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Sequential Processes and the Shapes of Reaction Time Distributions
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It is sometimes suggested that reaction time (RT) distributions have the same shape across conditions or
groups. In this note we show that this is highly unlikely if the RT is the sum of the stochastically independent
durations of 2 or more stages (sequential processes) (a) that are influenced selectively by different factors, or
(b) 1 of which is influenced selectively by some factor. We provide an example of substantial shape
differences in RT data from a flash-detection experiment, data that have been shown to satisfy requirement (a).
Ignoring these requirements, we also note that in a large range of instances reviewed by Matzke and
Wagenmakers (2009) in which the ex-Gaussian distribution was fitted to RT data from different conditions in
the same experiment, most sets of distributions fail to satisfy even a weak requirement for shape invariance.
In the Appendix we describe the Summation Test for selectively influenced stages with independent durations
(Roberts & Sternberg, 1993), and provide an example of its application.
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Under what conditions do reaction time (RT) distributions have
the same shape across conditions or groups? Shape invariance of a
set of RT distributions means that they differ by at most their
means and time scales. Thus, the distributions of X and Y have the
same shape if and only if there are constants a and b such that Y �
a � bX. For example, one proposal about the cognitive effects of
aging is the controversial General Slowing Hypothesis: With in-
creasing age, all the operations of the central nervous system in
most or all tasks become proportionally slower (Cerella, 1985;
Eckert, 2011; Myerson et al., 2003a; Myerson, Hale, Zheng, Jen-
kins, & Widaman, 2003b; Salthouse, 1996; Sleimen-Malkoun,
Temprado, & Berton, 2013; but see also Bashore et al., 2014, and
Ratcliff et al., 2000). In effect, with increasing age, time runs more
slowly. Rouder, Yue, Speckman, Pratte, and Province (2010) dis-
cuss other considerations that lead to shape invariance. Ratcliff and
McKoon (2008) use the approximate linearity of Q-Q plots to
argue that for diffusion model predictions and some data sets, the
shapes of RT distributions are approximately invariant across
experimental conditions and experiments (p. 895). And, according
to Ratcliff and Smith (2010, p. 90), “Invariance of distribution

shape is one of the most powerful constraints on models of RT
distributions. . . . That the diffusion model predicts this invariance
is a strong argument in support of its use in performing process
decomposition of RT data.”

The primary purpose of this note is to show that for a process
organized in stages that have stochastically independent durations
and are selectively influenced by experimental factors, it is highly
unlikely that the distributions of RTs in several conditions in an
experiment can have the same shape.

Stage Models

Stage models are ubiquitous in research on speeded tasks (e.g.,
King & Dehaene, 2014; Sanders, 1998; Schall, 2003; Schall et al.,
2011; Sigman & Dehaene, 2008; Sternberg, 1998, 2001) and
elsewhere (Borst & Anderson, 2015). For several sets of RT data,
Roberts and Sternberg (1993) provide evidence for selectively
influenced stages whose durations are stochastically independent.
Even in Ratcliff’s (1978) diffusion model, in which the “one-shot”
decision process (Ratcliff & Tuerlinckx, 2002, p. 439) is repre-
sented by multiple activations that grow in parallel, the decision
process D is augmented by two additional stages arranged sequen-
tially whose durations are stochastically independent: an initial
stage E for stimulus encoding, and a final stage R for response
execution. In the application of the diffusion model considered by
Gomez, Perea, and Ratcliff (2013), the duration of E in a lexical-
decision task is found to be selectively influenced by the related-
ness of masked primes. In the experiments considered by Ratcliff
and Smith (2010), E delays the start of D by an amount that is
changed by 100 ms or more by variations in stimulus noise.
Because the same factor also affects D, its influence with respect
to E and D is not selective; however, its influence is selective with
respect to E and R, and D and R.
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Two Stages With Selective Effects on Both

Because two or more stages can be concatenated and treated as a
single stage, we can limit consideration to processes consisting of two
stages without loss of generality. Consider a process that consists of
stages A and B with durations TA and TB, so that the RT is RT � TA �
TB. Assume that TA and TB are stochastically independent. We then
have an SIStage process (a process consisting of sequential operations
whose durations are stochastically independent; Roberts & Sternberg,
1993). Suppose two factors, Fj and Gk, each with two levels, j � 1, 2,
and k � 1, 2, that influence the stage durations selectively, so that
TA � TA(Fj) � TAj, TB � TB(Gk) � TBk, and RTjk � TAj � TBk.
Consider a 2 � 2 factorial experiment with the four resulting condi-
tions, giving us RT11, RT12, RT21, and RT22. (Because an m � n
experiment can be regarded as a concatenation of 2 � 2 experiments,
we can do so without loss of generality.) Then, because convolution
is associative and commutative, RT11 � RT22 has the same distribu-
tion as RT12 � RT21, namely, the convolution of the distributions of
TA1, TA2, TB1, and TB2. Thus,

RT11 * RT22 � RT12 * RT21, (1)

where “�” represents convolution (Ashby & Townsend, 1980, p.
108). It follows that:

�r11 � �r22 � �r12 � �r21, (r � 1), (2)

where �rjk � �r(RTjk) is the rth cumulant of RTjk. Let us assume
that RT distributions are “well-behaved,” in the sense that cumu-
lants of (at least) orders r � 1, 2, 3, and 4 exist.1

Equation 2 results from three assumptions: (a) stages, (b) stochastic
independence, and (c) selective influence. To these, let us add a fourth
assumption: (d) shape invariance: The RTjk distributions differ by at
most means and scale factors. Whereas differences among means
influence only the means of the RTjk distributions and influence none
of the cumulants above the first, differences among scale factors
influence all of the cumulants and central moments above the first.
Now, if the distributions of two random variables, X1 and X2 have the
same shape, with scale factor C, then

�r(X2) ⁄ �r(X1) � C r, (r � 2). (3)

Let the scale factor associated with RTjk be Cjk � 0. It follows
from Equation 3 that

�rjk � �r00Cjk
r , (r � 2, �r00 � 0). (4)

where the {�r00} are a set of constants, one for each r. With
Assumption (d), Equations 2 and 4 then imply that:

C11
r � C22

r � C12
r � C21

r , (r � 2). (5)

Given that �200 � 0 (nonzero variances) and �400 � 0 (nonzero
kurtosis values, which, among common distributions, excludes
only the Gaussian) there are only three relations among the Cjk that
satisfy Equation 5:2

(i) the Cjk are identical,
(ii) C11 � C21 and C22 � C12,
(iii) C11 � C12 and C22 � C21.
Given (i), only the mean RT and none of the higher cumulants can

be influenced by either factor. Given (ii), factor F can influence only
the mean. Given (iii), factor G can influence only the mean. Thus, for

the four RT distributions to have the same shape, at least one of the
two factors can cause no more than a shift (a change in mean only) of
the RT distribution, a highly unlikely possibility.3

It is remarkable that whereas we have shown that the four
distributions RT11, RT12, RT21, and RT22 are very likely to differ,
the relations among them must be such that when they are com-
bined in pairs, as in Equation 1, those differences “cancel out.”

Two Stages With a Selective Effect on One

This is sometimes assumed or concluded in applications of
Ratcliff’s (1978) diffusion model. Suppose the two-stage model,
with one factor Fj (j � 1, 2, . . .) that influences just TA, so that

RTj � TAj � TB, (j � 1). (6)

We then have

�rj � �rj � �r, (j � 1, r � 1), (7)

where �rj, �rj, and 	r are the rth cumulants of RTj, TAj, and TB,
respectively. Equation 7 follows from assumptions (a), (b), and (c),
above. Addition of the shape invariance assumption then requires

�rj � Cj
r�r1, (j � 2, r � 2), (8)

where Cj � 1 is the scale factor that relates RTj to RT1. Combining
Equations 7 and 8 and rearranging, we have

�r �
(�rj 	 Cj

r�r1)

(Cj
r 	 1)

, (j � 2, r � 2). (9)

Thus, either TB is a constant (	r � 0, r � 2) or its distribution
(which is uniquely determined up to its mean by the {	r}, r � 2) is
restricted by properties of the distribution of TA, and may vary with
the level of the factor Fj that is assumed to influence only TA, a
contradiction.

1 In what follows, two well-known properties of cumulants (�r) of order
r are used: For stochastically independent random variables X and Y,
�r(X � Y) � �r(X

� Y) � �r(X) � �r(Y); also, �r(CX) � Cr�r(X). Note that
�rjk � Mrjk, for 1 
 r 
 3 and �4jk � M4jk - 3M2jk

2 , where the {Mrjk} are
the mean and rth central moments of RTjk (see Kendall & Stuart, 1969,
Volume 1, Ch. 3.). The quantity �4/�2

2 is a common measure of kurtosis,
whose value is zero for the Gaussian distribution, and nonzero for other
common distributions (Weisstein, 2014).

2 To prove this, use Equation 5 with r � 2 and r � 4. For simplicity, let
C11 � a, C22 � b, C12 � c, and C21 � d. Start with (A) a2 � b2 � c2 �
d2 and (B) a4 � b4 � c4 � d4. Express the two sides of (A) and (B),
respectively, in terms of (a � b)2 and (c � d)2, and of (a � b)4 and (c �
d)4. Square the two sides of the equation derived from (A), and subtract
from the equation derived from (B). This gives ab � cd, or a/c � d/b �
k. Substituting in (A) gives (k2 - 1)(c2 - b2) � 0. This implies either that k �
1, which means that a � c and b � d; or that b � c, which requires a � d.

3 Effects of factors on mean RT are almost always associated with
nonzero effects on other aspects of the distribution, including var(RT).
Indeed, Wagenmakers and Brown (2007) have argued for a lawful regu-
larity in the relation between mean and variance: they claim that the
standard deviations (SDs) of RT distributions increase linearly with their
means. It will be seen that for the data to be presented below, effects on the
mean are indeed accompanied by effects on the SDs, but that the relation
between them is nonmonotonic.
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Shape Differences of RT Distributions in
Flash Detection

An example is provided by an experiment first reported by Backus
and Sternberg (1988). It is called “Experiment 1” by Roberts and
Sternberg (1993), who used the summation test, explained and applied
in that article, to show that the data are consistent with a SIStage
model with selective influence.4 Subjects responded by pulling a lever
if, after a variable foreperiod, they detected a flash in one of four
locations. A central cue at the start of each trial indicated the most
likely location. On 25% of the trials (“catch” trials) there was no flash.
The factors foreperiod (six levels) and flash intensity (two levels)
varied approximately randomly and independently from trial to trial.

For testing the SIStage model we used only the data from trials
when the cue was valid and when the foreperiod was either 750 ms or
1,150 ms. Six subjects provided these data, each of whom served for
six 1-hr test sessions after 3 hrs of practice. The data considered here
thus reflect four conditions that are, from shortest to longest mean RT,
(short, bright: Sb), (long, bright: Lb), (short, dim: Sd), and (long, dim:
Ld). As shown in Table 26.2 of Roberts and Sternberg (1993), the
overall mean RT is 222 ms; the main effects of foreperiod and
intensity on mean RT are 15 ms and 36 ms, respectively, and their
interaction is close to zero. That the summation test is well satisfied is
shown in the Appendix of the present article as well as in Figures 26.2A
and 26.3A in Roberts and Sternberg (1993); Figure 26.2A also shows the
four distribution functions.

L-Skewness and L-Kurtosis

Skewness and kurtosis are frequently used to describe the shapes of
distributions. We used measures based on L-moments for their eval-
uation.5 To reduce heterogeneity for the present analysis, the first of
the test sessions was omitted, as were the data for one subject whose
variability was exceptionally high.6 For each of the five subjects and
each of the four conditions, the data were pooled over the re-
maining five test sessions. This resulted in 20 distributions of
80 observations each. For each distribution, estimates of the
first four L-moments 
1, 
2, 
3, and 
4 and the derived mea-

sures of skewness, �3 � 
3/
2 (“L-skewness”) and kurtosis,
�4 � 
4/
2 (“L- kurtosis”), were calculated. Means and standard
errors over the six subjects of estimates of 
1, 
2, �3, and �4 for
the four conditions are provided in Table 1, which also includes
the average standard deviation (SD) for each condition.

Interpretations of �̂3 and �̂4 may be guided by the fact that they fall
within the unit interval, 0 
 �3, �4 
 1, that for the exponential
distribution, �3 � .333 and �4 � .167, and that for the Gaussian
distribution, �3 � 0 and �4 � .123. The differences among the �̂3

values across conditions are striking: all five subjects show differ-
ences in the same direction for Sb versus Lb and Sb versus Ld, and
four of the five show a difference in the same direction for Sb versus
Sd. The mean difference between the means of the �̂3 values for
Conditions Lb, Sd, and Ld, and of the values for Condition Sb, with
� SE, is 0.15 � 0.03; a t test yields p 
 .01. (A similar comparison
for the conventional measure of skewness, �3/(�2

3/2), yields a differ-
ence of 1.37–0.37 � 1.00 � 0.36, and p 
 .05.) In an ANOVA in
which effects were compared with their interaction with subjects, the
effects on �̂3 of foreperiod, intensity, and their interaction yielded p

4 See the Appendix for a description and an application of the summa-
tion test.

5 L-Moments, 
k, k � 1, 2, . . . , are linear combinations of order
statistics that are influenced less than conventional moments by extreme
observations, and have other desirable properties (Hosking, 1990, 1992,
2006; Hosking & Wallis, 1997; Jones, Rosco, & Pewsey, 2011; Royston,
1992). Calculations were performed using the R-package ”lmom.”

6
For that subject, �2

� , a measure of variability averaged over the four
conditions, was 18.2; for the five other subjects, 11.1 
 �2

� 
 12.6.

Table 1
Means and Standard Errors of Estimates of Five Parameters

Condition Sb Lb Sd Ld

Foreperiod: Short Long Short Long
Intensity: Bright Bright Dim Dim

Measure SÊ

�̂1 (ms) 197.8 210.8 230.5 243.1 1.0

SD (ms) 15.94 25.30 21.01 26.19 .72

�̂2 (ms) 8.78 12.57 11.37 14.00 .31

�̂3 .050 .259 .162 .215 .015
�̂4 .181 .242 .181 .185 .008

Note. Rows � parameters; columns � conditions. �̂1 � estimate of the

first L-moment � mean; SD � estimate of the standard deviation; �̂2 �

estimate of second L-moment, a measure of variability; �̂3 � �̂3 ⁄ �̂2 �

estimate of L-skewness; �̂4 � �̂4 ⁄ �̂2 � estimate of L-kurtosis. Values

from data for five subjects pooled over five sessions. Each SÊ is based on
the 12 df Subjects � Conditions mean square in an ANOVA.
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Figure 1. Data from four conditions in a detection experiment in which
foreperiod and flash intensity were varied factorially: Means over five subjects
of differences between the quantiles of normalized distributions in each con-
dition and their means. To enable better visualization of the tails of the
distributions, the x-axis is nonlinear, with breaks marked by vertical lines.
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values of 0.03, 0.04, and 0.06, respectively. In a similar ANOVA for
�̂4, the effect of foreperiod and its interaction with intensity yielded p
values of 0.05 and 0.03, respectively. We can conclude that the
different conditions produce RT distributions that differ in shape.

How great are the effects on �3? One basis for comparison is the
increase in skewness with the size of the positive set, npos, in ”mem-
ory scanning,” a shape difference that has been emphasized by several
investigators (e.g., Hockley, 1984; Hockley & Corballis, 1982; McEl-
ree & Dosher, 1989). In simulations of the ex-Gaussian distribution
based on Hockley’s parameter estimates (Hockley, 1984, Figure 4),
the difference between the largest �̂3 (for npos � 6) and the smallest
(for npos � 3) is .296 � .211 � .085 for positive responses and .302 �
.267 � .035 for negative responses. In contrast, as shown in Table 1,
the difference between the largest mean �̂3 (in Condition Lb of the
present experiment) and the smallest (in Condition Sb), .257 �
.067 � .190, is twice as large as the larger of Hockley’s differences.

Quantiles of Normalized Distributions

To further explore the shape differences indicated by the effects
on �̂3 and �̂4, we transformed the RTs linearly to normalize the 20
distributions so that they had equal medians (217 ms) and interquartile
ranges (25 ms), equal to the means across the distributions of their
medians and interquartile ranges, respectively. This enabled us to
compare quantiles across subjects and conditions.7 We did so because
we believe that systematic differences are more likely to occur at
points with equal proportions than at points with equal RTs.8 For each
normalized distribution a set of quantiles was estimated. Let qpcs be
the quantile for a given proportion, p, condition, c, and subject, s.
From the {qpcs}, their means over conditions, {qp•s}, and the differ-
ences Qpcs � qpcs � qp•s could be determined. It is the {Qpc•}, the
means over subjects of these differences, that are shown in Figure 1.
If the distributions had the same shape, then, except for variations due
to sampling error, the {Qpc•} would all be zero. And, to the extent that
quantile differences across conditions are large relative to quantile

differences across subjects within conditions, we can conclude that
the differences among conditions are real.

The interaction of the effects of foreperiod and intensity on �3 and

�4 (striking, given that the effects of these factors on RT� are additive)
is also shown by their effects on the quantiles for both low and high
tails: The effects of foreperiod on shape are substantially greater when
the flash is bright than when it is dim. Separate ANOVAs for low and
high tails show that proportion interacts significantly with condition
(low tail: p 
 .0001; high tail: p � .002) and with the interaction of
foreperiod with intensity (low tail: p 
 .01; high tail: p 
 .01). In an
ANOVA in which tail (low or high) is a factor, and proportion is
measured outward from 0.5, the interaction of proportion, condition,
and tail is highly significant (p 
 .0001), confirming the impression
that the effects of condition on the high tail are greater than on the low
tail. That a separation between the Sd and Lb conditions shows up
only for the high tail suggests a qualitative difference between the two
tails: for the interaction of condition and tail in an ANOVA of just the
data for Sd and Lb we found p � .06. We also noticed that, as shown
by the mean squares in ANOVAs, variability across subjects is
substantially greater for the high tail than the low tail: ratios of mean
squares for Proportion � Foreperiod � Subjects, Proportion �
Interval � Subjects, and Proportion � Foreperiod � Interval �
Subjects, are 6.1, 4.3, and 8.1, with p 
 .0001 in each case.

To aid in understanding Figure 1, two additional ways of com-
paring the shapes of distributions are shown in Figure 2, in which
the mean normalized distributions for the two conditions with the
most contrasting shapes (Sb and Lb) are shown. In the quantile-

7 All quantile estimates used the Hyndman and Fan (1996) Type 8
estimator.

8 This goal is similar to that of Ratcliff’s (1979) “Vincentizing” proce-
dure.
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Figure 2. Effect of foreperiod on detection RT for bright flashes. A: Mean over five subjects of distribution
functions of normalized RTs for Lb and Sb conditions. B: Mean quantile-quantile plot of the same pair of
distributions, with 25% and 75% points indicated for each.
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quantile analysis9 (Figure 2B), the plots for all five subjects are
concave upward: the quadratic coefficient is significantly positive,
with p � .01. Yet another way to compare these distributions is
shown in Panel B of Figure A1 in the Appendix.

It seems likely that these effects on the shapes of RT distribu-
tions reflect interesting properties of the underlying process; it
remains to be determined what these properties are.

Shape Invariance and the Ex-Gaussian Distribution

Because the ex-Gaussian distribution has been fitted to numer-
ous sets of RT data, it is interesting to ask about the conditions
under which two different ex-Gaussian distributions have the same
shape. For the exponential distribution with scale parameter �, the
first three cumulants are �, �2, 2�3, and in general, �r � (r - 1)!�r.
Those of the Gaussian distribution are �, �2, 0 and for r � 3, �r �
0. The cumulants of the ex-Gaussian distribution are therefore the
sums, � � �, �2 � �2, 2�3, and, for r � 3, (r � 1)!�r. It is easy
to show10 from Equation 3 that two different ex-Gaussian distri-
butions have the same shape if and only if �2/�1 � �2/�1. Thus a
minimum requirement for sameness of shape is that any factor that
influences either � or � should also influence the other, and in the
same direction. Yet in the Matzke and Wagenmakers (2009, Sup-
plemental Materials) inventory of ex-Gaussian analyses, even this
weak requirement is met in only 31 (about 21%) of the 147 cases
where effects on � and � and their directions were observed.11

Thus, to the extent that the ex-Gaussian distribution fit well, the
shapes of most of the RT distributions that were analyzed were
influenced by factor levels, violating shape invariance.

Conclusions

Given stages with variable and independent durations, and fac-
tors that influence more than the means of those durations selec-
tively, the RT distributions in a factorial experiment are highly
unlikely to have the same shape. Also, given variable and inde-
pendent durations, and a factor that influences more than the mean
of just one of those durations, the RT distributions for different
levels of that factor are highly unlikely to have the same shape.
Evidence from the fitting of the ex-Gaussian distribution to RT
distributions has often revealed differences in shape. It follows that
any theory that predicts shape invariance must be of limited
generality. How well the distributions produced by an SIStage
process can approximate shape invariance is a question for further
research. (To the extent that the answer is “poorly,” the observa-
tion of shape invariance in a particular case would constitute
evidence against the SIStage model in that case.) In thinking about
this issue it is important to consider the sensitivity of the standard
tests for differences between distributions, and of the associated
graphical displays. Acknowledgment of the existence of shape
differences among RT distributions may lead to further under-
standing of the underlying processes.

9 Quantiles associated with proportions .01, .02, . . . , .99 were deter-
mined for each distribution and each subject, their means over subjects
determined, and the mean quantiles for Lb plotted against those for Sb.

10 Let C be the scale factor that distinguishes the two distributions. From
Equation 3, �32/�31 � �2

3/�1
3 � C3, and �22/�21 � (�2

2 � �2
2)/(�1

2 � �1
2) � C2.

The first of these implies �2/�1 � C. Combining this with the second gives

�2/�1 � �2/�1, which is thus a necessary condition for sameness of shape.
And because �r2/�r1 � �2

r/�1
r � Cr for r � 2, it is also a sufficient condition.

See also Thomas and Ross (1980, pp. 143–144), who show that this
condition is required for two ex-Gaussian distributions to be members of
the same “family.”

11 The requirement that both effects should be present and in the same
direction is weak because it can be satisfied when the requirement that the
effects be proportional is violated. We used this weaker requirement
because the information in the Matzke and Wagenmakers inventory in-
cluded the presence and direction of effects, but not their magnitudes.
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Appendix

The Summation Test

We wish to test the hypothesis that the RT is generated by
sequential processes (stages) A and B, whose durations are sto-
chastically independent, and that factors f and g with two levels
each influence stages A and B selectively. Equation 1 then follows,
as shown by Ashby and Townsend (1980, p. 108).

Usually there are one or more additional factors that might
influence both A and B. Examples are the level of practice, the
particular stimulus, or whether the current stimulus repeats the
previous one. If we ignore the levels of such factors, then their
effects may cause the durations of A and B to covary, violating
stochastic independence. Thus, tests of Equation 1 must be applied
to subsets of data within which the levels of such “nuisance
factors” are fixed. For many experiments, such subsets may be
small. For the detection experiment described in the text, the
nuisance factor was ”session,” and, for each subject, the subsets
contained only 16 observations.

Ashby and Townsend (1980, p. 109) proposed testing Equation
1 by estimating the density functions dij(t) for each of the four RTij

sets, and determining whether the convolutions of d12(t) with d21(t)
and d11(t) with d22(t) are equal. It isn’t clear whether their method
could work with small subsets of data. The summation test (Rob-
erts & Sternberg, 1993) is simpler and more direct, and has been
used successfully with small subsets. The basic idea is simply to
add the observed RTs for Conditions 11 and 22, and for Conditions
12 and 21, within levels of the nuisance factors, to combine these
sums across those levels, and to compare the resulting distribu-
tions. No estimation of density functions is required.

Procedure

The procedure, which is fully documented by Roberts and
Sternberg (1993, Section 26.8) with examples, is as follows:

1. Partition each subject’s data into what are hoped to be
homogeneous subsets, that is, within levels of the nui-
sance factors.

2. For each of the subsets, indexed by k, sum the elements
of the cartesian products of RT11k with RT22k and of
RT12k with RT21k. (The cartesian product of sets S1 and
S2 of sizes n1 and n2 is the set of all n1 � n2 possible
pairs of their members.) This produces two sets of sums
for each data subset, one of which represents RT11k �
RT22k (the S11.22.k set) and the other of which represents
RT12k � RT21k (the S12.21.k set).

3. Before pooling these sets of sums across subsets, k, or
comparing the results across subjects, adjust these
sets by applying the same linear transformation to the
members of each pair, S11.22.k and S12.21.k, selecting
the transformations for each pair so that the mean of

their two medians and the mean of their two inter-
quartile ranges are the same across all pairs, k. Ap-
plication of the same transformation to the members
of each pair perserves any differences between them.
Call these normalized sets of sums S11.22.k

n and S12.21.k
n .

4. Pool each of the normalized sets of sums over levels,
k, to get S11.22

n and S12.21
n for each subject. Normaliza-

tion before pooling is based on the belief that sys-
tematic failures of the test are more likely to occur at
corresponding quantiles of the pair of distributions
than at corresponding RTs.

5. The distributions of the sums S11.22
n and S12.21

n can now
be compared. Because the prediction is that they
should be identical, within sampling error, any mea-
sures of these distributions can be used, including
ones, such as L-moments or other measures that
depend on order statistics, which are less subject to
the influence of extreme observations than are the
variances or higher moments of the distributions. One
possibility is to compute a pair of such distributions
for each subject, determine the means over subjects
of the measures of interest, and to estimate sampling
error from their between-subjects variability.

Application to the Detection Data

This procedure was applied to the data discussed in the text. Let
the distributions of S12.21

n and S11.22
n be denoted “Lb�Sd” and

“Sb�Ld,” respectively, indicating the pairs of conditions for which
RTs were summed. Values of four L-statistics of these “summation
distributions” are shown in Table A1. The differences are very
small, especially when compared to the systematic differences
shown in Table 1 among the component distributions. This result
confirms the hypothesis of selective influence of foreperiod and
intensity on sequential processes (stages) with stochastically inde-
pendent durations.

(Appendix continues)

Table A1
Summation Test L-Statistics: Means Over Five Subjects

Statistic 
1 (ms) 
2 (ms) �3 �4

Mean for Lb�Sd 444.65 18.13 .150 .171
Mean for Sb�Ld 444.78 18.01 .160 .177
Difference .13 �.12 .010 .006
SE of difference 1.23 .96 .039 .025

Note. Distributions Lb�Sd and Sb�Ld were determined for each of the
five subjects. From these distributions, L-statistics and their differences
were computed for each subject. “SE” is the standard error of the mean
difference, based on between-subject variation.
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Further information about the relation between the Sb�Ld and
Lb�Sd distributions is shown in Figure A1. Panel A shows how
close to identical they are. For comparison, Panel B shows the

difference between the two most different component distribu-
tions (also compared in Figure 2 of the text), plotted in the same
way.
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Figure A1. Distribution differences with � SE curves. A. Mean differences between summation distributions
Sb�Ld and Lb�Sd. B. Mean differences between component distributions Sb and Lb.
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