d. N s.d. NB s.d. 

0.95 0.06 0.01897 0.000431 181.68 0.3 87.56 0.14 

0.95 0.07 0.02399 0.000484 174.91 0.3 84.07 0.14 
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PA 0.9369 

PB 0.8452 

()o 0 

()1 1 

1-f3 a 1 - f3* s.d. N s.d. NB s.d. 

0.95 0.06 0.59160 0.001554 209.40 0.27 89.19 0.14 

0.95 0.07 0.62062 0.001534 201.16 0.27 85.94 0.14 

Comparison between Wald's and Cox's SPRT. The results are presented in 

figure 8.2.11. 

PA 0.8 

PB 0.6 
()o 0 

()1 0.9808 

1 - f3 s.d. N s.d. NB s.d. 

0.91174 0.000897 130.88 0.21 53.79 0.10 

a s.d. N s.d. NB s.d. 

0.03081 0.000546 117.09 0.22 55.20 0.10 

PA 0.8 

PB 0.4 

()o 0 

()1 1.7918 

1-f3 s.d. N s.d. NB s.d. 

0.96427 0.000587 51.83 0.07 20.09 0.03 

a s.d. N s.d. NB s.d. 

0.01600 0.000397 37.40 0.07 17.36 0.03 
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