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Abstract

In a two-stage procurement model, we compare two contracting schemes: bundling

and unbundling. They differ in whether two sequential tasks of investment and ser-

vice provision are bundled or not in the auction. We show that while unbundling

causes underinvestment in cost reduction and bundling causes the ex post ineffi-

ciency of trade, each scheme imposes some forms of risk on the suppliers. The

comparative statics results show that as the investment is more costly and/or a

common cost component is more risky, bundling becomes less attractive to both

the buyer and society.
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1 Introduction

Governments delegate the provision of a wide range of public infrastructures to the private

sectors. These infrastructures consist of physical facilities (e.g. transportation, school,

hospital) and public services (e.g. road maintenance, education, medical service). The

government, which is responsible for the use of tax revenues, must find the efficient way

of procurement.

An essential aspect of the infrastructure provision is that the process has a multi-stage

feature. A public facility is designed, built, and operated for the purpose of delivering

the associated service to people. The sequential process inevitably involves some issues

concerning efficiency. The private company’s investment in the design specifications or

the building embodying innovative ideas can reduce costs in the subsequent stages. Thus,

the public authority should induce the company to invest efficiently. On the other hand,

the exact amount of cost is estimated only at the later stage, depending on exogenous

factors such as the availability of resources or technological changes, and thus is uncertain

at the outset. Then, for each task, the public authority must find a company which can

perform the task at the least cost. Furthermore, the risk of construction or operation cost

should be shared between the public authority and private company in the most efficient

way.

As a way of procuring public infrastructures, public-private partnerships (PPPs) have

become increasingly popular (Yescombe, 2007; OECD, 2008). One distinctive feature of

PPPs is that a private party organized by some companies is responsible for performing

many tasks such as design, construction, and operation under the long-term contract. On

the other hand, in a way of traditional procurement, these sequential tasks are separated.

In the case of construction, the scheme of design-build corresponds to PPPs, and that
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of design-bid-build corresponds to traditional procurement. Moreover, regardless of the

scheme, the public procurement is often conducted through competitive bidding under

the law (e.g. the Federal Acquisition Rules in the United States).

Our aim is to discover the factors affecting the optimal choice between bundling and

unbundling. The two schemes differ in whether two sequential tasks of investment and

service provision are bundled or not in the auction. We consider a two-stage model.

A risk-neutral buyer must procure one unit of service (construction or operation of the

facility) from one of risk-averse suppliers. Each supplier’s production cost is determined

by three elements: the (cost-reducing) investment, his private parameter and a common

parameter. After the investment is made, each supplier’s private parameter is privately

known to him, and the common parameter is commonly known to all suppliers. It should

be emphasized that no supplier initially knows these parameter values. Thus, there are

risks of production costs. Each auction is held in a first-price format. A winner is awarded

a fixed-price contract.

The main results show that the buyer and the society face the tradeoff which involves

three factors: the ex post efficiency of trade, investment incentives, and risk sharing.

First, unbundling allows the buyer to select the most efficient supplier, whereas bundling

does not. Second, unbundling causes underinvestment relative to bundling. Thus, as

the investment is more costly, bundling becomes relatively less attractive. Finally, each

scheme imposes some forms of risk on the suppliers. The scheme of bundling exposes a

winner to the risk of production cost. Although one may expect that the suppliers under-

take less risks under unbundling, the scheme entails the risk associated with competition.

On the other hand, the competition under unbundling can transfer the risk of common

cost from the risk-averse suppliers to the risk-neutral buyer. Therefore, as the common
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cost is more risky, bundling becomes relatively less attractive.

A number of articles have addressed the issues of bundling decision in the context

of PPPs. The main question is how each scheme of bundling and unbundling (possibly

with an ownership structure of the facility) affects the suppliers’ incentives for various

kinds of investments. The literature can be classified into two categories according to

the approach. The first one is the incomplete contract approach. In this strand, both

the investment and resulting outcome (e.g. production cost) are assumed to be unverifi-

able. Hart (2003), who develops a leading model, shows that bundling provides stronger

incentives for the cost-reducing investments than unbundling, at the expense of quality.

In the experiment, Hoppe et al. (2011) find support for the theoretical prediction. For

other studies, see Bennett and Iossa (2006), and Chen and Chiu (2010).

The second one is the complete contract approach. There are few studies which

address risk-sharing issues, apart from Martimort and Pouyet (2008), and Li and Yu

(2011); see also Schmitz (2005), Maskin and Tirole (2008), and Hoppe and Schmitz

(2010). Martimort and Pouyet (2008) consider the quality-enhancing investment which

reduces or increases the production cost, in an environment where contracts contingent

on the production cost (and the quality level of the facility) are feasible. They show that

the optimal bundling decision depends on the investment externality on the production

cost. In contrast, Li and Yu (2011) explicitly consider an auction model. They examine

how the bundling decision is affected by the externality of the first task and the intensity

of competition (i.e. the number of suppliers). In the models of Martimort and Pouyet

(2008) and Li and Yu (2011), the risks are shared between the buyer and supplier by

writing performance contracts, as in standard moral-hazard models.

Although our model is close to that of Li and Yu (2011), there are two significant
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differences. First, we examine how the risks are shared in each scheme when the produc-

tion cost is unverifiable. The point is that without relying on cost-sharing contracts, the

risk of common cost (not private cost) can be effectively transferred to the buyer through

competition under unbundling. Notice that all suppliers’ (estimated) production costs

are equally affected by the common parameter. Second, we introduce two kinds of risks

of production cost (i.e. private and common parameters). In the model of Li and Yu

(2011), there is no common cost parameter. With these parameters, it becomes clear

what kind of risks in public procurement encourage the choice of each scheme. This has

important policy implications. We will discuss the issue in Section 6.

The remainder of the paper is organized as follows. Section 2 presents the model.

Sections 3 and 4 characterize the equilibrium under each scheme. Section 5 gives the

comparative statics results which show when each scheme becomes more attractive to the

buyer and society than the other. Section 6 concludes with a summary and discussion.

All proofs are in the Appendix.

2 The model

Consider a buyer who must procure one unit of service from one of n suppliers. The

buyer is risk-neutral. Each supplier i ∈ N ≡ {1, ..., n} is risk-averse, and has a CARA

utility function u(π) = 1− exp(−rπ), where π ∈ R is a profit from trade and r > 0 is his

coefficient of absolute risk aversion.

A supplier i’s (production) cost of service provision is given by c(a, θi, ω), where

a ∈ R+ is the investment level, θi ∈ [θ, θ̄] is the supplier i’s private parameter, and

ω ∈ [ω, ω̄] is a common parameter, which is identical across suppliers. We call the latter

two variables the risk of production cost. We assume that (θ1, ..., θn, ω) are independent
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random variables, and the cumulative distribution functions of θi and ω are respectively

given by F and G, with F ′ = f > 0.1 For convenience, let θ(n) ≡ min{θ1, ..., θn},

F(n)(θ) ≡ 1 − (1 − F (θ))n and f(n)(θ) ≡ n(1 − F (θ))n−1f(θ) denote the lowest cost

parameter, the cumulative distribution function and the probability density function of

θ(n), respectively. A supplier i incurs a cost ψ(a) if he invests a. The buyer’s valuation

for the service is v > 0. Thus, all suppliers are ex ante symmetric. We make the following

assumptions.

Assumption 1. c : R+ × [θ, θ̄] × [ω, ω̄] → R+ is twice continuously differentiable in a,

∂c
∂a
< 0, ∂2c

∂a2
≥ 0, continuous and increasing in θi.

Assumption 2. If c(a, θi, ω) > c(a, θ′i, ω
′), then − ∂c

∂a
(a, θi, ω) ≥ − ∂c

∂a
(a, θ′i, ω

′).

Assumption 3. ψ : R+ → R+ is twice continuously differentiable, d
2ψ
da2

> 0, dψ
da
(0) ≤ 0 and

lima→∞
dψ
da
(a) = ∞.

Assumption 1 says that the investment reduces each supplier’s production cost. As-

sumption 2, which means that a supplier with higher production cost can enjoy a greater

benefit of ex ante investment in a weak sense, will play a key role in the analysis to

yield clear-cut results. For instance, Assumptions 1 and 2 are satisfied by c(a, θi, ω) =

(θi+ω)/c̄(a) or c(a, θi, ω) = θi+ω− c̄(a) with an appropriate function c̄(·). Assumption

3 allows for the possibility that the investment cost is decreasing when the investment

levels are low. This occurs if, for example, ψ(a) = ψ̄(a)− a is a total cost of investment;

the term −a means that the investment also reduces the total cost of the task.

There are two feasible contracting schemes: bundling and unbundling. Under bundling,

the buyer bundles the two sequential tasks of investment and service provision, and awards

a contract for both tasks to a single supplier via an auction. Under unbundling, the buyer

1We say that f > 0 if f(θi) > 0 for all θi. We use the same notation for other functions.
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separates those tasks, and sequentially awards a contract for each task via an auction.

Each auction is held in a first-price sealed-bid format; a supplier j ∈ N wins only if his

bid pj ∈ R+ is the lowest among (p1, ..., pn).
2 The winner j must perform each task in

exchange for a fixed payment pj.

The game proceeds as follows. At date 0, the buyer chooses either bundling or un-

bundling. At date 1, each supplier i ∈ N (simultaneously and independently) submits a

bid p1i ∈ R+ in the first-stage auction. At date 2, a winner j in the first-stage auction

chooses an investment level a ∈ R+. At date 3, (θ1, ..., θn, ω) are realized; in the scheme

of bundling, the game then ends. At date 4, only in the scheme of unbundling, each

supplier i ∈ N submits a bid p2i ∈ R+ in the second-stage auction; the game then ends.

The player payoffs are defined as follows. When the game ends at date 3 under

bundling, a winner j with his bid p1j obtains u(p
1
j −ψ(a)− c(a, θj, ω)), the other suppliers

obtain u(0) = 0, and the buyer obtains v − p1j . When the game ends at date 4 under

unbundling, a winner j in the first-stage auction obtains u(p1j − ψ(a) − πj), the other

suppliers obtain u(πi), and the buyer obtains v − (p1j + p2k); (p
1
j , p

2
k) are winning prices

in the auctions, and πi is the supplier i(∈ N)’s profit in the second-stage auction, where

πi = p2i − c(a, θi, ω) if i wins (i = k) and πi = 0 if i loses (i ̸= k).

The information structure is as follows. The buyer’s choice of scheme and the identity

of the winner in the first-stage auction become common knowledge among all players.

The realized values of θi and c(a, θi, ω) become the supplier i’s private information, and

that of ω becomes common knowledge among all suppliers. No supplier can observe the

other suppliers’ decisions. However, the winner’s investment level a is commonly known

to suppliers at date 3 because the assumption ∂c/∂a < 0 implies that each supplier

2We assume that if there is a tie, then each supplier submitting the lowest bid wins with equal
probability. All results hold for any other tie-breaking rule.
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exactly knows the level a by his production cost and realized cost parameters.

Each player’s (pure) strategy is defined in a standard way. The buyer’s strategy is

a choice of contracting scheme. Each supplier i’s strategy is a triple (p1i , ai, p
2
i ), where

p1i : {bundling, unbundling} → R+ is a bidding strategy in the first-stage auction, ai :

{bundling, unbundling}×R+ → R+ is a choice of investment level conditional on winning,

and p2i : R+ × N × R+ × [θ, θ̄] × [ω, ω̄] → R+ (∋ p2i (p
1
i , j, a, θi, ω) where j is a winner in

the first-stage auction) is a bidding strategy in the second-stage auction. In the following

sections, we explore the (pure strategy) perfect Bayesian equilibrium of the game. Since

(θ1, ..., θn, ω) are independent, no supplier updates his belief about the other suppliers’

types in equilibrium; we also assume that this is the case in any off-equilibrium path.

We assume that the investment level a and the realized value of ω are unverifiable. If

the buyer can initially offer a contract in which prices are contingent on the investment

level a and the realized values of (θ1, ..., θn, ω), then the efficient outcome is realized: (i)

The buyer induces an arbitrary supplier i to choose the efficient investment level ã, which

minimizes expected total cost ψ(a) + E[c(a, θ(n), ω)].
3 (ii) Given the realized values of

(θ1, ..., θn, ω), the buyer pays c(ã, θ(n), ω) to a supplier with the lowest private parameter

θ(n), who provides the service. The buyer then obtains the first-best (expected) utility

v − {ψ(ã) + E[c(ã, θ(n), ω)]}.

3 Bundling

In this section, we characterize the equilibrium in the subgame after the buyer has chosen

bundling. We apply backward induction.

By investing a, a winner i in the first-stage auction obtains the expected utility

3In this paper, E[·] represents the expectation operator of random variables.

8



E[u(p1i − ψ(a) − c(a, θi, ω))]. The certainty equivalent which gives the same utility to

the winner i is given by

p1i − ψ(a)− E[c(a, θi, ω)]− ρ∗(a), (1)

where ρ∗(a) = 1
r
lnE[exp(rc(a, θi, ω))] − E[c(a, θi, ω)] > 0 is his risk premium. We first

examine the effect of the investment on the risk premium.

Lemma 1. dρ∗

da
(a) ≤ 0 for all a.

The lemma states that a winner’s risk premium is nonincreasing in his investment.

This result depends on Assumption 2. With this assumption, the winner’s investment

has an effect to decrease the riskiness of production cost, and thus to decrease his risk

premium. We will use this lemma to compare the equilibrium investment level with the

efficient level.

The next proposition characterizes the equilibrium under bundling. Now, the social

welfare in equilibrium is defined as the buyer’s expected utility plus the sum of each sup-

plier’s certainty equivalent profit which gives the same utility as the equilibrium expected

utility to the supplier.

Proposition 1. Under bundling, any equilibrium is characterized as follows.

(i) At least two suppliers submit the same bid p1∗ = ψ(a∗) + E[c(a∗, θi, ω)] + ρ∗(a∗), and

the other suppliers submit bids higher than p1∗. A winner i always chooses the investment

level a∗ determined by

dψ

da
(a∗) = −E

[
∂c

∂a
(a∗, θi, ω)

]
− dρ∗

da
(a∗). (2)

(ii) a∗ ≥ ã.
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(iii) The buyer’s utility EU∗
B, each supplier i’s expected utility EU∗

i , and the social welfare

W ∗ are respectively given by

EU∗
B = v − {ψ(a∗) + E[c(a∗, θi, ω)] + ρ∗(a∗)} ,

EU∗
i = 0,

W ∗ = v − {ψ(a∗) + E[c(a∗, θi, ω)] + ρ∗(a∗)} .

This proposition identifies some properties of bundling. First, the equilibrium invest-

ment level a∗ is higher than the efficient level ã. As in the first-order condition (2), a

winner chooses the investment level to equate the marginal effects. Lemma 1 then implies

that with the positive effect on the risk premium, the winner has an additional incentive

to invest. Moreover, in contrast to the efficient outcome, the winner must provide the

service even if his production cost is extremely high. Assumption 2 then implies that

this contractual obligation increases the winner’s incentive. Notice that overinvestment

by the winner is efficient provided that he bears all the risk of production cost. This fact

partially supports the argument of OECD (2008) that risk must be transferred to the

party best able to carry it.

Second, the buyer’s utility is the same level as the social welfare. This is because each

supplier has no private information in the first-stage auction, and thus he cannot earn

any rent.

Finally, the scheme of bundling involves two types of costs to both the buyer and

society. The first one is the risk premium for the risk of production cost. Each supplier

adds the risk premium to his bid. The second one is an efficiency loss from forgoing an

opportunity to switch to a more efficient supplier. This is because the buyer commits not

to switch suppliers under bundling.
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4 Unbundling

In this section, we characterize an equilibrium in the subgame after the buyer has chosen

unbundling. We apply backward induction.

The following lemma characterizes a symmetric equilibrium in the second-stage auc-

tion, in which all suppliers use the same bidding strategy. This result is based on Holt

(1980).

Lemma 2. Under unbundling, given the investment level a and the realized value of ω,

the following bidding strategy p2(a, ·, ω) and the suppliers’ belief F constitute a symmetric

equilibrium in the second-stage auction:

p2(a, θi, ω) = −1

r
lnEθ(n−1)

[exp(−rc(a, θ(n−1), ω)) | θ(n−1) > θi]. (3)

In the following analysis, we focus on this symmetric equilibrium in the second-stage

auction. This lemma has three implications. First, this bidding strategy is significantly

affected by the information structure of the game. We can easily show that p2(a, θi, ω) >

c(a, θi, ω). This is due to the “shading behavior” of the supplier i, who has private

information about his private parameter θi. On the other hand, a common parameter ω

is common knowledge among all suppliers, so that there is no room for shading. This

fact will become clearer in Proposition 4. Second, the equilibrium bidding strategy p2(·)

is independent of the identity of the winner j in the first-stage auction. This is because

the winner j’s CARA utility function guarantees the absence of wealth effect, and thus

his bidding behavior is independent of p1j and his sunk investment cost ψ(a). Third, the

most efficient supplier wins because the equilibrium bidding strategy p2(·) is increasing

in θi.

We now examine the effect of the investment on the bidding strategy in the second-
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stage auction.

Lemma 3. ∂p2

∂a
(a, θi, ω) ≤ ∂c

∂a
(a, θi, ω) < 0 for all a, θi and ω.

The lemma states that each supplier’s bid in the second-stage auction is decreasing

in a winner’s investment in the first-stage. This is because the winner’s cost-reducing

investment reduces all suppliers’ production costs, and thus induces aggressive bidding

by all of them. Moreover, the marginal effect is larger than that of cost reduction. As

is well known in first-price auction models, a supplier i with θi computes his equilibrium

bid by estimating the second-lowest production cost conditional on his parameter θi

being the lowest; this fact is shown in (3). In short, the supplier i cares about more

inefficient suppliers’ production costs. Then, the statement ∂p2/∂a ≤ ∂c/∂a follows from

both the assumption that c is increasing in θi and Assumption 2 because suppliers with

higher parameters than θi can enjoy greater benefits of cost-reducing investment than the

supplier i.

By investing a, a winner i in the first-stage auction obtains the expected utility E[(1−

F(n−1)(θi))u(p
1
i − ψ(a) + p2(a, θi, ω)− c(a, θi, ω)) + F(n−1)(θi)u(p

1
i − ψ(a))]; the first term

in the expectation corresponds to the case where the supplier i also wins the second-

stage auction, and the second term corresponds to the case where he loses. The certainty

equivalent which gives the same utility to the winner i in the first-stage auction is given

by

p1i − ψ(a) + E[(1− F(n−1)(θi))(p
2(a, θi, ω)− c(a, θi, ω))]− ρ∗∗(a), (4)
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where

ρ∗∗(a) =
1

r
lnE[(1− F(n−1)(θi)) exp(−r(p2(a, θi, ω)− c(a, θi, ω))) + F(n−1)(θi)]

+ E[(1− F(n−1)(θi))(p
2(a, θi, ω)− c(a, θi, ω))]

> 0 (5)

is his risk premium.

The next proposition characterizes an equilibrium under unbundling.

Proposition 2. Under unbundling, there exists an equilibrium characterized as follows.

(i) At least two suppliers submit the same bid p1∗∗ = ψ(a∗∗) in the first-stage auction, and

the other suppliers submit bids higher than p1∗∗. A winner i always chooses the investment

level a∗∗ which satisfies

dψ

da
(a∗∗) ≥

E
[
∂π
∂a
(a∗∗, θi, ω)(1− F(n−1)(θi)) exp(−rπ(a∗∗, θi, ω))

]
E[(1− F(n−1)(θi)) exp(−rπ(a∗∗, θi, ω)) + F(n−1)(θi)]

, (6)

where π(a, θi, ω) = p2(a, θi, ω)− c(a, θi, ω). All suppliers follow the bidding strategy p2(·)

in the second-stage auction defined in Lemma 2.

(ii) ã > a∗∗.

(iii) The buyer’s expected utility EU∗∗
B , each supplier i’s expected utility EU∗∗

i , and the

social welfare W ∗∗ are respectively given by

EU∗∗
B = v −

{
ψ(a∗∗) + E[c(a∗∗, θ(n), ω)] + nE[(1− F(n−1)(θi))π(a

∗∗, θi, ω)]
}
,

EU∗∗
i = u(E[(1− F(n−1)(θi))π(a

∗∗, θi, ω)]− ρ∗∗(a∗∗)),

W ∗∗ = v −
{
ψ(a∗∗) + E[c(a∗∗, θ(n), ω)] + nρ∗∗(a∗∗)

}
.

This proposition identifies some properties of unbundling. First, the equilibrium in-

vestment level a∗∗ is lower that the efficient level ã. Lemma 3 implies that the right-hand

side of (6) cannot be positive because the marginal effect of price reduction dominates
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that of cost reduction. Thus, the winner has no incentive to invest unless the investment

has a considerable cost-reduction effect in the first stage (i.e. dψ(a)/da is sufficiently

negative for some investment levels).

Second, in contrast to bundling, the buyer’s utility is less than the social welfare. This

is because each supplier acquires private information about his private cost parameter

in the second-stage auction, and thus he can earn information rents. Notice that even

if a supplier loses in the first-stage auction, he can participate in the second-stage auc-

tion. Hence, each supplier’s reservation utility in the first-stage auction is endogenously

determined by the expected utility in the second-stage auction.

Finally, the scheme of unbundling involves two types of costs to the buyer and society.

The first one is the risk premium. Each supplier bears a fraction of the risk of production

cost because he wins with positive probability in the second-stage auction. Moreover, each

supplier must bear the risk associated with competition; the participation in the second-

stage auction entails the risk of auction outcome (i.e. winning or losing, and winning

price). The buyer must pay the premium indirectly because the expected information

rent E[(1−F(n−1)(θi))π(a
∗∗, θi, ω)] is greater than the risk premium ρ∗∗(a∗∗). The second

one is an efficiency loss from underinvestment. Actually, a winner in the first-stage auction

does not internalize the positive externality on the other suppliers.

5 Bundling versus unbundling

This section presents the main results. We compare the performance of bundling with

that of unbundling, by analyzing each equilibrium in Sections 3 and 4. We say that

bundling (unbundling) is socially desirable if W ∗ > W ∗∗ (W ∗ < W ∗∗). It is important to

emphasize that the buyer and the society face the tradeoff which involves three factors:
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the ex post efficiency of trade, investment incentives, and risk sharing.

First, we consider the issue of ex post efficiency of trade. The contractual flexibility of

unbundling allows the buyer to select the most efficient supplier, whereas the contractual

rigidity of bundling does not. The latter is a harmful effect of the buyer’s commitment

not to switch suppliers under bundling. Thus, with respect to the ex post efficiency of

trade, unbundling is superior to bundling. However, notice that the buyer is obliged to

pay the information rents to the suppliers, and thus cannot extract the full surplus under

unbundling.

Second, we consider the issue of investment incentives.

Corollary 1. a∗ ≥ ã > a∗∗. If dψ
da
(0) = 0, then a∗∗ = 0.

This corollary is an immediate consequence of Propositions 1 and 2. In the scheme of

bundling, a winner is responsible for providing the service in any state. Consequently, the

contractual obligation affords strong investment incentives to the winner. On the other

hand, in the scheme of unbundling, a winner in the first-stage auction has little incentive

to invest. This is because the investment induces the suppliers to bid aggressively, and

thus intensifies price competition in the second-stage auction. Without the cost-reducing

effect in the first stage, the winner makes no investment.

The next proposition provides the comparative statics with respect to the investment

cost.

Proposition 3. Assume that ψ(a) = (k + 1)ψ̄(a), where k ≥ 0 is a parameter of the

investment cost, and the function ψ satisfies Assumption 3 with ψ̄(0) = dψ̄(0)/da = 0.

Then, there exist thresholds k and k̄ such that (i) the buyer chooses bundling in equilibrium

for all k < k̄, and unbundling for all k > k̄, (ii) the socially desirable scheme is bundling

for all k < k, and unbundling for all k > k, and (iii) k ≤ k̄.
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Figure 1: Illustration of Proposition 3.

The intuition of Proposition 3 is simple. In the scheme of unbundling, a winner in the

first-stage auction has no incentive to invest because of the assumption dψ̄(0)/da = 0.

Both the buyer’s utility and social welfare under unbundling are thus independent of

whether the investment is costly or not. On the other hand, in the scheme of bundling, a

winner chooses the positive investment level. Therefore, as the investment is more costly

(i.e. k becomes greater), the scheme of bundling becomes less attractive to both the

buyer and society. Figure 1 illustrates this result.

Finally, we examine the issue of risk sharing. As analyzed in Sections 3 and 4, each

supplier must bear some forms of risk in either scheme. Under bundling, a winner un-

dertakes all the risk of production cost, which entails the risk premium ρ∗(a∗). Under

unbundling, the suppliers bear the risk associated with competition in the second-stage

auction (and a fraction of the risk of production cost), which entails the risk premia

nρ∗∗(a∗∗). Unfortunately, we cannot say which one is greater than the other. However,

we can obtain a noteworthy result by specifying the production cost function as follows.
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Suppose that a common cost parameter is additively separable from the other terms,

that is, c(a, θi, ω) = c̄(a, θi) + ω. Notice that the equilibrium bidding strategy in the

second-stage auction is then given by

p2(a, θi, ω) = −1

r
lnEθ(n−1)

[exp(−rc̄(a, θ(n−1))) | θ(n−1) > θi] + ω.

The cost of common component ω is thus compensated by the buyer through competition

regardless of its realized value. Then, in the scheme of unbundling, the risk of common

cost component is effectively transferred from the suppliers to the buyer. With this

specification, the next proposition provides the comparative statics with respect to the

riskiness of common cost component.

Proposition 4. Assume that c(a, θi, ω) = c̄(a, θi) + ω, and an increase in β ∈ [0, β̂] is

a mean-preserving spread of G(ω; β). Then, there exist thresholds β and β̄ such that (i)

the buyer chooses bundling in equilibrium for all β < β̄, and unbundling for all β > β̄,

(ii) the socially desirable scheme is bundling for all β < β, and unbundling for all β > β,

and (iii) β ≤ β̄.

Proposition 4 establishes the main result. As explained above, in the scheme of un-

bundling, no supplier undertakes the risk of common cost component, which is transferred

to the risk-neutral buyer. Both the buyer’s utility and social welfare under unbundling

are thus independent of the riskiness of common cost component. On the other hand, in

the scheme of bundling, a winner must undertake all the risk of production cost. There-

fore, as the common cost component is more risky in the sense of Rothschild and Stiglitz

(1970) (i.e. β becomes greater), the scheme of bundling becomes less attractive to both

the buyer and society. Figure 2 illustrates this result.
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First-best utility

EU∗

B
= W ∗

W ∗∗

EU∗∗

B

0 β

β β̄ β̂

Figure 2: Illustration of Proposition 4.

6 Concluding remarks

We have explored what factors affect the buyer’s optimal choice between bundling and

unbundling. The buyer (and the society) faces the tradeoff which involves three factors:

the ex post efficiency of trade, investment incentives, and risk sharing. The comparative

statics results show that as the investment is more costly and/or a common cost com-

ponent is more risky, bundling becomes relatively less attractive to both the buyer and

society. The interesting effect of unbundling on risk sharing is that although the common

cost parameter is unverifiable, this information is revealed through competition, so that

the risk can be transferred from the suppliers to the buyer. This effect improves risk

sharing.

It is now possible to answer the question what kind of risks encourage the choice

of each scheme; Yescombe (2007) classifies project risks into some categories (p. 246).

First, the increase in the riskiness of common cost parameter will encourage the choice
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of unbundling. We can give the following examples of the risk of common cost: the

uncertainty about a project scope, the uncertainty about ground conditions, and rapid

technological changes. Yescombe (2007) argues that those projects where technology

is changing rapidly are not suitable for PPPs (p. 27). Actually, the United Kingdom

abandoned the uses of PPPs for IT projects. Second, the increase in the riskiness of

private cost parameter may or may not encourage the choice of unbundling. We can give

the following examples of the risk of private cost: the uncertainty about the availability of

a company’s human and material resources. As we have shown, the scheme of unbundling

entails the risk associated with competition, which is affected by the riskiness of private

parameter. Thus, the effect of the riskiness on the public authority’s choice is ambiguous.

We make some final remarks. First, we discuss the assumption that a winner in the

first stage auction can participate in the second stage auction under unbundling. This

setting is different from other studies on PPPs. However, even if the winner is excluded

from the second stage auction, all our results are essentially unchanged. In this case, it

is clear that the winner has no incentive to invest unless the cost-reducing effect in the

first stage is positive.

Second, we discuss the issue of the buyer’s commitment. The crucial difference be-

tween bundling and unbundling is the buyer’s commitment. In particular, there is room

for Pareto improvement under bundling. Suppose now that under bundling, the buyer can

switch suppliers at date 4 by the first-price auction. Then, the equilibrium of bundling

is equivalent to that of unbundling. There may be another scenario. Suppose that under

bundling, the buyer allows a winner in the first-stage auction to hire a subcontractor in

the second stage. When the winner selects the subcontractor by the first-price auction,

the winner will undertake all the risk of common cost. Thus, our main result (Proposition
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4) will still hold.

Finally, we examine how cost-sharing contracts affect the result. Suppose now that

the production cost becomes verifiable after the service is provided. Then, some cost-

sharing contracts are feasible. Under bundling, the buyer faces a standard tradeoff in

moral hazard models. If the buyer compensates all the production cost, then a winner

makes no investment. If the winner bears all the production cost, then he bears all the

risk of production cost. Thus, the buyer optimally chooses the intermediate sharing level

so that the winner always bears a fraction of common cost. On the other hand, in the

scheme of unbundling, the risk of common cost can be transferred to the buyer, as in

Proposition 4. We leave this analysis for future research.
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Appendix

Proof of Lemma 1. Differentiating ρ∗ with respect to a yields

dρ∗

da
(a) =

E
[
∂c
∂a
(a, θi, ω) · exp(rc(a, θi, ω))

]
E[exp(rc(a, θi, ω))]

− E

[
∂c

∂a
(a, θi, ω)

]
= −

Cov
(
− ∂c
∂a
(a, θi, ω), exp(rc(a, θi, ω))

)
E[exp(rc(a, θi, ω))]

≤ 0;

the second equality follows from the formula for the covariance, and the inequality follows

from the fact that the covariance between two positively covarying variables is nonnega-

tive, together with Assumption 2.

Proof of Proposition 1. (i) A winner i chooses an investment level to maximize his ex-

pected utility E[u(p1i −ψ(a)−c(a, θi, ω))], which is equal to the utility level u(p1i −ψ(a)−

E[c(a, θi, ω)] − ρ∗(a)) from the certainty equivalent (1). Note that the expected utility

E[u(p1i −ψ(a)− c(a, θi, ω))] is strictly concave in a because the second derivative is given

by E[u′′(π) · (∂π/∂a)2 + u′(π) · ∂2π/∂a2] < 0, where π = p1i − ψ(a) − c(a, θi, ω); thus,

u(p1i − ψ(a)− E[c(a, θi, ω)]− ρ∗(a)) is also strictly concave in a. Hence, the equilibrium

investment level a∗ is uniquely determined by the first-order condition

dψ

da
(a∗) = −E

[
∂c

∂a
(a∗, θi, ω)

]
− dρ∗

da
(a∗).

If a supplier i who submits a bid p1i wins the first-stage auction, then he can obtain

the expected utility E[u(p1i−ψ(a∗)−c(a∗, θi, ω))] in equilibrium. The certainty equivalent

is p1i − ψ(a∗)− E[c(a∗, θi, ω)]− ρ∗(a∗). The first-stage auction is equivalent to the game

of Bertrand competition among symmetric suppliers. Hence, in any equilibrium, there

exist at least two suppliers who submit the same bid p1∗ = ψ(a∗)+E[c(a∗, θ, ω)]+ρ∗(a∗),
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which makes each supplier indifferent between winning and losing, and the other suppliers

submit bids higher than p1∗.

(ii) First, the necessary and sufficient first-order condition for the efficient investment

level ã = argmin{ψ(a) + E[c(a, θ(n), ω)]} is given by

dψ

da
(ã) = −E

[
∂c

∂a
(ã, θ(n), ω)

]
. (7)

It follows from the assumption dψ
da
(0) ≤ 0 that ã > 0.

Second, the necessary and sufficient first-order condition for the equilibrium invest-

ment level a∗ under bundling is given by (2) in Proposition 1. The right-hand side of (2)

satisfies the following inequalities:

−E
[
∂c

∂a
(a∗, θi, ω)

]
− dρ∗

da
(a∗) ≥ −E

[
∂c

∂a
(a∗, θi, ω)

]
≥ −E

[
∂c

∂a
(a∗, θ(n), ω)

]
; (8)

the first inequality follows from Lemma 1, and the second inequality follows from the fact

that the distribution function F of θi first-order stochastically dominates that of θ(n),

together with Assumptions 1 and 2 (see, for example, Appendix B of Krishna (2009)). It

follows from (2), (7), (8) and the convexity of ψ that a∗ ≥ ã.

(iii) The buyer’s equilibrium utility is given by

EU∗
B = v − p1∗ = v − {ψ(a∗) + E[c(a∗, θ, ω)] + ρ∗(a∗)} .

Since each supplier i who submits p1∗ wins with equal probability under the tie-breaking

rule, his equilibrium expected utility is given by

EU∗
i =

1

m
u(p1∗ − ψ(a∗)− E[c(a∗, θi, ω)]− ρ∗(a∗)) +

m− 1

m
u(0) = 0,

where m ∈ {2, ..., n} is the number of suppliers who submit p1∗. Each supplier who

submits a higher bid than p1∗ receives zero payoff. Finally, the social welfare is given by

W ∗ = EU∗
B + n · u−1(EU∗

i ) = v − {ψ(a∗) + E[c(a∗, θ, ω)] + ρ∗(a∗)} .
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Proof of Lemma 2. We must show that for all a and ω, a supplier i with θ cannot gain by

deviating from a bid p2(a, θ, ω) when the other suppliers follow the strategy p2(·). Note

that p2(·) is increasing and continuous in θ.

First, we can assume without loss of generality that no supplier submits a bid p ̸∈

[p2(a, θ, ω), p2(a, θ̄, ω)]. If a supplier i bids p > p2(a, θ̄, ω), then he loses with probability

one; by bidding p2(a, θ̄, ω), he can obtain the same utility. If a supplier i bids p <

p2(a, θ, ω), then he wins with probability one; by bidding p2(a, θ, ω), he can win with

probability one and obtain higher utility.

Second, we show that it is optimal for the supplier i with θ to bid p = p2(a, θ, ω).

There are two cases to consider: The supplier i wins or loses in the first-stage auction.

If the supplier i is different from the winner in the first-stage auction, then his expected

utility from bidding p2(a, θ̂, ω) is given by

(1− F(n−1)(θ̂))u(p
2(a, θ̂, ω)− c(a, θ, ω)) + F(n−1)(θ̂)u(0)

= (1− F(n−1)(θ̂))

[
1− exp(rc(a, θ, ω))

∫ θ̄

θ̂

exp(−rc(a, s, ω))
f(n−1)(s)

1− F(n−1)(θ̂)
ds

]

= (1− F(n−1)(θ̂))

∫ θ̄

θ̂

[1− exp(−r(c(a, s, ω)− c(a, θ, ω)))]
f(n−1)(s)

1− F(n−1)(θ̂)
ds

=

∫ θ̄

θ̂

u(c(a, s, ω)− c(a, θ, ω))f(n−1)(s)ds;

the first equality is obtained by substituting p2(a, θ̂, ω), and the other equalities follow

from simple calculations. Thus, the difference between the expected utility from bidding

p2(a, θ, ω) and that from bidding p2(a, θ̂, ω) ̸= p2(a, θ, ω) is given by

∫ θ̂

θ

u(c(a, s, ω)− c(a, θ, ω))f(n−1)(s)ds > 0;

the inequality follows from the assumption that c(a, θi, ω) is increasing in θi.
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If the supplier i is the winner with a winning price p1i in the first-stage auction, then

his expected utility from bidding p2(a, θ̂, ω) is given by

(1− F(n−1)(θ̂))u(p
1
i − ψ(a) + p2(a, θ̂, ω)− c(a, θ, ω)) + F(n−1)(θ̂)u(p

1
i − ψ(a))

= 1− exp(−r(p1i − ψ(a)))
{
(1− F(n−1)(θ̂)) exp(−r(p2(a, θ̂, ω)− c(a, θ, ω))) + F(n−1)(θ̂)

}
= 1 + exp(−r(p1i − ψ(a)))

{
(1− F(n−1)(θ̂))

[
1− exp(−r(p2(a, θ̂, ω)− c(a, θ, ω)))

]
− 1

}
= 1 + exp(−r(p1i − ψ(a)))

{∫ θ̄

θ̂

u(c(a, s, ω)− c(a, θ, ω))f(n−1)(s)ds− 1

}
;

the third equality is obtained in the same way as above, and the other equalities follow

from simple calculations. Thus, the difference between the expected utility from bidding

p2(a, θ, ω) and that from bidding p2(a, θ̂, ω) ̸= p2(a, θ, ω) is given by

exp(−r(p1i − ψ(a)))

{∫ θ̂

θ

u(c(a, s, ω)− c(a, θ, ω))f(n−1)(s)ds

}
> 0.

Therefore, it is optimal for the supplier i with θ to bid p = p2(a, θ, ω), no matter

whether he wins or loses in the first-stage auction.

Proof of Lemma 3. Differentiating p2 with respect to a yields

∂p2

∂a
(a, θi, ω) =

Eθ(n−1)

[
∂c
∂a
(a, θ(n−1), ω) · exp(−rc(a, θ(n−1), ω)) | θ(n−1) > θi

]
Eθ(n−1)

[
exp(−rc(a, θ(n−1), ω)) | θ(n−1) > θi

]
≤

∂c
∂a
(a, θi, ω) · Eθ(n−1)

[
exp(−rc(a, θ(n−1), ω)) | θ(n−1) > θi

]
Eθ(n−1)

[
exp(−rc(a, θ(n−1), ω)) | θ(n−1) > θi

]
=
∂c

∂a
(a, θi, ω) < 0;

the first inequality follows from both the assumption that c is increasing in θi and As-

sumption 2.

Proof of Proposition 2. We show that the subgame has the equilibrium characterized in

the proposition, by backward induction.
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(i) Lemma 2 implies that p2(·) can be an equilibrium bidding strategy in the second-

stage auction.

A winner i in the first-stage auction chooses an investment level to maximize his

expected utility

E[(1− F(n−1)(θi))u(p
1
i − ψ(a) + p2(a, θi, ω)− c(a, θi, ω)) + F(n−1)(θi)u(p

1
i − ψ(a))],

which is equal to the utility level

u(p1i − ψ(a) + E[(1− F(n−1)(θi))(p
2(a, θi, ω)− c(a, θi, ω))]− ρ∗∗(a))

from the certainty equivalent (4). Differentiating the certainty equivalent (4) yields

E

[
(1− F(n−1)(θi))

(
∂p2

∂a
(a, θi, ω)−

∂c

∂a
(a, θi, ω)

)]
− dρ∗∗

da
(a)− dψ

da
(a).

If this first-order derivative is greater than zero at a = 0, then there is an interior solution

a∗∗ determined by (6) with equality. Otherwise, either a corner solution a∗∗ = 0 or an

interior solution exists.

If a supplier i who submits a bid p1i wins the first-stage auction, then he can ob-

tain the expected utility E[(1− F(n−1)(θi))u(p
1
i − ψ(a∗∗) + p2(a∗∗, θi, ω)− c(a∗∗, θi, ω)) +

F(n−1)(θi)u(p
1
i −ψ(a∗∗))] in equilibrium. The certainty equivalent is p1i −ψ(a∗∗) +E[(1−

F(n−1)(θi))(p
2(a∗∗, θi, ω)− c(a∗∗, θi, ω))]−ρ∗∗(a∗∗). The first-stage auction is equivalent to

the game of Bertrand competition among symmetric suppliers. However, note that even

if the supplier i loses the first-stage auction, he can obtain the expected utility

E[(1− F(n−1)(θi))u(p
2(a∗∗, θi, ω)− c(a∗∗, θi, ω)) + F(n−1)(θi)u(0)]

in the second-stage auction; the certainty equivalent is given by

E[(1− F(n−1)(θi))(p
2(a∗∗, θi, ω)− c(a∗∗, θi, ω))]− ρ∗∗(a∗∗).
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Hence, in any equilibrium, there exist at least two suppliers who submit the same bid

p1∗∗ = ψ(a∗∗), which makes each supplier indifferent between winning and losing, and the

other suppliers submit bids higher than p1∗∗.

(ii) We show that ã > a∗∗. If there exists a corner solution a∗∗ = 0, then ã > a∗∗ = 0.

If there exists an interior solution a∗∗ > 0, then a∗∗ is determined by (6) with equality in

Proposition 2. The first-order condition can be rewritten as

dψ

da
(a) =

E
[(

∂p2

∂a
(a, θ, ω)− ∂c

∂a
(a, θ, ω)

)
(1− F(n−1)(θ)) exp(−rπ(a, θ, ω))

]
E
[
(1− F(n−1)(θ)) exp(−rπ(a, θ, ω)) + F(n−1)(θ)

]
≤ 0; (9)

the inequality follows from Lemma 3. It then follows from (7) and (9) with the convexity

of ψ that ã > a∗∗.

(iii) Since in equilibrium the supplier with θ(n) wins the second-stage auction, the

buyer’s expected utility is EU∗∗
B = v − p1∗∗ − E[p2(a∗∗, θ(n), ω)]. It follows from (i)

that p1∗∗ = ψ(a∗∗). The expected payment in the second-stage auction is given by
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Eω[Eθ(n)
[p2(a∗∗, θ(n), ω)]]. Now, Eθ(n)

[p2(a∗∗, θ(n), ω)] can be rewritten as

Eθ(n)
[p2(a∗∗, θ(n), ω)]

= Eθ(n)

[
−1

r
lnEθ(n−1)

[exp(−rc(a∗∗, θ(n−1), ω)) | θ(n−1) > θ(n)]

]
= Eθ(n)

[c(a∗∗, θ(n), ω)]−
∫ θ̄

θ

c(a∗∗, s, ω)f(n)(s)ds

+

∫ θ̄

θ

−1

r
lnEθ(n−1)

[exp(−rc(a∗∗, θ(n−1), ω)) | θ(n−1) > s]f(n)(s)ds

= Eθ(n)
[c(a∗∗, θ(n), ω)]

+

∫ θ̄

θ

−1

r
lnEθ(n−1)

[exp(−r(c(a∗∗, θ(n−1), ω)− c(a∗∗, s, ω))) | θ(n−1) > s]f(n)(s)ds

= Eθ(n)
[c(a∗∗, θ(n), ω)]

−
∫ θ̄

θ

1

r
lnEθ(n−1)

[exp(−r(c(a∗∗, θ(n−1), ω)− c(a∗∗, s, ω))) | θ(n−1) > s]n(1− F(n−1)(s))f(s)ds

= Eθ(n)
[c(a∗∗, θ(n), ω)] + nEθi [(1− F(n−1)(θi))(p

2(a∗∗, θi, ω)− c(a∗∗, θi, ω))];

the first and fifth equalities follow from the definition of p2(·) in Lemma 2, and the fourth

equality follows from the definition of f(n). Thus, EU
∗∗
B is given by

EU∗∗
B = v −

{
ψ(a∗∗) + E[c(a∗∗, θ(n), ω)]

+ nE[(1− F(n−1)(θi))(p
2(a∗∗, θi, ω)− c(a∗∗, θi, ω))]

}
.

Since each supplier i who submits p1∗∗ wins the first-stage auction with equal proba-

bility under the tie-breaking rule, his equilibrium expected utility is given by

EU∗∗
i =

1

m
u(p1∗∗ − ψ(a∗∗) + E[(1− F(n−1)(θi))(p

2(a∗∗, θi, ω)− c(a∗∗, θi, ω))]− ρ∗∗(a∗∗))

+
m− 1

m
u(E[(1− F(n−1)(θi))(p

2(a∗∗, θi, ω)− c(a∗∗, θi, ω))]− ρ∗∗(a∗∗))

= u(E[(1− F(n−1)(θi))(p
2(a∗∗, θi, ω)− c(a∗∗, θi, ω))]− ρ∗∗(a∗∗)),

where m ∈ {2, ..., n} is the number of suppliers who submit p1∗∗. Each supplier who

submits a higher bid than p1∗∗ also obtains the same level of expected utility.
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Finally, the social welfare is given by

W ∗∗ = EU∗
B + n · u−1(EU∗∗

i ) = v −
{
ψ(a∗∗) + E[c(a∗∗, θ(n), ω)] + nρ∗∗(a∗∗)

}
.

Proof of Proposition 3. The proof consists of four steps: We show that (a) EU∗
B is con-

tinuous and decreasing in k, (b) both EU∗∗
B andW ∗∗ are independent of k, (c) EU∗

B = W ∗

for all k, limk→∞EU∗
B < EU∗∗

B < W ∗∗, and (d) the statements in the proposition follow

from (a)-(c).

(a) Since the equilibrium investment level a∗ under bundling depends on k, we denote

a∗ = a∗(k) and EU∗
B = EU∗

B(k). Now, the buyer’s equilibrium utility under bundling is

EU∗
B(k) = v −

{
(k + 1)ψ̄(a∗(k)) + E[c(a∗(k), θi, ω)] + ρ∗(a∗(k))

}
.

The assumption that both c(a, θi, ω) and ψ̄(a) are twice continuously differentiable in a

implies that a∗(k) is differentiable, and thus continuous in k. Thus, EU∗
B is continuous

in k. Using the envelope theorem, differentiating EU∗
B(k) with respect to k yields

dEU∗
B

dk
(k) = −ψ̄(a∗(k)) < 0.

Hence, EU∗
B(k) is decreasing in k.

(b) It follows from Corollary 1 that a∗∗ = 0. Since the investment cost is ψ(0) =

(k + 1)ψ̄(0) = 0 in equilibrium, both EU∗∗
B and W ∗∗ are independent of k.

(c) First, Proposition 1 states that EU∗
B(k) = W ∗(k) for all k. Second, it follows from

the first-order condition (2) that

lim
k→∞

a∗(k) = 0.
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This implies that the infimum of EU∗
B(k) is given by

lim
k→∞

EU∗
B(k) = v − {E[c(0, θi, ω)] + ρ∗(0)}

= v −
{
1

r
lnE[exp(rc(0, θi, ω))]

}
;

the second equality follows from the definition of ρ∗. The bracketed term satisfies the

following inequalities:

1

r
lnE[exp(rc(0, θi, ω))] > E[c(0, θi, ω)]

> E[c(0, θ(n), ω)]

= E

[
−1

r
ln exp(−rc(0, θ(n), ω))Eθ(n−1)

[1 | θ(n−1) > θ(n)]

]
> E

[
−1

r
lnEθ(n−1)

[exp(−rc(0, θ(n−1), ω)) | θ(n−1) > θ(n)]

]
= E[p2(0, θ(n), ω)];

the first inequality follows by Jensen’s inequality, the second inequality follows from the

fact that the distribution function F of θi first-order stochastically dominates that of θ(n),

together with Assumptions 1 and 2 (see, for example, Appendix B of Krishna (2009)),

and the last equality follows from the definition of p2(·). On the other hand, the buyer’s

equilibrium expected utility under unbundling is

EU∗∗
B = v −

{
p1∗∗ + E[p2(a∗∗, θ(n), ω)]

}
= v −

{
(k + 1)ψ̄(a∗∗) + E[p2(a∗∗, θ(n), ω)]

}
= v − E[p2(0, θ(n), ω)];

the third equality follows from ψ̄(a∗∗) = ψ̄(0) = 0. Therefore, we obtain that

lim
k→∞

EU∗
B(k) < EU∗∗

B .
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Third, it follows from Proposition 2 that W ∗∗ − EU∗∗
B = n · u−1(EU∗∗

i ) > 0. We thus

obtain EU∗∗
B < W ∗∗.

(d) There are three cases to consider.

First, suppose that W ∗∗ < EU∗
B(0). Then, it follows from (a)-(c) that there exist

thresholds k and k̄ such that the statements (i) and (ii) in the proposition hold, with

0 < k < k̄ <∞.

Second, suppose that EU∗∗
B < EU∗

B(0) ≤ W ∗∗. Then, it follows from (a)-(c) that

there exist thresholds k and k̄ such that the statements (i) and (ii) in the proposition

hold, with 0 = k < k̄ <∞.

Last, suppose that EU∗
B(0) < EU∗∗

B . Then, it follows from (a)-(c) that EU∗
B(k) <

EU∗∗
B and W ∗(k) < W ∗∗ for all k. By setting k = k̄ = 0, the statements (i) and (ii) in

the proposition hold.

Proof of Proposition 4. The proof proceeds in the same way as Proposition 3, and consists

of four steps: We show that (a) EU∗
B is decreasing in β, (b) both EU∗∗

B and W ∗∗ are

independent of β, (c) EU∗
B = W ∗ for all β, EU∗∗

B < W ∗∗ and (d) the statements in the

proposition follow from (a)-(c).

(a) Since the risk premium ρ∗(a∗) under bundling depends on β, we denote ρ∗(a∗) =

ρ∗(a∗; β) and EU∗
B = EU∗

B(β). Now, the buyer’s equilibrium utility under bundling is

EU∗
B(β) = v −

{
ψ(a∗) + E[c̄(a∗, θi)] +

∫ ω̄

ω

ωdG(ω; β) + ρ∗(a∗; β)

}
.

Since an increase in β represents a mean-preserving spread of G, the expected value of ω

is independent of β, but the risk premium ρ∗(a∗; β) is increasing in β. Hence, EU∗
B(β) is

decreasing in β.
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(b) First, the buyer’s equilibrium utility under unbundling is

EU∗∗
B

= v −
{
ψ(a∗∗) + E[c̄(a∗∗, θ(n))] +

∫ ω̄

ω

ωdG(ω; β)

+ nE[(1− F(n−1)(θi))(p
2(a∗∗, θi, ω)− (c̄(a∗∗, θi) + ω))]

}
= v −

{
ψ(a∗∗) + E[c̄(a∗∗, θ(n))] +

∫ ω̄

ω

ωdG(ω; β)

+ nE

[
(1− F(n−1)(θi))

(
−1

r
lnEθ(n−1)

[exp(−rc̄(a∗∗, θ(n−1))) | θ(n−1) > θi]− c̄(a∗∗, θi)

)]}
;

note that under the assumption c(a, θi, ω) = c̄(a, θi) + ω, the bidding strategy p2(a, θi, ω)

is now given by

p2(a, θi, ω) = −1

r
lnEθ(n−1)

[exp(−rc̄(a, θ(n−1))) | θ(n−1) > θi] + ω. (10)

Since an increase in β represents a mean-preserving spread of G, EU∗∗
B is independent of

β.

Second, it follows from (5) and (10) with the assumption c(a, θi, ω) = c̄(a, θi) + ω

that the risk premium ρ∗∗(a∗∗) under unbundling is independent of β; note that a∗∗ is

independent of β because the first-order condition (9) does not include ω. Hence, W ∗∗ is

also independent of β.

(c) Proposition 1 states that EU∗
B(β) = W ∗(β) for all β. In the same way as (a), we

can show that EU∗∗
B < W ∗∗.

(d) There are four cases to consider.

First, suppose that W ∗∗ ≤ EU∗
B(β̂). Then, it follows from (a)-(c) that EU∗

B(β) >

EU∗∗
B and W ∗(β) ≥ W ∗∗ for all β. By setting β = β̄ = β̂, the statements (i) and (ii) in

the proposition hold.

Second, suppose that EU∗∗
B ≤ EU∗

B(β̂) < W ∗∗. Then, it follows from (a)-(c) that
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there exist thresholds β and β̄ such that the statements (i) and (ii) in the proposition

hold, with 0 ≤ β < β̄ = β̂.

Third, suppose that EU∗
B(β̂) < EU∗∗

B < EU∗
B(0). Then, it follows from (a)-(c) that

there exist thresholds β and β̄ such that the statements (i) and (ii) in the proposition

hold, with 0 ≤ β < β̄ < β̂.

Last, suppose that EU∗
B(0) ≤ EU∗∗

B . Then, it follows from (a)-(c) that EU∗
B(β) ≤

EU∗∗
B and W ∗(β) < W ∗∗ for all β. By setting β = β̄ = 0, the statements (i) and (ii) in

the proposition hold.
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