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Abstract

In his 1963 PhD thesis, Wilson proposed the first sequential quadratic programming
(SQP) method for the solution of constrained nonlinear optimization problems. In the
intervening 48 years, SQP methods have evolved into a powerful and effective class
of methods for a wide range of optimization problems. We review some of the most
prominent developments in SQP methods since 1963 and discuss the relationship of
SQP methods to other popular methods, including augmented Lagrangian methods
and interior methods.

Given the scope and utility of nonlinear optimization, it is not surprising that
SQP methods are still a subject of active research. Recent developments in methods
for mixed-integer nonlinear programming (MINLP) and the minimization of functions
subject to differential equation constraints has led to a heightened interest in methods
that may be “warm started” from a good approximate solution. We discuss the role of
SQP methods in these contexts.

Key words. Large-scale nonlinear programming, SQP methods, nonconvex pro-
gramming, quadratic programming, KKT systems.
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1. Introduction

This paper concerns the formulation of methods for solving the smooth nonlinear pro-
grams that arise as subproblems within a method for mixed-integer nonlinear programming
(MINLP). In general, this subproblem has both linear and nonlinear constraints, and may
be written in the form

minimize
x∈Rn

f(x)

subject to ℓ ≤





x
Ax
c(x)



 ≤ u,

(1.1)

where f(x) is a linear or nonlinear objective function, c(x) is a vector of m nonlinear
constraint functions ci(x), A is a matrix, and l and u are vectors of lower and upper bounds.
Throughout, we assume that the number of variables is large, and that A and the derivatives
of f and c are sparse. The constraints involving the matrix A and functions ci(x) will
be called the general constraints; the remaining constraints will be called bounds. We
assume that the nonlinear functions are smooth and that their first and second derivatives
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2 Sequential quadratic programming methods

are available. An equality constraint corresponds to setting ℓi = ui. Similarly, a special
“infinite” value for ℓi or ui is used to indicate the absence of one of the bounds.

The nonlinear programs that arise in the context of MINLP have several important fea-
tures. First, the problem is one of a sequence of many related NLP problems with the same
objective but with additional linear or nonlinear constraints. For efficiency, it is important
that information from the solution of one problem be used to “warm start” the solution of
the next. Second, many MINLP methods generate infeasible subproblems as part of the so-
lution process (e.g., in branch and bound methods). This implies that infeasible constraints
will occur for a significant subset of problems to be solved, which is in contrast to the
situation in conventional optimization, where constraint infeasibility is considered to be a
relatively unusual event, caused by an error in the constraint formulation. In mixed-integer
linear programming, the phase 1 simplex method provides a reliable “certificate of infeasi-
bility”, i.e., a definitive statement on whether or not a feasible point exists. However, the
question of the solvability of a set of nonconvex inequalities is NP-hard. Many optimization
methods replace the solvability problem by a minimization problem in which the norm of the
constraint residual is minimized. If the constraints are not convex, then this minimization
problem is likely to have infeasible local minimizers regardless of the existence of a feasible
point. It follows that the minimization method may terminate at a “phantom” infeasible
point even though the constraints have a feasible point (see Section 1.3).

Sequential quadratic programming methods and interior methods are two alternative
approaches to handling the inequality constraints in (1.1). Sequential quadratic program-
ming (SQP) methods find an approximate solution of a sequence of quadratic programming
(QP) subproblems in which a quadratic model of the objective function is minimized subject
to the linearized constraints. Interior methods approximate a continuous path that passes
through a solution of (1.1). In the simplest case, the path is parameterized by a positive
scalar parameter µ that may be interpreted as a perturbation for the optimality conditions
for the problem (1.1). Both interior methods and SQP methods have an inner/outer itera-
tion structure, with the work for an inner iteration being dominated by the cost of solving
a large sparse system of symmetric indefinite linear equations. In the case of SQP methods,
these equations involve a subset of the variables and constraints; for interior methods, the
equations involve all the constraints and variables.

SQP methods provide a relatively reliable “certificate of infeasibility” and they have the
potential of being able to capitalize on a good initial starting point. Sophisticated matrix
factorization updating techniques are used to exploit the fact that the linear equations
change by only a single row and column at each inner iteration. These updating techniques
are often customized for the particular QP method being used and have the benefit of
providing a uniform treatment of ill-conditioning and singularity.

On the negative side, it is difficult to implement SQP methods so that exact second
derivatives can be used efficiently and reliably. Some of these difficulties stem from the
theoretical properties of the quadratic programming subproblem, which can be nonconvex
when second derivatives are used. Nonconvex quadratic programming is NP-hard—even for
the calculation of a local minimizer [44,73]. The complexity of the QP subproblem has been a
major impediment to the formulation of second-derivative SQP methods (although methods
based on indefinite QP have been proposed [64, 67]). Over the years, algorithm developers
have avoided this difficulty by eschewing second derivatives and by solving a convex QP

subproblem defined with a positive semidefinite quasi-Newton approximate Hessian (see,
e.g., [85]). There are other difficulties associated with conventional SQP methods that are
not specifically related to the use of second derivatives. An SQP algorithm is often tailored
to a particular updating technique, e.g., the matrix factors of the Jacobian in the outer
iteration can be chosen to match those of the method for the QP subproblem. Any reliance
on customized linear algebra software makes it hard to “modernize” a method to reflect
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new developments in software technology (e.g., in languages that exploit new advances
in computer hardware such as multicore processors or GPU-based architectures). Another
difficulty is that active-set methods may require a substantial number of QP iterations when
the outer iterates are far from the solution. The use of a QP subproblem is motivated by the
assumption that the QP objective and constraints provide good “models” of the objective
and constraints of the NLP (see Section 2). This should make it unnecessary (and inefficient)
to solve the QP to high accuracy during the preliminary iterations. Unfortunately, the
simple expedient of limiting the number of inner iterations may have a detrimental effect
upon reliability. An approximate QP solution may not predict a sufficient improvement
in a merit function (see Section 3.2). Moreover, some of the QP multipliers will have the
wrong sign if an active-set method is terminated before a solution is found. This may
cause difficulties if the QP multipliers are used to estimate the multipliers for the nonlinear
problem. These issues would largely disappear if a primal-dual interior method were to be
used to solve the QP subproblem. These methods have the benefit of providing a sequence of
feasible (i.e., correctly signed) dual iterates. Nevertheless, QP solvers based on conventional
interior methods have had limited success within SQP methods because they are difficult to
“warm start” from a near-optimal point (see the discussion below). This makes it difficult
to capitalize on the property that, as the outer iterates converge, the solution of one QP

subproblem is a very good estimate of the solution of the next.

Broadly speaking, the advantages and disadvantages of SQP methods and interior meth-
ods complement each other. Interior methods are most efficient when implemented with
exact second derivatives. Moreover, they can converge in few inner iterations—even for
very large problems. The inner iterates are the iterates of Newton’s method for finding an
approximate solution of the perturbed optimality conditions for a given µ. As the dimension
and zero/nonzero structure of the Newton equations remains fixed, these Newton equations
may be solved efficiently using either iterative or direct methods available in the form of ad-
vanced “off-the-shelf” linear algebra software. In particular, any new software for multicore
and parallel architectures is immediately applicable. Moreover, the perturbation parameter
µ plays an auxiliary role as an implicit regularization parameter of the linear equations.
This implicit regularization plays a crucial role in the robustness of interior methods on
ill-conditioned and ill-posed problems.

On the negative side, although interior methods are very effective for solving “one-off”
problems, they are difficult to adapt to solving a sequence of related NLP problems. This
difficulty may be explained in terms of the “path-following” interpretation of interior meth-
ods. In the neighborhood of an optimal solution, a step along the path x(µ) of perturbed
solutions is well-defined, whereas a step onto the path from a neighboring point will be
extremely sensitive to perturbations in the problem functions (and hence difficult to com-
pute). Another difficulty with conventional interior methods is that a substantial number
of iterations may be needed when the constraints are infeasible.

1.1. Notation

Given vectors a and b with the same dimension, the vector with ith component aibi is
denoted by a · b. The vectors e and ej denote, respectively, the column vector of ones and
the jth column of the identity matrix I. The dimensions of e, ei and I are defined by the
context. Given vectors x and y of dimension nx and ny, the (nx + ny)-vector of elements of
x augmented by elements of y is denoted by (x, y). The ith component of a vector labeled
with a subscript will be denoted by ( · )i, e.g., (vN)i is the ith component of the vector vN .
Similarly, the subvector of components with indices in the index set S is denoted by ( · )S ,
e.g., (vN)S is the vector with components (vN)i for i ∈ S. The vector with components
max{−xi, 0} (i.e., the magnitude of the negative part of x) is denoted by [x ]−. The vector
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p-norm and its subordinate matrix norm is denoted by ‖ · ‖p.

1.2. Background

To simplify the notation, the problem format of (1.1) is modified by introducing slack
variables and replacing each general constraint of the form ℓi ≤ ϕi(x) ≤ ui by the equality
constraint ϕi(x)− si = 0 and range constraint ℓi ≤ si ≤ ui. Without loss of generality, we
assume only nonnegativity constraints and use c(x) to denote the vector of combined linear
and nonlinear equality constraint functions. (However, we emphasize that the exploitation of
the properties of linear constraints is an important issue in the solution of MINLP problems.)
The problem to be solved is then

minimize
x∈Rn

f(x) subject to c(x) = 0, x ≥ 0, (1.2)

where f and the m components of the constraint vector c are assumed to be twice contin-
uously differentiable for all x ∈ R

n. Any slack variables are included in the definition of x
and c.

Let g(x) denote ∇f(x), the gradient of f evaluated at x. Similarly, let J(x) denote the
m × n constraint Jacobian with rows formed from the constraint gradients ∇ci(x). It is
assumed that J(x) has rank m for all x (see the discussion of the use of slack variables
in Section 1). Throughout the discussion, the component πi of the m-vector π will denote
the dual variable associated with the constraint ci(x) = 0 or its linearization. Similarly, zj

denotes the dual variable associated with the bound xj ≥ 0.

A constraint is active at x if it is satisfied with equality. For any feasible x, i.e., for
any x such that c(x) = 0 and x ≥ 0, all m equality constraints ci(x) = 0 are necessarily
active. The indices associated with the active nonnegativity constraints comprise the active

set, denoted by A(x), i.e., A(x) = { i : xi = 0 }. A nonnegativity constraint that is not in
the active set is said to be inactive. The inactive set contains the indices of the inactive
constraints, i.e., the so-called “free” variables I(x) = { i : xi > 0 }.

Under certain constraint regularity assumptions, an optimal solution of (1.2) must sat-
isfy conditions that may be written in terms of the derivatives of the Lagrangian function
L(x, π, z) = f(x)−πTc(x)−zTx. The triple (x∗, π∗, z∗) is said to be a first-order KKT point
for problem (1.2) if it satisfies the KKT conditions

c(x∗) = 0, x∗ ≥ 0,

g(x∗)− J(x∗)T π∗ − z∗ = 0,

x∗
· z∗ = 0, z∗ ≥ 0.

(1.3)

The property of strict complementarity holds if the vectors x∗ and z∗ satisfy x∗
· z∗ = 0

with x∗ + z∗ > 0. In keeping with linear programming terminology, we refer to the dual
variables π and z as the π-values and reduced costs, respectively. The vector-triple (x, π, z)
is said to constitute a primal-dual estimate of the quantities (x∗, π∗, z∗) satisfying (1.3).

The purpose of the constraint regularity assumption is to guarantee that a linearization
of the constraints describes the nonlinear constraints with sufficient accuracy that the KKT

conditions of (1.3) are necessary for local optimality. One such regularity assumption is the
Mangasarian-Fromovitz constraint qualification [135, 145], which requires that J(x∗) has
rank m, and that there exists a vector p such that J(x∗)p = 0 with pi > 0 for all i ∈ A(x∗).
Another common, but slightly more restrictive, assumption is the linear independence con-

straint qualification, which requires that the matrix of free columns of J(x∗) has full row
rank.
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Let H(x, π) denote the Hessian of L(x, π, z) with respect to x, i.e.,

H(x, π) = ∇2
xx L(x, π, z) = ∇2f(x)−

m∑

i=1

πi∇
2ci(x).

Under the linear independence constraint qualification, the second-order necessary optimal-
ity conditions require that the first-order conditions (1.3) hold with the additional condition
that pTH(x∗, π∗)p ≥ 0 for all p such that J(x∗)p = 0, and pi = 0 for every i ∈ A(x∗). See,
e.g., Nocedal and Wright [145, Chapter 12] for more discussion of constraint assumptions
and optimality conditions.

For a feasible point x, we will denote by Ĵ(x) the matrix comprising columns of J(x)

corresponding to indices in I(x). A point x at which (g(x))I ∈ range(Ĵ(x)T) and the linear
independence constraint qualification does not hold is said to be degenerate. For example,
if x is a degenerate vertex, then more than n − m bounds must be active and Ĵ(x) has
more rows than columns. The Mangasarian-Fromovitz constraint qualification may or may
not hold at a degenerate pont. Practical NLP problems with degenerate points are very
common and it is crucial that an algorithm be able to handle Ĵ(x) with dependent rows.
Throughout our discussion of the effects of degeneracy in SQP methods, it will be assumed
that the Mangasarian-Fromovitz regularity assumption holds.

1.3. Infeasible problems

In the normal situation, when solving a “one-off” nonlinear program of the form (1.2),
one may expect that the problem is feasible—i.e., that there exist points that satisfy the
constraints. This is because an infeasible problem is generally the result of a unintended
formulation or coding error. However, there are situations when the detection of infeasibility
is of particular interest. An example is mixed integer nonlinear programming, where the
occurrence of infeasibility is likely as part of a branch and bound fathoming criteria. In
this situation, the rapid and reliable detection of infeasibility is a crucial requirement of an
algorithm. One way of handling this situation is to define a related regularized problem
that always has feasible points. This is done by formulating an alternative problem that is
always well posed, yet has (x∗, π∗, z∗) as a solution when (x∗, π∗, z∗) exists.

As the question of the existence of a solution revolves around whether or not the con-
straints admit a feasible point, we can always relax the constraints sufficiently to allow
the constraints to be feasible. It is then just a question of solving the relaxed problem
while simultaneously reducing the amount of relaxation. This process can be automated by
introducing elastic variables v and w in (1.2), and formulating the elastic problem

minimize
x∈Rn; u,v∈Rm

f(x) + ρeTu + ρeTv

subject to c(x)− u + v = 0, x ≥ 0, u ≥ 0, v ≥ 0,
(1.4)

where ρ is a “penalty” on the elasticity, often referred to as the elastic weight, and e is
the vector of ones. The smooth elastic problem is equivalent to the nonsmooth bound-
constrained problem

minimize
x∈Rn

f(x) + ρ

m∑

i=1

|ci(x)| subject to x ≥ 0, (1.5)

i.e., the elastic problem implicitly enforces a penalty on the sum of the infeasibilities of the
constraints c(x) = 0. If the original problem is infeasible, then, for large values of ρ, there
is a minimizer of the elastic problem that is an O(1/ρ) approximation to a minimizer of the



6 Sequential quadratic programming methods

sum of the constraint infeasibilities. This minimizer can be useful in identifying which of
the constraints are causing the infeasibility (see Chinneck [35,36]).

The elastic problem is called an exact regularization of (1.2) because if ρ is sufficiently
large and (x∗, π∗, z∗) is optimal for (1.2), then it is also optimal for the elastic problem (1.4)
with u = v = 0. See Fletcher [65, Section 12.3] for a discussion of these issues. The first-
order necessary conditions for (x∗, u∗, v∗, π∗, z∗) to be an optimal solution for the elastic
problem (1.4) are

c(x∗)− u∗ + v∗ = 0, u∗ ≥ 0, v∗ ≥ 0, (1.6a)

g(x∗)− J(x∗)T π∗ − z∗ = 0, (1.6b)

x∗
· z∗ = 0, z∗ ≥ 0, x∗ ≥ 0 (1.6c)

u∗
· (ρe + π∗) = 0, v∗ · (ρe− π∗) = 0, −ρe ≤ π∗ ≤ ρe. (1.6d)

To see that the elastic problem (1.4) defines an exact regularization, note that if ‖π∗‖∞ < ρ,
then a solution (x∗, π∗, z∗) of (1.3) is also a solution of (1.6) with u∗ = v∗ = 0. Conditions
(1.6) are always necessary for a point (x∗, u∗, v∗) to be an optimal solution for (1.4) because
the Mangasarian-Fromovitz constraint qualification is always satisfied.

There are two caveats associated with solving the regularized problem. First, if a solution
of the original problem exists, it is generally only a local solution of the elastic problem. The
elastic problem may be unbounded below, or may have local solutions that are not solutions
of the original problem. For example, consider the one-dimensional problem

minimize
x∈R

x + 1 subject to 1
3x3 − 3

2x2 + 2x = 0, x ≥ 0, (1.7)

which has a unique solution (x∗, π∗) = (0, 1
2 ). For all ρ > 1

2 , the penalty function (1.5) has a
local minimizer x̄ = 2−O(1/ρ) such that c(x̄) 6= 0. This example shows that regularization
can introduce “phantom” solutions that do not appear in the original problem.

Figure 1: This figure depicts the objective function and penalty function (1.5) for the one-
dimensional problem (1.7). The constrained problem has a unique solution (x∗, π∗) = (0, 1

2
).

However, for all ρ > 1

2
, the penalty function has a local minimizer x̄ = 2 − O(1/ρ) with

c(x̄) 6= 0.

The second caveat is that, in general, the precise definition of the elastic problem is not
known in advance because an appropriate value of the parameter ρ depends on the optimal
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multipliers π∗. This implies that, in practice, any estimate of ρ may need to be increased
if the minimization appears to be converging to a regularized solution with u∗ + v∗ 6= 0. If
the original problem is infeasible, then u∗ + v∗ is nonzero for all solutions and ρ must go to
infinity if the elastic problem is to provide an estimate of the minimum sum of infeasibilities.
Gill, Murray, and Saunders [85] apply an SQP method to a sequence of regularized problems
in which ρ is increased geometrically. The sequence is terminated when a solution is found
with u∗ +v∗ = 0, or ρ reaches a preassigned upper limit. However, in the context of MINLP,
where constraint infeasibility is typical, it is crucial that infeasibility be detected rapidly,
which implies that the value of ρ may need to be increased before an accurate solution of
the regularized problem is found. (For further information on choosing the value of ρ in this
context, see, e.g., Exler and Schittkowski [58], and Byrd, Nocedal, and Waltz [29].)

The objective function in the elastic problem (1.5) is the ℓ1 penalty function

P1(x; ρ) = f(x) + ρ‖c(x)‖1 = f(x) + ρ

m∑

i=1

|ci(x)|. (1.8)

Regularization using an ℓ1 penalty function is (by far) the most common form of constraint
regularization for problems with inequality constraints. However, other exact regularizations
can be defined based on using alternative norms to measure the constraint violations. If the
ℓ∞ penalty function

P∞(x; ρ) = f(x) + ρ‖c(x)‖∞ = f(x) + ρ max
1≤i≤m

|ci(x)| (1.9)

is minimized subject to the constraints x ≥ 0, an equivalent smooth constrained form of the
regularized problem is

minimize
x∈Rn; θ∈R

f(x) + ρθ subject to −θe ≤ c(x) ≤ θe, x ≥ 0, θ ≥ 0, (1.10)

where θ is a temporary nonnegative auxiliary variable. This regularization is exact if ρ >
‖π∗‖1. The ℓ2 penalty function f(x)+ρ‖c(x)‖2 also defines an exact regularization, although
the use of the two-norm in this form is less common because there is no equivalent smooth
constrained form of the problem. (For more on the properties of exact regularization for
convex optimization, see Friedlander and Tseng [77].)

The ℓ2 penalty function is one exception to the rule that a constraint regularization for
(1.2) can be written as either a perturbed nonlinearly constrained problem or an equivalent
bound-constrained problem, where both formulations depend on the optimal multipliers π∗.
However, for some forms of regularization, the dependence on π∗ can be explicit (and hence
harder to apply). Consider the bound-constrained problem

minimize
x∈Rn

f(x)− c(x)T πE + 1
2ρ‖c(x)‖22 subject to x ≥ 0, (1.11)

where πE is an m-vector, and ρ is a nonnegative scalar penalty parameter. Problem (1.11)
is used in a number of methods for general nonlinear programming problems based on se-
quential bound-constrained minimization, see, e.g., [40,41,42,74,76]. The objective function
is the well-known Hestenes-Powell augmented Lagrangian, which was first proposed for se-
quential unconstrained optimization (see, e.g., Hestenes [124], Powell [153], Rockafellar [160],
Tapia [171], and Bertsekas [7]). The regularization is exact for πE = π∗ and all ρ > ρ̄, where
ρ̄ depends on the spectral radius of the Hessian of the Lagrangian (and hence, implicitly, on
the magnitude of ‖π∗‖). Clearly, this function has a more explicit dependence on π∗. If x∗

is a solution of (1.11) for πE ≈ π∗, then x∗ is also a solution of the perturbed nonlinearly
constrained problem

minimize
x∈Rn

f(x) subject to c(x) = µ(πE − π∗), x ≥ 0, (1.12)
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where π∗ = πE − ρc(x∗), and µ is the inverse penalty parameter 1/ρ.
In later sections we consider the close connection between problem regularization and

the formulation of SQP methods. In particular, we show that many SQP formulations can
be considered in terms of a “plain” SQP method being applied to a related regularized
nonlinear program.

Regularization is a very broad idea that can take many forms. For example, a problem
formulation may be regularized to ensure that a solution exists or, if there are many solu-
tions, to ensure that a particular favorable solution is found (such as a least-norm solution).
Other forms of regularization are specifically designed to make sure that an algorithm may
be applied with minimal risk of numerical breakdown. For example, adding slack variables
to all constraints, including equalities, guarantees that the Jacobian has full row rank. Such
regularization schemes have a beneficial effect on whatever method is used. Some forms of
regularization are associated with a specific technique (e.g., trust-region methods impose an
implicit regularization on a given subproblem—see Section 3.1.2).

However, although regularization is useful (and sometimes vital) there is usually some
price to be paid for its use. In many cases, regularization leads to additional computational
overhead or algorithmic complexity. In some cases, regularization will give an approximate
rather than exact solution of the problem. More seriously, some forms of regularization lead
to the possibility of “phantom” solutions that are not solutions of the original problem.

2. Local Properties of SQP Methods

In many introductory texts, “the” SQP method is defined as one in which the quadratic
programming subproblem involves the minimization of a quadratic model of the objec-
tive function subject to a linearization of the constraints. This description, which broadly
defines the original SQP method of Wilson [177] for convex programming, is somewhat over-
simplistic for modern SQP methods. Nevertheless, we start by defining a “vanilla” or “plain”
SQP method in these terms.

The basic structure of an SQP method involves inner and outer iterations. Associated
with the kth outer iteration is an approximate solution xk, together with dual variables
πk and zk for the nonlinear constraints and bounds. Given (xk, πk, zk), new primal-dual
estimates are found by solving the quadratic programming subproblem

minimize
x∈Rn

f(xk) + g(xk)T(x− xk) + 1
2 (x− xk)TH(xk, πk)(x− xk)

subject to c(xk) + J(xk)(x− xk) = 0, x ≥ 0.
(2.1)

In our plain SQP method, this subproblem is solved by iteration using a quadratic program-
ming method. New estimates πk+1 and zk+1 of the Lagrange multipliers are the optimal
multipliers for the subproblem (2.1). The iterations of the QP method constitute the SQP

inner iterations.
The form of the plain QP subproblem (2.1) is motivated by a certain fixed-point property

that requires the SQP method to terminate in only one (outer) iteration when started at
an optimal solution. In particular, the plain QP subproblem is defined in such a way that
if (xk, πk, zk) = (x∗, π∗, z∗), then the NLP primal-dual solution (x∗, π∗, z∗) satisfies the QP

optimality conditions for (2.1) and thereby constitutes a solution of the subproblem (see Sec-
tion 2.2 below for a statement of the QP optimality conditions). Under certain assumptions
on the problem derivatives, this fixed-point property implies that (xk, πk, zk)→ (x∗, π∗, z∗)
when the initial point (x0, π0, z0) is sufficiently close to (x∗, π∗, z∗). These assumptions are
discussed further below.

Given our earlier statement that SQP methods “minimize a quadratic model of the
objective function”, readers unfamiliar with SQP methods might wonder why the quadratic
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term of the quadratic objective of (2.1) involves the Hessian of the Lagrangian function
and not the Hessian of the objective function. However, at (xk, πk, zk) = (x∗, π∗, z∗), the
objective of the subproblem defines the second-order local variation of f on the constraint

surface c(x) = 0. Suppose that x(α) is a twice-differentiable feasible path starting at xk,
parameterized by a nonnegative scalar α; i.e., x(0) = xk and c(x(α)) = 0. An inspection of
the derivatives f ′(x(α)) and f ′′(x(α)) at α = 0 indicates that the function

f̂k(x) = f(xk) + g(xk)T
(
x− xk

)
+ 1

2

(
x− xk

)T
H(xk, πk)

(
x− xk

)
(2.2)

defines a second-order approximation of f for all x lying on x(α), i.e., f̂k(x) may be regarded
as a local quadratic model of f that incorporates the curvature of the constraints c(x) = 0.

This constrained variation of the objective is equivalent to the unconstrained variation
of a function known as the modified Lagrangian, which is given by

L(x;xk, πk) = f(x)− πT
k (c(x)− ĉk(x)), (2.3)

where ĉk(x) denotes the vector of linearized constraint functions ĉk(x) = c(xk) + J(xk)
(
x−

xk

)
, and c(x)− ĉk(x) is known as the departure from linearity (see Robinson [158] and Van

der Hoek [174]). The first and second derivatives of the modified Lagrangian are given by

∇L(x;xk, πk) = g(x)−
(
J(x)− J(xk)

)T
πk,

∇2L(x;xk, πk) = ∇2f(x)−
m∑

i=1

(πk)i∇
2ci(x).

The Hessian of the modified Lagrangian is independent of xk and coincides with the Hessian
(with respect to x) of the conventional Lagrangian. Also, L(x;xk, πk)|x=xk

= f(xk), and

∇L(x;xk, πk)|x=xk
= g(xk), which implies that f̂k(x) defines a local quadratic model of

L(x;xk, πk) at x = xk.
Throughout the remaining discussion, gk, ck, Jk and Hk denote g(x), c(x), J(x) and

H(x, π) evaluated at xk and πk. With this notation, the quadratic objective is f̂k(x) =
fk + gT

k(x− xk) + 1
2 (x− xk)THk(x− xk), with gradient ĝk(x) = gk + Hk(x− xk). A “hat”

will be used to denote quantities associated with the QP subproblem.

2.1. Equality constraints

We motivate some of the later discussion by reviewing the connection between SQP methods
and Newton’s method for solving a system of nonlinear equations. We begin by omitting
the nonnegativity constraints and considering the equality constrained problem

minimize
x∈Rn

f(x) subject to c(x) = 0. (2.4)

In the case of unconstrained optimization, a standard approach to the formulation of algo-
rithms is to use the first-order optimality conditions to define a system of nonlinear equations
∇f(x) = 0 whose solution is a first-order optimal point x∗. In the constrained case, the rel-
evant nonlinear equations involve the gradient of the Lagrangian function L(x, π), which
incorporates the first-order feasibility and optimality conditions satisfied by x∗ and π∗. If
the rows of the constraint Jacobian J at x∗ are linearly independent, a primal-dual solu-
tion represented by the n + m vector (x∗, π∗) must satisfy the n + m nonlinear equations
F (x, π) = 0, where

F (x, π) ≡ ∇L(x, π) =

(
g(x)− J(x)T π
−c(x)

)
. (2.5)

These equations may be solved efficiently using Newton’s method.
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2.1.1. Newton’s method and SQP

Consider one iteration of Newton’s method, starting at estimates xk and πk of the primal
and dual variables. If vk denotes the iterate defined by (n + m)-vector (xk, πk), then the
next iterate vk+1 is given by

vk+1 = vk + ∆vk, where F ′(vk)∆vk = −F (vk).

Differentiating (2.5) with respect to x and π gives F ′(v) ≡ F ′(x, π) as

F ′(x, π) =

(
H(x, π) −J(x)T

−J(x) 0

)
,

which implies that the Newton equations may be written as

(
Hk −JT

k

−Jk 0

)(
pk

qk

)
= −

(
gk − JT

kπk

−ck

)
,

where pk and qk denote the Newton steps for the primal and dual variables. If the second
block of equations is scaled by −1 we obtain the system

(
Hk −JT

k

Jk 0

)(
pk

qk

)
= −

(
gk − JT

kπk

ck

)
, (2.6)

which is an example of a saddle-point system. Finally, if the second block of variables is
scaled by −1 we obtain an equivalent symmetric system

(
Hk JT

k

Jk 0

)(
pk

−qk

)
= −

(
gk − JT

kπk

ck

)
, (2.7)

which is often referred to as the KKT system.
It may not be clear immediately how this method is related to an SQP method. The

crucial link follows from the observation that the KKT equations (2.7) represent the first-
order optimality conditions for the primal and dual solution (pk, qk) of the quadratic program

minimize
p∈Rn

(gk − JT
kπk)Tp + 1

2pTHkp

subject to ck + Jkp = 0,

which, under certain conditions on the curvature of the Lagrangian discussed below, defines
the step from xk to the point that minimizes the local quadratic model of the objective
function subject to the linearized constraints. It is now a simple matter to include the
constant objective term fk (which does not affect the optimal solution) and write the dual
variables in terms of πk+1 = πk + qk instead of qk. The equations analogous to (2.7) are
then (

Hk JT
k

Jk 0

)(
pk

−πk+1

)
= −

(
gk

ck

)
, (2.8)

which are the first-order optimality conditions for the quadratic program

minimize
p∈Rn

fk + gT
kp + 1

2pTHkp subject to ck + Jkp = 0.

When written in terms of the x variables, this quadratic program is

minimize
x∈Rn

fk + gT
k(x− xk) + 1

2 (x− xk)THk(x− xk)

subject to ck + Jk(x− xk) = 0.
(2.9)
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2.1.2. Local convergence

A standard analysis of Newton’s method (see, e.g., Moré and Sorensen [141, Theorem 2.8])
shows that if the KKT matrix is nonsingular at a solution (x∗, π∗), and (x0, π0) lies in a
sufficiently small neighborhood of (x∗, π∗) in which f and c are twice-continuously differen-
tiable, then the SQP iterates (xk, πk) will converge to (x∗, π∗) at a Q-superlinear rate. If,
in addition, H(x, π) is locally Lipschitz continuous, then the SQP iterates (xk, πk) are Q-
quadratically convergent. As x is only a subvector of v, with v = (x, π), the convergence rate
of xk does not follow immediately. However, as ‖xk−x∗‖ ≤ ‖vk−v∗‖, a Q-quadratic rate of
convergence of (xk, πk) implies an R-quadratic rate of convergence of xk. For more on the
rate of convergence of {xk} relative to {xk, πk}, see Ortega and Rheinboldt [148, Chapter 9].

Conditions for the nonsingularity of the KKT matrix may be determined by transforming
the KKT system into an equivalent system that reveals the rank. If Qk is an n×n nonsingular
matrix, then (2.8) is equivalent to the system

(
QT

kHkQk (JkQk)T

JkQk 0

)(
pQ

−πk+1

)
= −

(
QT

k gk

ck

)
, with pk = QkpQ. (2.10)

Let Qk be defined so that JkQk =
(
0 Uk

)
, where Uk is m×m. The assumption that Jk has

rank m implies that Uk is nonsingular. If the n columns of Qk are partitioned into blocks
Zk and Yk of dimension n× (n−m) and n×m, then

JkQk = Jk

(
Zk Yk

)
=
(

0 Uk

)
, (2.11)

which shows that JkZk = 0 and JkYk = Uk. Since Zk and Yk are sections of the nonsingular
matrix Qk, they must have independent columns, and, in particular, the columns of Zk must
form a basis for the null-space of Jk. If QT

k HkQk and JkQk are partitioned to conform to
the Z–Y partition of Qk, we obtain the block lower-triangular system




Uk 0 0

ZT
kHkYk ZT

kHkZk 0

Y T
k HkYk Y T

k HkZk UT
k






pY

pZ

−πk+1


 = −




ck

ZT
kgk

Y T
k gk


 , (2.12)

where the (n−m)-vector pZ and m-vector pY are the parts of pQ that conform to the columns
of Zk and Yk. It follows immediately from (2.12) that the Jacobian F ′(xk, πk) is nonsingular
if Jk has independent rows and ZT

kHkZk is nonsingular. In what follows, we use standard
terminology and refer to the vector ZT

kgk as the reduced gradient and the matrix ZT
kHkZk as

the reduced Hessian. If J(x∗) has rank m and the columns of the matrix Z∗ form a basis for
the null-space of J(x∗), then the conditions: (i) ∇L(x∗, π∗) = 0; and (ii) Z∗TH(x∗, π∗)Z∗

positive definite, are sufficient for x∗ to be an isolated minimizer of the equality constraint
problem (2.4).

2.1.3. Properties of the Newton step

The equations (2.12) have a geometrical interpretation that provides some insight into the
properties of the Newton direction. From (2.10), the vectors pZ and pY must satisfy

pk = QkpQ =
(

Zk Yk

)(pZ

pY

)
= ZkpZ + YkpY .

Using block substitution on the system (2.12) we obtain the following equations for pk and
πk+1:

UkpY = −ck, pN = YkpY ,

ZT
k HkZkp

Z
= −ZT

k (gk + HkpN), pT = ZkpZ ,

pk = pN + pT , UT
k πk+1 = Y T

k (gk + Hkpk).

(2.13)
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These equations involve the auxiliary vectors pN and pT such that pk = pN+pT and JkpT = 0.
We call pN and pT the normal and tangential steps associated with pk. Equations (2.13)
may be simplified further by introducing the intermediate vector xF such that xF = xk +pN .
The definition of the gradient of f̂k implies that gk +HkpN = ∇f̂k(xk +pN) = ĝk(xF ), which
allows us to rewrite (2.13) in the form

UkpY = −ck, pN = YkpY ,

xF = xk + pN , ZT
k HkZkp

Z
= −ZT

k ĝk(x
F
), pT = ZkpZ ,

pk = pN + pT , xk+1 = xF + pT ,

UT
k πk+1 = Y T

k ĝk(xk+1).

(2.14)

The definition of xF implies that

ĉk(xF ) = ck + Jk(xF − xk) = ck + JkpN = ck + JkYkpY = ck + UkpY = 0,

which implies that the normal component pN satisfies JkpN = −ck and constitutes the New-
ton step from xk to the point xF satisfying the linearized constraints ck +Jk(x−xk) = 0. On
the other hand, the tangential step pT satisfies pT = ZkpZ , where ZT

kHkZkp
Z

= −ZT
k ĝk(x

F
).

If the reduced Hessian ZT
kHkZk is positive definite, which will be the case if xk is sufficiently

close to a locally unique (i.e., isolated) minimizer of (2.4), then pT defines the Newton step

from xF to the minimizer of the quadratic model f̂k(x) in the subspace orthogonal to the
constraint normals (i.e., on the surface of the linearized constraint ĉk(x) = 0). It follows
that the Newton direction is the sum of two steps: a normal step to the linearized constraint
and the tangential step on the constraint surface that minimizes the quadratic model. This
property reflects the two (usually conflicting) underlying processes present in all algorithms
for optimization—the minimization of the objective and the satisfaction of the constraints.

In the discussion above, the normal step pN is interpreted as a Newton direction for the
equations ĉk(x) = 0 at x = xk. However, in some situations, pN may also be interpreted
as the solution of a minimization problem. The Newton direction pk is unique, but the
decomposition pk = pT + pN depends on the choice of the matrix Qk associated with the
Jacobian factorization (2.11). If Qk is orthogonal, i.e., if QT

k Qk = I, then ZT
k Yk = 0 and

the columns of Yk form a basis for the range space of JT
k . In this case, pN and pT define the

unique range-space and null-space decomposition of pk, and pN is the unique solution with
least two-norm of the least-squares problem

min
p
‖ĉk(xk) + Jkp‖2, or, equivalently, min

p
‖ck + Jkp‖2.

This interpretation is useful in the formulation of variants of Newton’s method that do not
require (xk, πk) to lie in a small neighborhood of (x∗, π∗). In particular, it suggests a way
of computing the normal step when the equations Jkp = −ck are not compatible.

For consistency with the inequality constrained case below, the primal-dual solution of
the kth QP subproblem is denoted by (x̂k, π̂k). With this notation, the first-order optimality
conditions for the QP subproblem (2.9) are given by

Jk(x̂k − xk) + ck = 0,

gk + Hk(x̂k − xk)− JT
k π̂k = 0.

(2.15)

Similarly, the Newton iterates are given by xk+1 = x̂k = xk + pk and πk+1 = π̂k = πk + qk.

2.1.4. Calculation of the Newton step

There are two broad approaches for solving the Newton equations (either in saddle-point
form (2.6) or symmetric form (2.7). The first involves solving the full n+m KKT equations,
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the second decomposes the KKT equations into the three systems associated with the block
lower-triangular equations (2.12).

In the full-matrix approach, the matrix K may be represented by its symmetric indefinite

factorization (see, e.g., Bunch and Parlett [21], and Bunch and Kaufman [19]):

PKPT = LDLT , (2.16)

where P is a permutation matrix, L is lower triangular and D is block diagonal, with 1× 1
or 2 × 2 blocks. (The latter are required to retain numerical stability.) Some prominent
software packages include MA27 (Duff and Reid [56]), MA57 (Duff [55]), MUMPS (Amestoy
et al. [2]), PARDISO (Schenk and Gärtner [164]), and SPOOLES (Ashcraft and Grimes [5]).

The decomposition approach is based on using an explicit or implicit representation of
the null-space basis matrix Zk. When Jk is dense, Zk is usually computed directly from a
QR factorization of Jk (see, e.g., Coleman and Sorensen [39], and Gill et al. [87]). When
Jk is sparse, however, known techniques for obtaining an orthogonal and sparse Z may be
expensive in time and storage, although some effective algorithms have been proposed (see,
e.g., Coleman and Pothen [38]; Gilbert and Heath [79]).

The representation of Zk most commonly used in sparse problems is called the variable-

reduction form of Zk, and is obtained as follows. The columns of Jk are partitioned so as
to identify explicitly an m×m nonsingular matrix B (the basis matrix ). Assuming that B
is at the “left” of Jk, we have

Jk =
(

B S
)
.

(In practice, the columns of B may occur anywhere.) When Jk has this form, a basis for
the null space of Jk is given by the columns of the (non-orthogonal) matrix Qk defined as

Qk =

(
−B−1S Im

In−m

)
, with Zk =

(
−B−1S

In−m

)
and Yk =

(
Im

0

)
.

This definition of Qk means that matrix-vector products ZT
kv or Zkv can be computed using

a factorization of B (typically, a sparse LU factorization; see Gill, Murray, Saunders and
Wright [92]), and Zk need not be stored explicitly.

For large sparse problems, the reduced Hessian ZT
k HkZk associated with the solution of

(2.14) will generally be much more dense than Hk and B. However, in many cases, n −m
is small enough to allow the storage of a dense Cholesky factor of ZT

k HkZk.

2.2. Inequality constraints

Given an approximate primal-dual solution (xk, πk) with xk ≥ 0, an outer iteration of a
typical SQP method involves solving the QP subproblem (2.1), repeated here for convenience:

minimize
x∈Rn

fk + gT
k (x− xk) + 1

2 (x− xk)THk(x− xk)

subject to Jk(x− xk) = −ck, x ≥ 0.
(2.17)

Assume for the moment that this QP subproblem is feasible, with primal-dual solution
(x̂k, π̂k, ẑk). The next plain SQP iterate is xk+1 = x̂k, πk+1 = π̂k and zk+1 = ẑk. The QP

first-order optimality conditions are

Jk(x̂k − xk) + ck = 0, x̂k ≥ 0;

gk + Hk(x̂k − xk)− JT
k π̂k − ẑk = 0,

x̂k · ẑk = 0, ẑk ≥ 0.

(2.18)
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Let pk = x̂k−xk and let p̄k denote the vector of free components of pk, i.e., the components
with indices in I(x̂k). Similarly, let z̄k denote the free components of ẑk. The complemen-
tarity conditions imply that z̄k = 0 and we may combine the first two sets of equalities in
(2.18) to give

(
H̄k J̄T

k

J̄k 0

)(
p̄k

−π̂k

)
= −

(
(gk + Hkηk)I

ck + Jkηk

)
, (2.19)

where J̄k is the matrix of free columns of Jk, and ηk is the vector

(ηk)i =

{
(x̂k − xk)i if i ∈ A(x̂k);

0 if i ∈ I(x̂k).

If the active sets at x̂k and xk are the same, i.e., A(x̂k) = A(xk), then ηk = 0. If x̂k lies in
a sufficiently small neighborhood of a nondegenerate solution x∗, then A(x̂k) = A(x∗) and
hence J̄k has full row rank (see Robinson [159]). In this case we say that the QP identifies

the correct active set at x∗. If, in addition, (x∗, π∗) satisfies the second-order sufficient
conditions for optimality, then KKT system (2.19) is nonsingular and the plain SQP method
is equivalent to Newton’s method applied to the equality-constraint subproblem defined by
fixing the variables in the active set at their bounds.

However, at a degenerate QP solution, the rows of J̄k are linearly dependent and the KKT

equations (2.19) are compatible but singular. Broadly speaking, there are two approaches
to dealing with the degenerate case, where each approach is linked to the method used to
solve the QP subproblem. The first approach employs a QP method that not only finds
the QP solution x̂k, but also identifies a “basic set” of variables that define a matrix J̃k

with linearly independent rows. The second approach solves a regularized or perturbed QP

subproblem that provides a perturbed version of the KKT system (2.19) that is nonsingular
for any J̄k.

Identifying independent constraints. The first approach is based on using a QP al-
gorithm that provides a primal-dual QP solution that satisfies a nonsingular KKT system
analogous to (2.19). A class of quadratic programming methods with this property are
primal-feasible active-set methods, which form the basis of the software packages NPSOL

and SNOPT. Primal-feasible QP methods have two phases: in phase 1, a feasible point is
found by minimizing the sum of infeasibilities; in phase 2, the quadratic objective function
is minimized while feasibility is maintained. In each iteration, the variables are labeled as
being “basic” or “nonbasic”, where the nonbasic variables are temporarily fixed at their
current value. The indices of the basic and nonbasic variables are denoted by B and N
respectively. A defining property of the B–N partition is that the rows of the Jacobian
appearing in the KKT matrix are always linearly independent. Once an initial basic set is
identified, all subsequent KKT equations have a constraint block with independent rows.
(For more details of primal-feasible active-set methods, see Section A.1 of the Appendix.)

Let pk = x̂k−xk, where (x̂k, π̂k) is the QP solution found by a primal-feasible active-set

method. Let p̃k denote the vector of components of pk in the final basic set B, with J̃k the
corresponding columns of Jk. The vector (p̃k, π̂k) satisfies the nonsingular KKT equations

(
H̃k J̃T

k

J̃k 0

)(
p̃k

−π̂k

)
= −

(
(gk + Hkηk)B

ck + Jkηk

)
, (2.20)

where ηk is now defined in terms of the final QP nonbasic set, i.e.,

(ηk)i =

{
(x̂k − xk)i if i ∈ N ;

0 if i 6∈ N .
(2.21)
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As in (2.19), if the basic-nonbasic partition is not changed during the solution of the sub-
problem, then ηk = 0. If this final QP nonbasic set is used to define the initial nonbasic set
for the next QP subproblem, it is typical for the later QP subproblems to reach optimality in
a single iteration because the solution of the first QP KKT system satisfies the QP optimality
conditions immediately. In this case, the phase-1 procedure simply performs a feasibility
check that would be required in any case.

Constraint regularization. One of the purposes of regularization is to define KKT equa-
tions that are nonsingular regardless of the rank of J̄k. Consider the perturbed version of
equations (2.19) such that

(
H̄k J̄T

k

J̄k −µI

)(
p̄k

−π̂k

)
= −

(
(gk + Hkηk)I

ck + Jkηk

)
, (2.22)

where µ is a small positive constant. In addition, assume that Z̄T
k H̄kZ̄k is positive definite,

where the columns of Z̄k form a basis for the null space of J̄k. With this assumption, the
unperturbed KKT equations (2.19) are singular if and only if J̄k has linearly dependent
rows.

For simplicity, assume that ηk = 0. Let (U V ) be an orthonormal matrix such that the
columns of U form a basis for null(J̄T

k ) and the columns of V form a basis for range(J̄k).
The unique expansion π̂k = UπU + V πV allows us to rewrite (2.22) as




H̄k J̄T
k V

V T J̄k −µI
−µI






p̄k

−πV

−πU


 = −




(gk)I

V T ck

0


 , (2.23)

where J̄T
k U = 0 from the definition of U , and UT ck = 0 because ck ∈ range(J̄k). The

following simple argument shows that the equations (2.23) are nonsingular, regardless of
the rank of J̄k. First, observe that V TJ̄k has full row rank. Otherwise, if vTV TJ̄k = 0, it
must be the case that V v ∈ null(J̄T

k ). But since V v ∈ range(V ) and range(V ) is orthogonal
to null(J̄T

k ), we conclude that V v = 0, and the linearly independence of the columns of V
gives v = 0.

Moreover, equations (2.23) imply that πU = 0 and π̂k ∈ range(J̄k). If (gk+1)I denotes
the free components of gk+1 = gk + Hpk, then

J̄T
k π̂k = (gk+1)I and π̂k ∈ range(J̄k).

These are the necessary and sufficient conditions for π̂k to be the unique least-length solution
of the compatible equations J̄T

k π = (gk+1)I. This implies that the regularization gives a
unique vector of multipliers.

Wright [178, 179, 180] and Hager [119] show that an SQP method using the regularized
equations (2.22) will converge at a superlinear rate, even in the degenerate case. In Sec-
tion A.3 of the Appendix, QP methods are discussed that give equations of the form (2.22)
at every outer iteration, not just in the neighborhood of the solution. These methods im-
plicitly shift the constraints by an amount of order µ and give QP multipliers that converge
to an O(µ) estimate of the least-length multipliers.

A related regularization scheme has been proposed and analyzed by Fischer [59], who
solves a second QP to obtain the multiplier estimates. Anitescu [4] regularizes the problem
by imposing a trust-region constraint on the plain SQP subproblem (2.1) and solving the
resulting subproblem by a semidefinite programming method.
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3. The formulation of modern SQP methods

SQP methods have evolved considerably since Wilson’s thesis appeared in 1963. Current
implementations of SQP methods for large-scale optimization have solved problems with
as many as 40,000 variables and inequality constraints (see, e.g., Gill, Murray and Saun-
ders [85]). During this evolution, both the theory and practice of SQP methods have ben-
efited substantially from developments in competing methods. Similarly, research in SQP

methods has had a considerable impact on the formulation and analysis of rival methods—
for example, on the treatment of equality constraints in interior methods. On the surface,
many recent SQP methods bear little resemblance to the plain SQP method proposed by
Wilson. In this section we review some of the principal developments in SQP methods since
1963 while emphasizing connections to other methods. In our discussion, we use the broad
definition of an SQP method as one that uses a quadratic programming subproblem to esti-
mate the active set. Implicit in this definition is the assumption that, in the neighborhood of
the solution, an SQP method will solve the Newton KKT equations (or some approximation)
defined in terms of the free variables.

The complex interrelationships that exist between optimization methods make it diffi-
cult (and controversial) to give a precise taxonomy of the many different SQP approaches.
Instead, we will discuss methods under four topics that, in our opinion, were influential
in shaping developments in the area. Each of these topics will provide a starting-point
for discussion of related methods and extensions. The topics are: (i) merit functions and
the Han-Powell SQP method, (ii) sequential unconstrained methods, (iii) line-search and
trust-region filter methods, and (iv) methods that solve a convex program to determine an
estimate of the active set. The modern era of SQP methods can be traced to the publication
of the Han-Powell method in 1976 [120,155]. (It may be argued that almost all subsequent
developments in SQP methods are based on attempts to correct perceived theoretical and
practical deficiencies in the Wilson-Han-Powell approach.) The sequential unconstrained
approaches to SQP have evolved from a 1982 paper by Fletcher [62,63]. Filter SQP methods
are a more recent development, being proposed by Fletcher and Leyffer [67,68] in 1998.

3.1. Review of line-search and trust-region methods

Our discussion of the equality constrained problem in Section 2.1.1 emphasizes the local
equivalence between a plain SQP method and Newton’s method applied to the first-order
optimality conditions. As the Newton iterates may diverge or may not be well-defined if
the starting point is not sufficiently close to a solution, some modification is needed to force
convergence from arbitrary starting points. Line-search methods and trust-region methods
are two alternative modifications of Newton’s method. We begin by reviewing the main
properties of these methods in the context of unconstrained minimization.

3.1.1. Line-search methods: the unconstrained case

Associated with the kth iteration of a conventional line-search method for unconstrained
optimization is a scalar-valued function mk(x) that represents a local line-search model of
f . The next iterate is then xk+1 = xk + dk, where dk is chosen so that the improvement in
f is at least as good as a fixed fraction of the improvement in the local model, i.e., dk must
satisfy

f(xk)− f(xk + dk) ≥ η
(
mk(xk)−mk(xk + dk)

)
, (3.1)

where η is a fixed parameter such that 0 < η < 1
2 . Typical line-search models are affine

and quadratic functions based on a first- or second-order Taylor-series approximation of
f . For example, a first-order approximation provides the affine line-search model mk(x) =
f(xk) + g(xk)T(x − xk). In a general line-search method, the change in variables has the
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form dk ≡ dk(αk), where αk is a scalar steplength that defines a point on the parameterized
path dk(α). In the simplest case, dk(α) = αpk, where pk is an approximate solution of the
unconstrained subproblem minp∈Rn gT

kp+ 1
2pTBkp, with Bk a positive-definite approximation

of the Hessian Hk. More generally, if Hk is indefinite, dk(α) is defined in terms of pk and
a direction sk such that sT

kHksk < 0 (see, e.g., Goldfarb [101], Moré and Sorensen [140],
and Olivares, Moguerza and Prieto [146]). A crucial feature of a line-search method is
that dk(α) is defined in terms of a convex subproblem, which may be defined implicitly
during the calculation of pk; see, e.g., Greenstadt [114], Gill and Murray [82], Schnabel and
Eskow [168]).

Condition (3.1) may be written as f(xk)− f(xk + dk) ≥ η∆mk(dk), where the quantity

∆mk(d) = mk(xk)−mk(xk + d) (3.2)

is the change in f predicted by the line-search model function. An essential property of the
line-search model is that it must always be possible to find an αk that satisfies (3.1). In
particular, there must exist a positive ᾱ such that

f(xk + dk(α)) ≤ f(xk)− η∆mk

(
dk(α)

)
, for all α ∈ (0, ᾱ). (3.3)

For this condition to hold, the model must predict a reduction in f(x) at x = xk, i.e.,
∆mk

(
dk(α)

)
> 0 for all α ∈ (0, ᾱ). Under the assumption that (3.3) holds, there are various

algorithms for finding an appropriate αk. For example, in a backtracking line search, the step
αk = 1 is decreased by a fixed factor until condition (3.1) is satisfied. It can be shown that
this simple procedure is enough to guarantee a sufficient decrease in f . More sophisticated
methods satisfy (3.1) in conjunction with other conditions that ensure a sufficient decrease
in f (see, e.g., Ortega and Rheinboldt [147], Moré and Thuente [142], and Gill et al. [88]).

The line-search methods defined above enforce a monotone decrease in f at each iteration.
In some cases the definition of dk(α) may warrant the use of a nonmonotone line search
in which f is permitted to increase on some iterations. An example of a nonmonotone
line-search condition is

f(xk + dk(α)) ≤ max
0≤j≤r

[f(xk−j)]− η∆mk

(
dk(α)

)
,

where r is some fixed number of previous iterations (for other schemes of varying complex-
ity, see, e.g., Grippo, Lampariello and Lucidi [115, 116, 117], Toint [172], and Zhang and
Hager [185]). In Section 3.2, we discuss the “watchdog technique”, which is a nonmonotone
line search that allows the value αk = 1 to be used for a limited number of steps, regardless
of the value of f .

3.1.2. Trust-region methods: the unconstrained case

When there are no constraints, line-search methods and trust-region methods have many
properties in common. Both methods choose the value of a scalar variable so that the
objective improves by an amount that is at least as good as a fraction of the improvement
in a local model (see condition (3.1)). A crucial difference is that a line-search method
involves the solution of a bounded convex subproblem. By contrast, trust-region methods
solve a constrained, possibly nonconvex, subproblem of the form

min
d∈Rn

gT
kd + 1

2dTHkd subject to ‖d‖ ≤ δk, (3.4)

with condition (3.1) being enforced, if necessary, by reducing the positive scalar δk (the trust-
region radius). The final value of δk is also used to define an initial estimate of δk+1, with
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the possibility that δk+1 is increased to a multiple of δk if the reduction in f is significantly
better than the reduction predicted by the model. If the trust-region radius is reduced
over a sequence of consecutive iterations, the step dk will go to zero along the direction of
steepest descent with respect to the particular norm used to define the trust region. As in
a line search, it is possible to define trust-region methods that do not enforce a reduction
in f at every step (see, e.g., Gu and Mo [118]).

The complexity of constrained minimization is generally higher than that of uncon-
strained minimization. Moreover, the trust-region subproblem may need to be solved more
than once before the condition (3.1) is satisfied. Nevertheless, trust-region methods pro-
vide computational benefits when some of the eigenvalues of Hk are close to zero (see
Kroyan [128]). Modern trust-region methods require only an approximate solution of (3.4).
For a comprehensive review of trust-region methods for both unconstrained and constrained
optimization, see Conn, Gould and Toint [43].

3.2. The Han-Powell method

Han [121] and Powell [155] introduced two crucial improvements to the plain SQP method
of Wilson. The first was the use of a QP subproblem defined in terms of a positive-definite

quasi-Newton approximation. The second was the use of a line-search merit function to
obtain a sequence of improving estimates of the solution.

A merit function M is a scalar-valued function whose value provides a measure of the
quality of a given point as an estimate of a solution of the constrained problem. Each value
of M represents a compromise between the (usually conflicting) aims of minimizing the
objective function and minimizing the constraint violations. Analogous to the unconstrained
case, the merit function is used in conjunction with a line-search model mk(x) to define a
sufficient decrease at the kth iteration. In the constrained case, dk is chosen to satisfy

M(xk)−M(xk + dk) ≥ η
(
mk(xk)−mk(xk + dk)

)
, xk + dk ≥ 0. (3.5)

Han and Powell proposed the use of the ℓ1 penalty function (1.8) as a merit function, i.e.,
M(x) △

= M(x; ρ) = P1(x; ρ). Moreover, they suggested that dk(α) = αpk = α(x̂k − xk),
where x̂k is the solution of the convex subproblem

minimize
x∈Rn

fk + gT
k(x− xk) + 1

2 (x− xk)TBk(x− xk)

subject to ck + Jk(x− xk) = 0, x ≥ 0,
(3.6)

with Bk a positive-definite approximation to the Hessian of the Lagrangian or augmented
Lagrangian (in Section 3.2.1 below, we discuss the definition of Bk in this context). As
the QP (3.6) is convex, it may be solved using either a primal or dual active-set method
(see Section A.1 of the Appendix). In either case, the QP multipliers π̂k, and vector p̃k of
components of pk in the final basic set satisfy the nonsingular KKT equation

(
B̃k J̃T

k

J̃k

)(
p̃k

−π̂k

)
= −

(
(gk + Bkηk)B

ck + Jkηk

)
, (3.7)

where B̃k and J̃k denote the matrices of basic components of Bk and Jk and ηk is defined
as in (cf. (2.21)).

3.2.1. Quasi-Newton approximations

Many methods for unconstrained minimization use a quasi-Newton approximation of the
Hessian when second derivatives are either unavailable or too expensive to evaluate. Ar-
guably, the most commonly used quasi-Newton approximation is defined using the BFGS
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method (see Broyden [15], Fletcher [60], Goldfarb [100], and Shanno [169]). Given iterates
xk and xk+1, and a symmetric approximate Hessian Bk, the BFGS approximation for the
next iteration has the form

Bk+1 = Bk −
1

dT
kBkdk

BkdkdT
kBk +

1

yT
kdk

ykyT
k , (3.8)

where dk = xk+1 − xk and yk = g(xk+1) − g(xk). If Bk is positive definite, then Bk+1 is
positive definite if and only if the approximate curvature yT

k dk is positive.
For the constrained case, Han [121] proposed maintaining a BFGS approximation of the

Hessian of the augmented Lagrangian function

LA(x, π; ρ) = f(x)− c(x)T π + 1
2ρc(x)Tc(x).

(As the Hessian of the Lagrangian does not include the linear constraints, we have omitted
z from the Lagrangian term.) This implies that the gradient difference yk in (3.8) involves
the gradient of the augmented Lagrangian, with

dk = xk+1 − xk, and yk = ∇xLA(xk+1, πk+1; ρ)−∇xLA(xk, πk+1; ρ),

where πk+1 are estimates of the optimal dual variables. This proposal is motivated by the
fact that if ρ is sufficiently large, the Hessian of L(x, π; ρ) is positive definite for all (x, π)
close to an isolated solution (x∗, π∗) (see also, Tapia [170], and Byrd, Tapia and Zhang [30]).

The use of an augmented Lagrangian Hessian for the QP subproblem changes the prop-
erties of the QP dual variables. In particular, if (x̂k, π̂k, ẑk) is the solution of the QP (3.6)
with Bk defined as Hk + ρJT

k Jk, then (x̂k, π̂k + ρck, ẑk) is the solution of the QP (3.6) with
Bk replaced by Hk (assuming that the same local solution is found when Hk is not positive
definite). In other words, if the augmented Lagrangian Hessian is used instead of the La-
grangian Hessian, the x and z variables do not change, but the π-values are shifted by ρck.
An appropriate value for πk+1 in the definition of yk is then πk+1 = π̂k + ρck, giving, after
some simplification,

yk = gk+1 − gk − (Jk+1 − Jk)T π̂k + ρJT
k+1(ck+1 − ck).

If the approximate curvature yT
k dk is not positive, the matrix Bk+1 of (3.8) is either

indefinite or undefined. In terms of an update to the Hessian of the augmented Lagrangian,
a negative yT

k dk implies that either ρ is not sufficiently large, or the curvature of the penalty
term 1

2ρc(x)Tc(x) is negative along dk. In the first case, ρ must be increased by an amount
that is sufficiently large to give a positive value of yT

kdk. In the second case, the approximate
curvature of the Lagrangian is not sufficiently positive and there is no finite ρ that gives
yT

kdk > 0. In this case, the update should be skipped. The curvature is considered not
sufficiently positive if

yT
kdk < σk, σk = αk(1− η)pT

kBkpk, (3.9)

where η is a preassigned constant (0 < η < 1) and pk is the search direction x̂k−xk defined
by the QP subproblem. If yT

kdk < σk, then ρ is replaced by ρ + ∆ρ, where

∆ρ =





σk − yT
k dk

dT
k JT

k+1(ck+1 − ck)
, if dT

k JT
k+1(ck+1 − ck) > 0;

0, otherwise.

If ∆ρ = 0, the approximate curvature of c(x)Tc(x) is not positive and the update should be
skipped.
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Maintaining an approximation of the Hessian of LA(x;π, ρ) involves a number of difficul-
ties, all of which stem from the need to increase the value of ρ. First, the usual convergence
of the sequence {Bk} is disrupted when ρ is increased. Second, a large increase in ρ will
give an ill-conditioned matrix Bk+1. Finally, because ρ is always increased, the ill-effects of
large values of ρ persist throughout the computation.

Powell [155] suggested the use of a positive-definite BFGS approximation for the La-

grangian Hessian, i.e., the update pair is

dk = xk+1 − xk, yk = ∇xL(xk+1, πk+1, zk+1)−∇xL(xk, πk+1, zk+1). (3.10)

If the QP multipliers are used for πk+1, the difference in Lagrangian gradients is given by
yk = gk+1 − gk − (Jk+1 − Jk)T π̂k.

A positive-definite BFGS approximation may appear to be a surprising choice for Bk,
given that the Hessian of the Lagrangian is generally indefinite at the solution. However,
Powell’s proposal is based on the observation that the approximate curvature is likely to be
positive in the neighborhood of an isolated solution, even when the Hessian of the Lagrangian
is indefinite. The reason for this is that the iterates of a quasi-Newton SQP converge to the
solution along a path that lies in the null space of the “free” columns of the Jacobian.
As the Lagrangian Hessian is generally positive definite along this path, the approximate
curvature yT

k dk is positive as the iterates converge and an R-superlinear convergence rate is
obtained. Powell’s proposal may be justified by considering the properties of (x̂k, π̂k), the
solution of the QP subproblem. Let pk = x̂k − xk and ĝ(x) = gk + Bk(x− xk). It is shown
in Section A.4.1 of the Appendix that (x̂k, π̂k) satisfies the equations

UkpY = −ck, pN = YkpY ,

xF = xk + pN , ZT
k BkZkpZ = −ZT

k ĝ(xF ), pT = ZkpZ ,

pk = pN + pT , UT
k π̂k = Y T

k ĝ(xk + pk),

(3.11)

where Uk is nonsingular and the columns of Zk lie in the null space of Jk. These equations
indicate that the QP step is the sum of the vectors pN and pT , where pN is the Newton
step to the linearized constraints and pT is a quasi-Newton step based on approximate

second-derivative information associated with the reduced Hessian ZT
k BkZk. Because of

this disparity in the quality of the Newton steps, the constraints tend to converge to zero

faster than the reduced gradient and the convergence of a quasi-Newton SQP method is
characterized by the relationship ‖pN‖/‖pT‖ → 0, i.e., the final search directions lie almost
wholly in the null space of J(x∗).

If xk is far from a solution, the approximate curvature yT
k dk may not be positive and the

formula (3.8) will give an indefinite or undefined Bk+1. If, as in the case of unconstrained
minimization, the update is skipped when yT

k dk ≤ 0, no new information about curvature
of the Lagrangian will be gained. In this situation, an alternative pair of vectors satisfying
yT

k dk > 0 can be used. Given the definition (3.9) of the least permissible approximate
curvature, Powell [154] redefines yk as yk +∆yk, where ∆yk chosen so that (yk +∆yk)Tdk =
σk, i.e.,

∆yk =
σk − yT

k dk

dT
k (yk −Bkdk)

(
yk −Bkdk

)
.

The Powell modification is always well defined, which implies that it is always applied—even
when it might be unwarranted because of negative curvature of the Lagrangian in the null
space of J̃k (cf. (3.7)).

3.2.2. Properties of the merit function

The Han-Powell merit functionM(x; ρ) = P1(x; ρ) has the appealing property that x∗ is an
unconstrained minimizer of P1(x; ρ) for ρ > ‖π∗‖∞ (see, e.g., Zangwill [184], and Han and
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Mangasarian [122]). A potential line-search model for P1(x; ρ) is

mk(x; ρ) = fk + gT
k(x− xk) + 1

2 (x− xk)TBk(x− xk) + ρ‖ck + Jk(x− xk)‖1,

which is the ℓ1 penalty function defined with local affine and quadratic approximations for
c and f . However, because Bk is positive definite, a stronger condition on α is defined by
omitting the quadratic term and using the line-search model

mk(x; ρ) = fk + gT
k(x− xk) + ρ‖ck + Jk(x− xk)‖1. (3.12)

To obtain a smaller value of P1(x; ρ) at each iteration, the line-search model must satisfy
∆mk(dk; ρ) > 0, where ∆mk(d; ρ) is the predicted reduction in M analogous to (3.2). The
optimality conditions (2.18) for the QP subproblem together with the affine model (3.12)
defined with x = xk + αpk allow us to write the predicted reduction as

∆mk(αpk; ρ) = α
(
ρ‖ck‖1 + cT

kπ̂k − pT
kẑk + pT

kBkpk

)

= α
(
ρ‖ck‖1 + cT

kπ̂k − (x̂k − xk)Tẑk + pT
kBkpk

)
. (3.13)

The QP optimality conditions give x̂k · ẑk = 0, yielding

∆mk(αpk; ρ) = α
(
ρ‖ck‖1 + cT

kπ̂k + xT
kẑk + pT

kBkpk

)

≥ α
( m∑

i=1

|ci(xk)|
(
ρ− |(π̂k)i|

)
+ ‖xk · ẑk‖1 + pT

kBkpk

)
.

This inequality implies that if Bk is positive definite, then a sufficient condition for the
inequality ∆mk(αpk; ρ) > 0 to hold is ρ ≥ ‖π̂k‖∞. Han [120] uses this condition to define
a nondecreasing sequence {ρk} such that ρk > ‖π̂j‖∞ for all k ≥ j. With this definition of
{ρk}, and under assumptions that include the uniform boundedness of the sequence {Bk}
and the existence of at least one nonnegative x such that ck+Jk(x−xk) = 0, Han shows that
all accumulation points of the sequence {xk} are first-order KKT points of the constrained
problem (1.2).

3.2.3. Extensions

The introduction of the Wilson-Han-Powell SQP method (i.e., the plain SQP method with
a convex subproblem and a line-search with respect to a merit function) had an immediate
beneficial effect on the performance of optimization codes. However, as is the case with
all successful innovations, it was not long before certain issues were identified that have
an impact on performance and reliability. In this section we consider some of these issues
and outline some extensions of the Wilson-Han-Powell method that are intended to address
them.

The Maratos effect and alternative merit functions. The value of the penalty pa-
rameter in the ℓ1 merit function M in (3.5) can have a substantial effect on the overall
efficiency of an SQP method. When solving a sequence of related problems, it may be
possible to provide a good estimate of the optimal multipliers, and a value of ρ ≈ ‖π∗‖∞
can be specified. When ρ is large relative to the magnitude of f , the level surfaces of M
closely resemble the constraint surface c(x) = 0. If the constraints are changing rapidly and
the SQP outer iterates become close to a nonoptimal point near the constraints (as is the
case for methods that use a quasi-Newton approximation Bk, see Section 3.2.1), the iterates
must negotiate the base of a steep-sided curved valley. In this situation, the affine model
of the constraints provides for only a limited amount of progress along the SQP direction,
and the step α = 1 fails to reduce the value of M. This rejection of the plain SQP step
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near x∗ causes a breakdown of the superlinear convergence rate. Various strategies have
been devised to prevent this phenomenon, which is known as the “Maratos effect” (see
Maratos [136]). One approach is to use a “nonmonotone” line search that allows the merit
function to increase for a limited number of iterations (see, e.g., Chamberlain et al. [31],
and Dai and Schittkowski [46]).

Another approach, proposed by Fletcher [63], seeks to reduce the magnitude of the
penalty term by computing a second-order correction to the Newton step. The second-order
correction uses the step pk + sk, where the step sk is the solution of a second subproblem:

minimize
s∈Rn

fk + gT
k(pk + s) + 1

2 (pk + s)TBk(pk + s)

subject to c(xk + pk) + Jks = 0, xk + pk + s ≥ 0.
(3.14)

The second-order correction requires an additional constraint evaluation at the SQP point
xk + pk.

If a feasible-point active-set method is used to solve (3.6) and the subproblem is started
with the basic set from the previous iteration, the second-order correction need be computed
only if (3.6) is solved in one iteration, which is a necessary condition for the method to be
in the final stages of convergence. If the solution of (3.14) is also identified in one iteration

and J̃k is the matrix of basic columns of Jk, then sk satisfies the equations

(
B̃k J̃T

k

J̃k 0

)(
sk

−π̄k

)
= −

((
gk + Bk(pk + ηk)

)
B

c(xk + pk) + Jkηk

)
, (3.15)

where π̄k is the vector of optimal multipliers for (3.14) and ηk is defined as in (2.21). In this
situation, if some factorization of the KKT matrix is available on termination of the solution
of (3.6), the correction may be obtained with just one solve with a different right-hand side.
For an analysis of the rate of convergence, see Fletcher [63] and Yuan [182].

Other merit functions may be defined for different choices of the norm of the constraint
violations. For the infinity-norm, the ℓ∞ penalty function P∞(x; ρ) defined in (1.9) may be
used in conjunction with the line-search model

mk(x; ρ) = fk + gT
k(x− xk) + ρ‖ck + Jk(x− xk)‖∞.

This model predicts a reduction in P∞(x; ρ) if pT
k Bkpk ≥ 0 and ρ > ‖π̂k‖1. Anitescu [3]

considers the convergence of the ℓ∞ merit function when applied with various line-search
strategies and a convex QP subproblem.

Like its ℓ1 counterpart, the ℓ∞ penalty function can exhibit the Maratos effect for large
values of ρ. Merit functions that do not have this problem may be defined by using a smooth
norm for the constraint violations. In general, a merit function may be defined in terms of
the primal variables only, or may include estimates of the Lagrange multipliers. A merit
function that does not suffer from the Maratos effect is the augmented Lagrangian function:

M(x, π; ρ) ≡ f(x)− πT c(x) + 1
2ρc(x)T c(x), (3.16)

where π is a multiplier estimate and ρ is a nonnegative penalty parameter. Schittkowski [165,
166, 167], and Gill et al. [95, 85] define SQP methods in which both the primal and dual
variables are modified by the line search, with

xk+1 = xk + αkpk, πk+1 = πk + αkqk, (3.17)

where the primal-dual search directions pk = x̂k − xk and qk = π̂k − πk are based on
the solution (x̂k, π̂k) of a convex QP with a quasi-Newton Hessian. When an augmented
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Lagrangian is used in the conventional role as an objective function for sequential uncon-
strained minimization, new multiplier estimates are obtained by maximizing with respect
to the dual variables. In the SQP context, the inclusion of the dual variables as arguments
for minimization serves to make the augmented Lagrangian a continuous function of both
the primal and dual variables, with the step length acting as a continuation parameter that
links the old and new values of π. If necessary, the penalty parameter is increased to ensure
that the primal-dual direction is a descent direction for the merit function. However, it can
be shown that under typical assumptions on the problem, the penalty parameter remains
bounded (see Gill et al. [95], and Murray and Prieto [144] for details). If the objective is
convex and the feasible region is a convex set, it is often the case that the penalty parameter
never needs to be increased from an initial value of zero.

A number of line-search SQP methods have been proposed that use variants of the
conventional augmented Lagrangian as a merit function (see, e.g., DiPillo and Grippo [50],
Bertsekas [7], Byrd, Tapia and Zhang [30], and Anitescu [3]). A primal-dual augmented
Lagrangian has been proposed by Gill and Robinson [97]. Given an estimate πE of the
multipliers π∗, consider the function

LA(x, π;πE, µ) = f(x)− c(x)T πE +
1

2µ
‖c(x)‖22

+
1

2µ
‖c(x) + µ(π − πE)‖2, (3.18)

where µ is a positive inverse penalty parameter (see also, Forsgren and Gill [72], Robin-
son [157], and Gill and Robinson [97]). The primal-dual augmented Lagrangian has a
bound-constrained minimization property analogous to the conventional augmented La-
grangian (1.11). In particular, if πE is given the value of the optimal multiplier vector π∗,
then (x∗, π∗) is a first-order KKT point for the bound-constrained problem

minimize
x∈Rn; π∈Rm

LA(x, π;π∗, µ) subject to x ≥ 0.

Moreover, if the second-order sufficient conditions for optimality hold, then there exists
a finite µ̄ such that (x∗, π∗) is an isolated unconstrained minimizer of LA for all µ < µ̄.
It follows that LA may be minimized simultaneously with respect to both the primal and
dual variables. A benefit of using LA as an SQP merit function is that it may be used in
conjunction with a regularized method for solving the QP subproblem (see Section A.3 of
the Appendix for details).

We conclude this section by mentioning methods that avoid the need for a merit function
altogether by generating iterates that are always feasible. In many physical and engineering
applications, the constraint functions not only characterize the desired properties of the
solution, but also define a region in which the problem statement is meaningful (for example,
f(x) or some of the constraint functions may be undefined outside the feasible region). In
these applications, an interior point can usually be determined trivially. Interior methods
are therefore highly appropriate for this class of problem. However, several SQP methods
have been proposed for optimization in this context, see, e.g., Lawrence and Tits [129],
and Kostreva and Chen [126,127]. These methods are suitable for problems that have only
inequality constraints, the only exception being linear equality constraints, which can be
kept feasible at every iterate (see, e.g., Gill, Murray and Wright [96]).

Formulation of the QP subproblem. A potential difficulty associated with SQP methods
based on the direct linearization of the nonlinear constraints, is that the QP subproblem may
be infeasible. This can be caused by the nonlinear constraints being infeasible, or by a poor
linearization at the current iterate. In the context of the Wilson-Han-Powell method, this
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problem may be resolved by perturbing the QP subproblem so that the constraints always
have a feasible point. The magnitude of the perturbation is then reduced or eliminated as
the iterates converge. Powell [155] focused on the case of an infeasible linearization and
considered the modified QP:

minimize
x∈Rn,θ∈R1

fk + gT
k(x− xk) + 1

2 (x− xk)TBk(x− xk) + 1
2ρk(1− θ)2

subject to (1− θ)ck + Jk(x− xk) = 0, x + θ [xk ]− ≥ 0,
(3.19)

where [ x ]− is the vector with components max{−xi, 0}, and θ is an additional variable that
is driven to zero by increasing the nonnegative penalty parameter ρk. The modified QP is
always feasible—for example, the point (x, θ) = (xk, 1) satisfies the constraints.

Burke [22, 23], and Burke and Han [24] use a different approach that is based on the
observation that the problem (1.2) is actually two problems in one: the feasibility problem

of satisfying the constraints, and the optimality problem of minimizing f . They define a
line-search algorithm that has the primary goal of attaining feasibility.

The computation of the line-search direction is organized into two phases. The first
phase ignores the objective and computes a descent direction for a function that measures
the distance of an arbitrary point to the set of feasible points for the nonlinear problem.
The required direction is computed by minimizing the distance to the feasible set for the
linearized constraints. For the second phase, the constraint residuals corresponding to the
optimal value of the distance function are used to modify the constraints of the conventional
QP subproblem. The modified QP is always feasible, and the resulting direction is used in
a line search with a merit function that includes a term involving the value of the distance
function. Under certain assumptions, this procedure provides a sequence that converges to
a first-order stationary point of either the original problem or the distance function.

The definition of the distance function requires a choice of norm, although Burke and
Han provide a general analysis that is independent of the norm. For simplicity, we describe
the computations for each phase when the distance function is defined in terms of the one-
norm. Given current values of parameters σk and βk such that 0 < σk ≤ βk, the first phase
involves the solution of the linear program

minimize
x,v∈Rn; u∈Rm

eTu + eTv

subject to −u ≤ ck + Jk(x− xk) ≤ u, x + v ≥ 0, v ≥ 0,

−σke ≤ x− xk ≤ σke.

(3.20)

This problem gives vectors u and v of least one-norm for which the constraints ck + Jk(x−
xk) = u, x + v ≥ 0 and ‖x − xk‖∞ ≤ σk are feasible. If the original linearized constraints
are feasible, then the work necessary to solve problem (3.20) is comparable to that of the
feasibility phase of a two-phase active-set method for the plain QP subproblem (see Sec-
tion A.1). The difference is the extra expense of locating a bounded feasible point with
least-length distance from xk. Let xF denote the computed solution of the phase-1 problem
(3.20). The computation for phase 2 involves the solution of the QP:

minimize
x∈Rn

fk + gT
k(x− xk) + 1

2 (x− xk)TBk(x− xk)

subject to ck + Jk(x− xk) = ĉk(xF ), x + [ xF ]− ≥ 0,

−βke ≤ x− xk ≤ βke,

(3.21)

where, as usual, ĉk(x) denotes the vector of linearized constraint functions ĉk(x) = ck +
Jk(x − xk). The phase-2 problem (3.21) is a convex program with bounded solution x̂k

(say). This solution is used to define the search direction pk = x̂k − xk for a line search on
the merit function

M(x) = f(x) + ρk‖c(x)‖1 + ρk‖ [x ]− ‖1.
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Once xk+1 = xk + αkpk has been determined, the positive-definite approximate Hessian Bk

is updated as in the conventional Han-Powell method. For details on how the parameters
ρk, σk and βk are updated, the reader is referred to Burke and Han [24]. Other related
variants of the Wilson-Han-Powell formulation are proposed by Liu and Yuan [132], and
Mo, Zhang and Wei [137].

Another approach to the treatment of infeasibility is to modify the original nonlinear

constraints so that the linearized constraints of the QP subproblem are always feasible. This
is the approach taken in the method of SNOPT (see Gill, Murray and Saunders [85]). The
method proceeds to solve (1.2) as given, using QP subproblems based on the conventional
linearization of the nonlinear constraints. If a QP subproblem proves to be infeasible or
unbounded (or if the Lagrange multiplier estimates become large), SNOPT enters nonlinear

elastic mode and switches to the nonlinear elastic problem (1.4). The QP subproblem for
the nonlinear elastic problem is given by

minimize
x∈Rn; u,v∈Rm

f̂k(x) + ρkeTu + ρkeTv

subject to ck + Jk(x− xk)− u + v = 0,

x ≥ 0, u ≥ 0, v ≥ 0,

(3.22)

where f̂k(x) + ρkeTu + ρkeTv is the composite QP objective and ρk is a nonnegative penalty

parameter or elastic weight analogous to the quantity defined in Section 1.3. This problem
is always feasible and the solution is used in conjunction with a merit function defined in
terms of the nonlinear elastic problem (1.4).

Quasi-Newton updates and indefiniteness. A necessary condition for Q-superlinear
convergence is that the approximate Hessian matrices {Bk} satisfy

lim
k→∞

‖ZkZT
k

(
Bk −H(x∗, π∗)

)
ZkZT

k dk‖

‖dk‖
= 0,

where Zk is the matrix defined in (3.11) (see Boggs and Tolle [10]). The definition of yk

and dk should ensure that this condition is satisfied as the solution is approached, so that
Q-superlinear convergence is not inhibited.

One possible modification uses the intermediate point xF defined by equations (3.11).
If xF is known, new values of dk and yk are computed based on evaluating the nonlinear
functions at the point wk = xk + αk(xF − xk). The BFGS update is then attempted using
the update pair:

dk = xk+1 − wk, yk = ∇xL(xk+1, πk+1, zk+1)−∇xL(wk, πk+1, zk+1).

The purpose of this modification is to exploit the properties of the reduced Hessian in the
neighborhood of a local minimizer of (2.4). With this choice of wk, the change in variables
is dk = xk+1 − wk = αkpT , where pT is the vector x̂k − xF (see (3.11) above). Then,

yT
kdk = αkyT

k p
T
≈ α2

kpT
T
H(xk, πk+1)pT

= α2
kpT

Z
ZT

kH(wk, πk+1)Zkp
Z
.

It follows that yT
kdk approximates the curvature of the reduced Hessian, which is positive

definite sufficiently close to an isolated local minimizer of (2.4). If this modification does
not provide sufficiently positive approximate curvature, no update is made. An additional
function evaluation is required at wk, but the modification is rarely needed more than a
few times—even when the Hessian of the Lagrangian has negative eigenvalues at a solution.
(For further information, see Gill, Murray and Saunders [85].)
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Large-scale Hessians. If the number of variables is large, conventional quasi-Newton
methods are prohibitively expensive because of the need to store the (dense) matrix Bk. A
limited-memory approach uses a fixed number of vectors, say ℓ, to define a positive-definite
approximation to H(xk, πk) based on curvature information accrued during the most recent
ℓ iterations. Let ℓ be preassigned (say ℓ = 10), and consider any iteration k such that

k ≥ ℓ− 1. Given any initial positive-definite approximation B
(0)
k to H(xk, πk), consider the

sequence of matrices {B
(i)
k }, for i = k − ℓ, k − ℓ + 1, . . . , k, such that

B
(k−ℓ)
k = B

(0)
k , B

(i+1)
k = B

(i)
k + viv

T
i − uiu

T
i , i = k − ℓ, . . . , k − 1,

where the {(ui, vi)} are ℓ vector pairs with each pair (ui, vi) defined in terms of (dk−ℓ, yk−ℓ),
. . . , (di−1, yi−1) (cf. (3.10)) via

ui =
1

(dT
i B

(i)
k di)

1
2

B
(i)
k di, and vi =

1

(yT
i di)

1
2

yi.

Similar limited-memory quasi-Newton methods are described by Nocedal and Wright [145],
Buckley and LeNir [16, 17] and Gilbert and Lemaréchal [78]. More elaborate schemes are
given by Liu and Nocedal [131], Byrd, Nocedal, and Schnabel [28], and Gill and Leonard [81],
and some have been evaluated by Morales [138].

The definition of Bk requires the ℓ pairs (ui, vi). Each of the vectors ui (k−ℓ ≤ i ≤ k−1)

involves the product B
(i)
k di, which is computed using the recurrence relation

B
(i)
k di = B

(0)
k di +

i−1∑

j=k−ℓ

(
(vT

j di)vj − (uT
j di)uj

)
.

For the vectors vi (k − ℓ ≤ i ≤ k − 1) and scalars vT
j di (k − ℓ ≤ j ≤ i − 1), only vk−1 and

vT
j dk−1 (k − ℓ ≤ j ≤ k − 2) need to be computed at iteration k as the other quantities are

available from the previous iteration.
A separate calculation may be used to update the diagonals of Bk from (3.8). On

completion of iteration k, these diagonals form the next positive-definite B
(0)
k+1. Then, at

the kth iteration, we define the approximate Hessian

Bk = B
(k)
k = B

(0)
k + VkV T

k − UkUT
k ,

where Uk = ( uk−ℓ uk−ℓ+1 · · · uk−1 ) and Vk = ( vk−ℓ vk−ℓ+1 · · · vk−1 ). It must
be emphasized that Bk is not computed explicitly. Many sparse QP solvers access Bk by
requesting products of the form Bku. These are computed with work proportional to ℓ.
For situations where the QP solver solves an explicit sparse system of the form (3.7), the
solution may be found using the bordered matrix




B̃
(0)
k J̃T

k Ṽ T
k ŨT

k

J̃k

Ṽk I

Ũk −I







pk

−π̂k

r
s


 = −




(gk + Bkηk)B

ck + Jkηk

0
0


 ,

where B̃
(0)
k , J̃k, Ṽk and Ũk denote the matrices of basic components of B

(0)
k , Jk, Vk and Uk.

Following [90, Section 3.6.2], if we define

K0 =

(
B̃

(0)
k J̃T

k

J̃k

)
, S =

(
I
−I

)
−

(
Ṽ T

k

ŨT
k

)
K−1

0

(
Ṽk Ũk

)
,
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it would be efficient to work with a sparse factorization of K0 and dense factors of its Schur
complement S. (For a given QP subproblem, U and V are constant, but changes to J̃k

would be handled by appropriate updates to the Schur complement. See Section A.4.2 of
the Appendix.) For general QP solvers that require an explicit sparse Hessian, the limited-
memory updates can be applied implicitly by including additional linear equality constraints
in the QP subproblem, see Gould and Robinson [109]. Bradley [13] describes a BFGS
limited-memory method for SQP that employs a diagonal approximation in conjunction
with a circular buffer.

In practice, the quasi-Newton approximation may become indefinite because of rounding
error and it is better numerically to write Bk in the form Bk = GT

k Gk, where Gk is the
product of elementary matrices

Gk = G
(0)
k

k−1∏

j=k−ℓ

(I + djw
T
j ), (3.23)

with B
(0)
k = G

(0)T
k G

(0)
k and wj = (±vj − uj)/(dT

jB
(j)
k dj)

1
2 (see Brodlie, Gourlay and Green-

stadt [14], Dennis and Schnabel [49], and Gill, Murray and Saunders [85]). The sign of vj

may be chosen to minimize the rounding error in computing wj . The quantities (dj , wj) are
stored for each j. During outer iteration k, the QP solver accesses Bk by requesting prod-
ucts of the form Bkz. These are computed with work proportional to ℓ using the recurrence
relations:

z ← z + (wT
j z)dj , j = k − 1 : k − ℓ; z ← G

(0)
k z;

t ← G
(0)T
k z; t ← t + (dT

j t) wj , j = k − ℓ : k − 1.

Products of the form uTBku are easily and safely computed as ‖z‖22 with z = Gku.
In a QP solver that updates the Schur complement matrix an explicit sparse Hessian,

the system (3.7) with Bk = GT
k Gk is equivalent to




B̃
(0)
k J̃T

k ũk−ℓ w̃k−ℓ · · · ũk−1 w̃k−1

J̃k

ũT
k−ℓ γk−ℓ −1

w̃T
k−ℓ −1

...
. . .

ũT
k−1 γk−1 −1

w̃T
k−1 −1







pk

−π̂k

rk−ℓ

sk−ℓ

...

rk−1

sk−1




= −




(gk + Bkηk)B

ck + Jkηk

0

0

...

0

0




,

where d̃j = (dj)B, ũj = (B
(j)
k dj)B, and γj = d̃T

j ũj (see Gill, Murray and Saunders [85], and
Huynh [125]).

An alternative form of the limited-memory update is used by Gill, Murray and Saun-
ders [85]. Let r and k denote two outer iterations such that r ≤ k ≤ r+ℓ. At iteration k the
BFGS approximate Hessian may be expressed in terms of ℓ updates to a positive-definite
Br:

Bk = Br +
k−1∑

i=r

(
viv

T
i − uiu

T
i

)
, (3.24)

where ui = Bidi/(dT
i Bidi)

1
2 , and vi = yi/(yT

i di)
1
2 . In this scheme, the k− r pairs (ui, vi) do

not need to be recomputed for each update. On completion of iteration k = r+ℓ, a total of ℓ
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pairs have been accumulated, and the storage is “reset” by discarding the previous updates.
Moreover, the definition of ui is simplified by the identity Bidi = −αi∇xL(x̂i, π̂i, ẑi) that
follows from the QP optimality conditions (2.18). As in the previous scheme, a separate
calculation may be used to update the diagonals of Bk from (3.8). On completion of iteration
k = r + ℓ, these diagonals form the next positive-definite Br (with r = k + 1).

This scheme has an advantage in the SQP context when the constraints are linear: the
reduced Hessian for the QP subproblem can be updated between outer iterations (see Sec-
tion A.4.1).

Early termination of QP subproblems. SQP theory usually assumes that the QP
subproblems are solved to optimality. For large problems with a poor starting point and
B0 = I, many thousands of iterations may be needed for the first QP, building up many
free variables that are promptly eliminated by more thousands of iterations in the second
QP. In general, it seems wasteful to expend much effort on any QP before updating Bk and
the constraint linearization.

Any scheme for early termination must be implemented in a way that does not compro-
mise the reliability of the SQP method. For example, suppose that the QP iterations are
terminated after an arbitrary fixed number of steps. If a primal active-set method is used
to solve the subproblem, the multipliers associated with QP constraints that have not been
optimized will be negative. Using these multipliers directly (or first setting them to zero)
in the definition of the Lagrangian function is problematic. The resulting search direction
may not be a descent direction for the merit function, or may require the penalty parameter
to be increased unnecessarily. For example, the value of the lower bound on the penalty
parameter for the ℓ1 merit function involves the values of the QP multipliers—see, (3.13).
Dembo and Tulowitzki [48] suggest using a dual feasible active-set method for the QP sub-
problem and terminating the inner iterations when the norm of a potential search direction
pk = x̂k − xk is small. Dual feasible active-set methods have the advantage that the ap-
proximate multipliers are nonnegative, but a terminated iteration will have some negative
primal variables—this time making the definition of the search direction problematic.

Murray and Prieto [144] suggest another approach to terminating the QP solutions early,
requiring that at least one QP subspace stationary point be reached (see Definition A.1 of
the Appendix). The associated theory implies that any subsequent point x̂k generated by
a special-purpose primal-feasible QP solver gives a sufficient decrease in the augmented
Lagrangian merit function (3.16), provided that ‖x̂k − xk‖ is nonzero.

Another way to save inner iterations safely during the early outer iterations is to subop-

timize the QP subproblem. At the start of an outer iteration, many variables are fixed at
their current values (i.e., xi is fixed at (xk)i) and an SQP outer iteration is performed on the
reduced problem (solving a smaller QP to get a search direction for the nonfixed variables).
Once a solution of the reduced QP is found, the fixed variables are freed, and the outer
iteration is completed with a “full” search direction that happens to leave many variables
unaltered because pi = (x̂i − xk)i = 0 for the temporarily fixed variables. At each step, the
conventional theory for the reduction in the merit function should guarantee progress on the
associated reduced nonlinear problem. In practice, it may not be obvious which variables
should be fixed at each stage, the reduced QP could be infeasible, and degeneracy could
produce a zero search direction. Instead, the choice of which variables to fix is made within
the QP solver. In the method of SNOPT, QP iterations are performed on the full problem
until a feasible point is found or elastic mode is entered. The iterations are continued until
certain limits are reached and not all steps have been degenerate. At this point all variables
such that xi = (xk)i are frozen at their current value and the reduced QP is solved to
optimality. With this scheme it is safe to impose rather arbitrary limits, such as limits on
the number of iterations (for the various termination conditions that may be applied, see
Gill, Murray and Saunders [85, 86]). Note that this form of suboptimization enforces the
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condition ((x̂k − xk) · ẑk)i = 0 for the frozen variables and so the nonoptimized variables
have no affect on the magnitude of the penalty parameter in (3.13).

3.3. Sequential unconstrained methods

Fletcher [62] observed that the ℓ1 penalty function (1.8) can be minimized subject to bounds
by solving a sequence of nondifferentiable unconstrained subproblems of the form

minimize
x∈Rn

f̂k(x) + ρ‖ĉk(x)‖1 + ρ‖ [x ]− ‖1, (3.25)

where ĉk(x) denotes the linearized constraint functions ĉk(x) = ck + Jk(x − xk), and
[ v ]− = max{−vi, 0}. In this case the bound constraints are not imposed explicitly. Fletcher
proposed minimizing this function using a trust-region method, although a line-search
method would also be appropriate, particularly if Hk were positive definite. The trust-
region subproblem has the form

minimize
d∈Rn

f̂k(xk + d) + ρ‖ĉk(xk + d)‖1 + ρ‖ [xk + d ]− ‖1

subject to ‖d‖ ≤ δk.
(3.26)

The trust-region radius δk is increased or decreased based on condition (3.5), whereM(x; ρ)
is the penalty function P1(x; ρ) and mk(x; ρ) is defined in terms of an affine or quadratic
model of the modified Lagrangian (see (3.12)). This approach forms the basis of Fletcher’s
“Sℓ1-QP method”. Each subproblem has a piecewise quadratic objective function and has
the same complexity as a quadratic program of the form (2.1). If the infinity norm is used
to define the size of the trust region, the subproblem is equivalent to the smooth quadratic
program

minimize
d,w∈Rn; u,v∈Rm

f̂k(xk + d) + ρeTu + ρeTv + ρeTw

subject to ĉk(xk + d)− u + v = 0, u ≥ 0, v ≥ 0,

−δke ≤ d ≤ δke, xk + d + w ≥ 0, w ≥ 0,

where, analogous to (1.4), the vectors u and v may be interpreted as the positive and
negative parts of the affine function ck +Jkd. A benefit of this formulation is that a solution
of (3.26) always exists, even when the linearized constraints of the plain QP subproblem
are inconsistent. Observe that the unconstrained subproblem (3.25) is defined in terms of

f̂k(x), the model of the modified Lagrangian (see (2.2)). This feature is crucial because
it implies that if the trust-region radius and penalty parameter are sufficiently large in
the neighborhood of an isolated solution, the Sℓ1-QP subproblem is the same as the plain
SQP subproblem (2.1). Nevertheless, the implicit minimization of the ℓ1 penalty function
means that there is the possibility of the Maratos effect. For the trust-region approach, the
second-order correction may be determined from the quadratic program

minimize
s,w∈Rn; u,v∈Rm

f̂k(xk + dk + s) + ρeTu + ρeTv + ρeTw

subject to Jks− u + v = −c(xk + dk), u ≥ 0, v ≥ 0,

−δke ≤ dk + s ≤ δke, xk + dk + s ≥ 0, w ≥ 0.

(3.27)

Yuan [182] gives an analysis of the superlinear convergence of trust-region methods that use
the second-order correction.

The Sℓ1-QP approach can be used in conjunction with other unconstrained merit func-
tions. Many of these extensions lead to a subproblem that is equivalent to a quadratic
program. The “Sℓ∞-QP method” uses the trust-region subproblem

minimize
d∈Rn

f̂k(xk + d) + ρ‖ĉk(xk + d)‖∞ + ρ‖ [xk + d ]− ‖∞

subject to ‖d‖∞ ≤ δk,
(3.28)
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which is equivalent to the quadratic program

minimize
d∈Rn; θ,σ∈R

f̂k(xk + d) + ρθ + ρσ

subject to −θe ≤ ĉk(xk + d) ≤ θe, θ ≥ 0,

−δke ≤ d ≤ δke, xk + d + σe ≥ 0, σ ≥ 0,

(3.29)

see, e.g., Yuan [183], and Exler and Schittkowski [58]. A QP problem for the second-order
correction may be defined analogous to (3.27). For a general discussion of the convergence
properties of nondifferentiable exact penalty functions in the SQP context, see Fletcher [65],
Burke [23], and Yuan [181].

3.4. Filter methods

The definition of the merit function in the Han-Powell method or the nonsmooth objective
function in the sequential unconstrained optimization method requires the specification of
a penalty parameter that weights the effect of the constraint violations against the value
of the objective. Another way of forcing convergence is to use a filter, which is a two-
dimensional measure of quality based on f(x) and ‖c(x)‖, where we assume that x ≥ 0 is
satisfied throughout. A filter method requires that progress be made with respect to the
two-dimensional function

(
‖c(x)‖, f(x)

)
. Using the conventional notation of filter methods,

we define h(x) = ‖c(x)‖ as the measure of infeasibility of the equality constraints, and use
(hj , fj) to denote the pair

(
h(xj), f(xj)

)
.

The two-dimensional measure provides the conditions for a point x̄ to be “better” than
a point x̂. Given two points x̄ and x̂, the pair

(
h(x̄), f(x̄)

)
is said to dominate the pair(

h(x̂), f(x̂)
)

if
h(x̄) ≤ βh(x̂) and f(x̄) ≤ f(x̂)− γh(x̄),

where β, γ ∈ (0, 1) are constants with 1−β and γ small (e.g., β = 1−γ with γ = 10−3). (For
brevity, we say that x̄ dominates x̂, although it must be emphasized that only the objective
value and constraint norm are stored.) A filter F consists of a list of entries (hj , fj) such that
no entry dominates another. (This filter is the so-called sloping filter proposed by Chin [32]
and Chin and Fletcher [33]. The original filter proposed by Fletcher and Leyffer [67,68] uses
γ = 0 and β = 1.)

A pair
(
h(xk), f(xk)

)
is said to be “acceptable to the filter” F if and only if it is not

dominated by any entry in the filter, i.e.,

h(xk) ≤ βhj or f(xk) ≤ fj − γh(xk) (3.30)

for every (hj , fj) ∈ F . In some situations, an accepted point (h(xk), f(xk)) is added to the
filter. This operation adds (h(xk), f(xk)) to the list of entries (hj , fj) in F , and removes
any entries that are dominated by the new pair. The test (3.30) provides an important
inclusion property that if a pair (h, f) is added to the filter, then the set of points that are
unacceptable for the new filter always includes the points that are unacceptable for the old
filter.

As in the Burke-Han approach of Section 3.2.3, the principal goal of a filter method is
the attainment of feasibility. An important property of the filter defined above is that if
there are an infinite sequence of iterations in which (h(xk), f(xk)) is entered into the filter,
and {f(xk)} is bounded below, then h(xk)→ 0 (see Fletcher, Leyffer and Toint [69]).

3.4.1. Trust-region filter methods

Fletcher and Leyffer [67,68] propose a trust-region filter method in which a filter is used to
accept or reject points generated by a plain SQP subproblem with a trust-region constraint.
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Below we give a brief description of the variant of the Fletcher-Leyffer method proposed
by Fletcher, Leyffer and Toint [69]. The filter is defined in terms of the one-norm of the
constraint violations, i.e., h(x) = ‖c(x)‖1, and the trust-region subproblem is given by

minimize
x∈Rn

fk + gT
k(x− xk) + 1

2 (x− xk)THk(x− xk)

subject to ck + Jk(x− xk) = 0, x ≥ 0, ‖(x− xk)‖∞ ≤ δk.
(3.31)

To simplify the discussion, we start by assuming that the QP subproblem (3.31) remains
feasible. In this case, the filter method generates a sequence of points {xk} and a corre-
sponding sequence of filters {Fk} such that xk is acceptable to the filter Fk and xk+1 = x̂k,
where x̂k is a global minimizer of the QP subproblem (3.31). The use of a filter alone does
not necessarily enforce convergence to a solution of the constrained problem. For example, if
the iterates converge to an arbitrary feasible point and the infeasibility measure h is reduced
by a factor of at least β at each iteration, then the iterates will be acceptable to the filter
independently of f . This implies that the filter must be used in conjunction with a sufficient
reduction condition analogous to (3.1), i.e.,

∆mk(dk) > 0 and f(xk)− f(xk + dk) ≥ η∆mk(dk), (3.32)

where dk = x̂k − xk, and ∆mk(dk) = mk(xk) −mk(xk + dk) for a local model mk(x) of f
(e.g., mk(x) = f(xk) + g(xk)T(x− xk)).

At the start of the kth iteration, we have a point xk and a filter Fk−1 such that (hk, fk)
is acceptable to Fk−1, but is not yet included in Fk−1 (it will be shown below that xk

may or may not be included in the filter even though it constitutes an acceptable entry).
The kth iteration is analogous to that of a backtracking line-search method, except that
the backtracking steps are performed by solving the QP (3.31) with decreasing values of
the trust-region radius. The backtracking continues until x̂k is acceptable to the combined
filter Fk−1 ∪ (hk, fk), and either f(xk) − f(xk + dk) ≥ η∆mk(dk) or ∆mk(dk) ≤ 0. On
termination of the backtracking procedure, if ∆mk(dk) ≤ 0, then (hk, fk) is added to Fk−1

(giving Fk), otherwise Fk = Fk−1. Finally, the next iterate is defined as xk+1 = x̂k and the
trust-region radius δk+1 for the next iteration is initialized at some value greater than some
preassigned minimum value δmin. This reinitialization provides the opportunity to increase
the trust-region radius based on the change in f . For example, the trust region radius can
be increased if the predicted reduction in f is greater that some positive factor of h.

As mentioned above, although (hk, fk) is acceptable to Fk−1, it is not necessarily added
to the filter. The point xk is added if and only if ∆mk(dk) ≤ 0, in which case the QP

solution predicts an increase in f , and the primary aim of the iteration changes to that of
reducing h (by allowing f to increase if necessary). The requirement that ∆mk(dk) ≤ 0 for
adding to the filter ensures that all the filter entries have hj > 0. This is because if hk = 0,
then the QP must be compatible (even without this being an assumption), and hence, if xk

is not a KKT point, then ∆mk(dk) > 0 and xk is not added to the filter.

Now we drop our assumption that the QP problem (3.31) is always feasible. If a new
entry is never added to the filter during the backtracking procedure, then δk → 0 and there
are two situations that can occur. If c(xk) = 0, then the problem looks like an unconstrained
problem. If f is reduced then we must make progress and conventional trust-region theory
applies. On the other hand, if c(xk) 6= 0, then reducing the trust-region radius will eventually
give an infeasible QP. In this case, the method switches to a restoration phase that focuses
on minimizing h(x) subject to x ≥ 0. In this case a restoration filter may be defined that
allows nonmonotone progress on h(x). Note that it is possible for the QP to be infeasible
for any infeasible xk. In this situation the filter method will converge to a nonoptimal
local minimizer of h(x) (just as the Han-Powell method may converge to a nonoptimal local
minimizer of the merit function).
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The convergence properties of filter-SQP methods are similar to those of methods that
use a merit function. In particular, it is possible to establish convergence to either a point
that satisfies the first-order necessary conditions for optimality, or a point that minimizes
h(x) locally (see Fletcher, Leyffer and Toint [69] for details). It is not necessary that Hk be
positive definite, although x̂k must be a global solution of the QP subproblem (3.31) (see
the cautionary opening remarks of the Appendix concerning the solution of indefinite QPs).
Standard examples that exhibit the Maratos effect for an SQP method with a merit function
cause no difficulties for the filter method. Although the unit step causes an increase in the
constraint violation, and hence an increase in a penalty function, it also causes a decrease
in the objective and so it is acceptable to the filter. However, Fletcher and Leyffer [68] give
a simple example for which the QP solution increases both the objective and the constraint
violations, resulting in a reduction in the trust-region radius and the rejection of the Newton
step. Fletcher and Leyffer propose the use of a second-order correction step analogous to
(3.27). Ulbrich [173] defines a filter that uses the Lagrangian function instead of f and shows
that superlinear convergence may be obtained without using the second-order correction.

3.4.2. Line-search filter methods

The trust-region filter method described in Section 3.4.1 may be modified to use a line
search by solving the plain SQP subproblem and replacing the backtracking trust-region
procedure by a conventional backtracking line search. In this case, the candidate pair for
the filter is

(
h(xk + αkpk), f(xk + αkpk)

)
, where αk is a member of a decreasing sequence

of steplengths, and pk = x̂k − xk, with x̂k a solution of the plain QP (2.17). Analogous to
(3.32), the sufficient decrease criteria for the objective are

∆mk(αkpk) > 0 and f(xk)− f(xk + αkpk) ≥ η∆mk(αkpk).

If the trial step length is reduced below a minimum value αmin
k , the line search is abandoned

and the algorithm switches to the restoration phase. For more details, the reader is referred
to the two papers of Wächter and Biegler [176, 175]. The caveats of the previous section
concerning the definition of Hk also apply to the line-search filter method. In addition, the
absence of an explicit bound on ‖x− xk‖ provided by the trust-region constraint adds the
possibility of unboundedness of the QP subproblem.

Chin, Rashid and Nor [34] consider a line-search filter method that includes a second-
order correction step during the backtracking procedure. If xk + αpk is not acceptable to
the filter, a second-order correction sk is defined by solving the equality-constrained QP:

minimize
s∈Rn

fk + gT
k(pk + s) + 1

2 (pk + s)THk(pk + s)

subject to c(xk + pk) + Jks = 0, (xk + pk + s)A = −‖pk‖
νe,

(3.33)

where ν ∈ (2, 3) and A(x̂k) is the active set predicted by the QP subproblem (for a similar
scheme, see Herskovits [123], and Panier and Tits [149, 150]). Given an optimal solution
sk, Chin, Rashid and Nor [34] show that under certain assumptions, the sufficient decrease
criteria

f(xk)− f(xk + αkpk + α2
ksk) ≥ η∆mk(αkpk) and ∆mk(αkpk) > 0

give a sequence {xk} with local Q-superlinear convergence.

3.5. SQP methods based on successive LP and QP

In the MINLP context, it is necessary to solve a sequence of related nonlinear programs, some
with infeasible constraints. For maximum efficiency, it is crucial that the active set from one
problem is used to provide a warm start for the next. A substantial benefit of SQP methods
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is that they are easily adapted to accept an estimate of the active set. However, if warm
starts are to be exploited fully, it is necessary that the second derivatives of the problem
functions are available and that these derivatives are utilized by the SQP method. Unfor-
tunately, none of the SQP methods discussed in Sections 3.2–3.4 are completely suitable for
use with second derivatives. The main difficulty stems from the possibility that the Hessian
of the Lagrangian is indefinite, in which case the inequality constrained QP subproblem is
nonconvex. A nonconvex QP is likely to have many local solutions, and may be unbounded.
Some SQP methods are only well-defined if the subproblem is convex—e.g., methods that
rely on the use of a positive-definite quasi-Newton approximate Hessian. Other methods
require the calculation of a global solution of the QP subproblem, which has the benefit of
ensuring that the “same” local solution is found for the final sequence of related QPs. Un-
fortunately, nonconvex quadratic programming is NP-hard, and even the seemingly simple
task of checking for local optimality is intractable when there are zero Lagrange multipliers
(see the opening remarks of the Appendix).

One approach to resolving this difficulty is to estimate the active set using a convex

programming approximation of the plain QP subproblem (2.1). This active set is then used
to define an equality-constrained QP (EQP) subproblem whose solution may be used in
conjunction with a merit function or filter to obtain the next iterate. One of the first methods
to use a convex program to estimate the active set was proposed by Fletcher and Sainz de
la Maza [70], who proposed estimating the active set by solving a linear program with a
trust-region constraint. (Their method was formulated first as a sequential unconstrained
method for minimizing a nonsmooth composite function. Here we describe the particular
form of the method in terms of minimizing the ℓ1 penalty function P1(x, ρ) defined in (1.8).)
The convex subproblem has the form

minimize
x∈Rn

lk(x) = fk + gT
k(x− xk) + ρ‖ĉk(x)‖1 + ρ‖ [x ]− ‖1

subject to ‖x− xk‖ ≤ δk,
(3.34)

which involves the minimization of a piecewise linear function subject to a trust-region
constraint (cf. (3.26)). If the trust-region constraint is defined in terms of the infinity-norm,
the problem (3.34) is equivalent to the linear programming (LP) problem:

minimize
x,w∈Rn; u,v∈Rm

fk + gT
k(x− xk) + ρeTu + ρeTv + ρeTw

subject to ck + Jk(x− xk)− u + v = 0, u ≥ 0, v ≥ 0,

xk − δke ≤ x ≤ xk + δke, x + w ≥ 0, w ≥ 0.

(3.35)

This equivalence was the motivation for the method to be called the successive linear pro-

gramming (SLP) method. Fletcher and Sainz de la Maza use the reduction in P1(x, ρ) pre-
dicted by the first-order subproblem (3.34) to assess the quality of the reduction P1(xk, ρ)−
P1(xk + dk, ρ) defined by a second-order method (to be defined below).

Given a positive-definite approximation Bk of the Hessian of the Lagrangian, let qk(x)
denote the piecewise quadratic function

qk(x) = lk(x) + 1
2 (x− xk)TBk(x− xk).

Let d LP

k = x̂ LP

k − xk, where x̂ LP

k is a solution of the LP (3.35), and define ∆lk = lk(xk) −
lk(xk + d LP

k ). Then it holds that

qk(xk)−min
d

qk(xk + d) ≥ 1
2∆lk min{∆lk/βk, 1},

where βk = (d LP

k )T Bkd LP

k > 0. This inequality suggests that a suitable acceptance criterion
for an estimate xk + d is

P1(xk, ρ)− P1(xk + d, ρ) ≥ η∆lk min{∆lk/βk, 1},
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where η is some preassigned scalar such that 0 < η < 1
2 . This criterion is used to determine

if the new iterate xk+1 should be set to (i) the current iterate xk (which always triggers a
reduction in the trust-region radius); (ii) the second-order step xk+dk; or (iii) the first-order
step xk +d LP

k . The test for accepting the second-order step is done first, If the second-order
step fails, then the penalty function is recomputed at xk + d LP

k and the test is repeated to
determine if xk+1 should be xk +d LP

k . Finally, the trust-region radius is updated based on a
conventional trust-region strategy that compares the reduction in the penalty function with
the reduction predicted by the LP subproblem (the reader is referred to the original paper
for details).

Next, we consider how to define a second-order step. Let B and N denote the final
LP basic and nonbasic sets for the LP (3.35). To simplify the description, assume that the
optimal u, v and w are zero. A second-order iterate x̂k can be defined as the solution of an
equality-constrained quadratic program (EQP) defined by minimizing the quadratic model

f̂k(x) = fk + gT
k (x− xk) + 1

2 (x− xk)TBk(x− xk) subject to ck + Jk(x− xk) = 0, with the
nonbasic variables fixed at their current values. Let pk = x̂k − xk, where (x̂k, π̂k) is the
primal-dual EQP solution. Let p̃k denote the vector of components of pk in the final LP

basic set B, with J̃k the corresponding columns of Jk. The vector (p̃k, π̂k) satisfies the KKT

equations (
B̃k J̃T

k

J̃k 0

)(
p̃k

−π̂k

)
= −

(
(gk + Bkηk)B

ck + Jkηk

)
, (3.36)

where ηk is defined in terms of the final LP nonbasic set, i.e.,

(ηk)i =

{
(x̂ LP

k − xk)i if i ∈ N ;
0 if i 6∈ N .

There are many ways of solving these KKT equations. The most appropriate method will
depend on certain basic properties of the problem being solved, which include the size of the
problem (i.e., the number of variables and constraints); whether or not the Jacobian is dense
or sparse; and how the approximate Hessian is stored (see, e.g., Section 3.2.1). Fletcher and
Sainz de la Maza suggest finding an approximate solution of the EQP using a quasi-Newton
approximation of the reduced Hessian matrix (see Coleman and Conn [37]).

The results of Fletcher and Sainz de la Maza may be used to show that, under reasonable
nondegeneracy and second-order conditions, the active set of the LP subproblem (3.35)
ultimately predicts that of the smooth variant of the penalty function at limit points of {xk}.
This implies fast asymptotic convergence. Fletcher and Sainz de la Maza did not consider
the use of exact second derivatives in their original paper, and it took more than 12 years
before the advent of reliable second-derivative trust-region and filter methods for the EQP

subproblem allowed the potential of SLP methods to be realized. Chin and Fletcher [33]
proposed the use of a trust-region filter method that does not require the use of the ℓ1
penalty function. For a similar approach that uses a filter, see Fletcher et al. [66]. In a
series of papers, Byrd, Gould, Nocedal and Waltz [26,27] proposed a method that employs
an additional trust region to safeguard the EQP direction. They also define an appropriate
method for adjusting the penalty parameter. Recently, Morales, Nocedal and Wu [139], and
Gould and Robinson [107,108,109] have proposed SQP methods that identify the active set
using a convex QP based on a positive-definite BFGS approximation of the Hessian.

4. SQP issues relevant to MINLP

4.1. Treatment of linear constraints

An important feature of SQP methods is that it is relatively easy to exploit the special
properties of linear constraints. This can be an advantage when a method for MINLP
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solves a sequence of NLPs that differ by only the number of linear constraints that are
imposed. Suppose that the general linear constraints are a subset of the constraints defined
by c(x) = 0, e.g., cL(x) = Ax − b = 0. Then a feasible point for the linear constraints
cL(x) = Ax− b = 0, x ≥ 0, can be found by solving the elastic problem

minimize
x∈Rn; u,v∈Rm

ρeTu + eTv

subject to Ax− u + v = b, x ≥ 0, u ≥ 0, v ≥ 0.
(4.1)

This is equivalent to minimizing the one-norm of the general linear constraint violations
subject to the simple bounds. An important property of linear constraints is that it is
possible to determine the solvability of a system of linear inequalities in a finite number of
steps. If the linear constraints are infeasible (u 6= 0 or v 6= 0), then the SQP algorithm can
terminate without computing the nonlinear functions. Otherwise, all subsequent iterates
satisfy the linear constraints.

4.2. Treatment of infeasibilities

If the constraints of the QP subproblem (2.1) have no feasible point, then no QP solution
exists. This could be for two reasons, either: (i) the NLP is feasible but the quadratic
programming subproblem is locally infeasible, or (ii) the NLP is infeasible. If the NLP is
convex, then infeasibility of the quadratic programming subproblem implies infeasibility of
the original problem, but in the nonconvex case, there is no such implication.

If the subproblem is infeasible, the algorithm may continue in elastic mode, by solving
the elastic QP (3.22). There are two interpretations of the role of the elastic QP. In one
interpretation, the elastic problem defines a regularization of the plain QP subproblem (2.1).
In this case, if the NLP is feasible and ρk ≥ ‖πk+1‖∞, then problems (2.1) and (3.22) are
equivalent. An alternative interpretation is to view the elastic QP as the QP subproblem
associated with the elastic nonlinear problem (1.4), so that the elastic constraints are present
in the original problem and are inherited by the QP subproblem. Note that any solution of
the NLP may be regarded as a solution of (3.22) for a value of ρk such that ρk ≥ ‖πk+1‖∞.
Hence, even if ρk is not present explicitly, we may consider both the subproblem (3.22)
and the original problem (1.4) to have an associated implicit value of ρk that is larger than
‖πk+1‖∞.

4.3. Infeasibility detection

As we discussed in Section 1.3, it is important to be able to determine as quickly as possible
if the NLP (1.2) is infeasible. In an SQP framework, infeasibility may be detected either by
solving the QP subproblem in elastic mode (3.22) with a sequence of penalty parameters
ρk → ∞, or by solving a sequence of elastic nonlinear problems of the form (1.4) with
ρk → ∞. For an SQP method that solves a sequence of nonlinear elastic problems and
uses a quasi-Newton approximation to the Hessian, infeasibility is usually signaled by the
occurrence of a sequence of elastic problems in which the penalty parameter is increased,
but the current xk remains fixed, i.e., an optimal solution for a problem with ρ = ρk is
optimal for the problem with ρ = ρk+1, etc. This is usually a reliable indication that xk is
a local minimizer of the sum of infeasibilities. This behavior can be explained by the fact
that a warm start uses the approximate Hessian from the previous elastic problem, which
is not changed as ρk and the QP-multipliers are increased. This is one situation where the
inability of a quasi-Newton Hessian to adapt to changes in the multipliers is beneficial!

The situation is different when the SQP method uses the exact Hessian of the Lagrangian.
In this case, the multipliers reflect the magnitude of ρk, and so the Hessian changes sub-
stantially. In the following, we give a brief discussion of this case that reflects the paper of



36 Sequential quadratic programming methods

Byrd, Curtis and Nocedal [25]. For an infeasible problem, it must hold that ρk → ∞ and
ρk > ρk−1 for an infinite subsequence of iterates. In this situation, different problems are
being solved at outer iterations k − 1 and k. At iteration k − 1, the problem is the elastic
problem (1.4) with ρ = ρk−1, whereas at iteration k, the problem is the elastic problem with
ρ = ρk. We may write

f(x) + ρkeTu + ρkeTv = f(x) +
ρk

ρk−1

(
ρk−1e

Tu + ρk−1e
Tv
)
. (4.2)

If the NLP is infeasible, it must hold that ‖u‖ + ‖v‖ > 0. If ρk−1 is large, with ρk > ρk−1

and ‖u‖+‖v‖ > 0, then the term f(x) is negligible in (4.2), i.e., f(x)≪ ρk−1e
Tu+ρk−1e

Tv,
so that

f(x) + ρkeTu + ρkeTv ≈ ρkeTu + ρkeTv

=
ρk

ρk−1

(
ρk−1e

Tu + ρk−1e
Tv
)

≈
ρk

ρk−1

(
f(x) + ρk−1e

Tu + ρk−1e
Tv
)
. (4.3)

The form of (4.3) implies that the elastic problems at iterations k− 1 and k differ (approxi-
mately) by only a multiplicative factor ρk/ρk−1 in the scaling of the objective function. The
approximation becomes increasingly accurate as ρk−1 tends to infinity.

Let (xk, uk, vk) be the solution provided by the elastic QP subproblem at iteration k−1,
with corresponding Lagrange multiplier estimates (πk, zk). Also assume that (xk, uk, vk) is
close to optimal for the corresponding elastic problem (1.4) with ρ = ρk−1. If ρk > ρk−1,
the question is how to provide a good initial point to this new problem. If (xk, uk, vk) is
the exact solution of the elastic problem for ρ = ρk−1, then (πk, zk) are the corresponding
Lagrange multipliers. Moreover, if the objective functions differ by the factor ρk/ρk−1,
then (xk, uk, vk) is again optimal for the new problem, and the dual variables inherit the
same scaling as the objective function (see (1.6b)). In this situation, the new multipliers
are

(
(ρk/ρk−1)πk, (ρk/ρk−1)zk

)
. Based on these observations, in an idealized situation, we

expect that (xk, uk, vk), together with scaled Lagrange multiplier estimates (ρk/ρk−1)πk

and (ρk/ρk−1)zk, provide good initial estimates for the new elastic QP subproblem. Hence,
if second derivatives are used in the QP subproblem, the Hessian of the Lagrangian should
be evaluated at (xk, uk, vk) with Lagrange multiplier estimates

(
(ρk/ρk−1)πk, (ρk/ρk−1)zk

)

in order to obtain fast convergence as ρk increases.
As ρk tends to infinity, the objective function becomes less important compared to the

penalty term in the objective of (1.4). Eventually only the infeasibilities matter, and the
iterates converge to a local minimizer of the sum of infeasibilities. See Byrd, Curtis and
Nocedal [25] for a detailed discussion on infeasibility detection, including a discussion on
how to let ρk →∞ rapidly.

4.4. Solving a sequence of related QP subproblems

In MINLP branch and bound methods it is necessary to solve a sequence of NLPs that differ
by a single constraint (see, e.g., Leyffer [130], and Goux and Leyffer [113]). For example,
at the solution of a relaxed problem, some integer variables take a non-integer value. The
MINLP algorithm selects one of the integer variables that takes a non-integer value, say xi

with value x̄i, and branches on it. Branching generates two new NLP problems by adding
simple bounds xi ≤ ⌊ x̄i ⌋ and xi ≥ ⌊ x̄i ⌋+1 to the NLP relaxation (where ⌊ v ⌋ is the largest
integer not greater than v). The SQP methods of Section 3.5 that solve an initial convex
programming problem to determine the active set have the advantage that a dual QP/LP

solver may be used to solve the convex QP subproblem (dual active-set QP methods are
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discussed in Section A.2). This provides similar advantages to MINLP solvers as the dual
simplex method provides to MILP. If the SQP method is implemented with a dual QP solver,
and is warm started with the primal-dual solution of the previous relaxation, then the dual
variables are feasible and only one branched variable is infeasible. The infeasible xi can be
moved towards feasibility immediately.

A similar situation applies if a nonlinear cut adds a constraint to the NLP. For simplicity,
assume that the QP has objective gTx + 1

2xTHx and constraints Ax = b, x ≥ 0. As the
QP is in standard form, the cut adds a new row and column to A, a zero element to the
objective g, and a zero row and column to H. This gives a new problem with Ā, b̄, ḡ and H̄
(say). The new column of Ā corresponds to the unit vector associated with the new slack
variable. An obvious initial basis for the new problem is

ĀB =

(
AB 0
aT 1

)
,

so the new basic solution x̄B is the old solution xB, augmented by the new slack, which is
infeasible. This means that if we solve the primal QP then it would be necessary to go into
phase 1 to get started. However, by solving the dual QP, then we have an initial feasible
subspace minimizer for the dual based on a ȳB(= x̄B) such that ĀBȳB = b̄ and

z̄ = ḡ + H̄ȳ − ĀTπ̄.

We can choose π̄ to be the old π augmented by a zero. The new element of ȳB corresponds
to the new slack, so the new elements of ḡ and row and column of H̄ are zero. This implies
that z̄ is essentially z, and hence z̄ ≥ 0.
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APPENDIX

A. Methods for Quadratic Programming

We consider methods for the quadratic program

minimize
x∈Rn

gT(x− xI) + 1
2 (x− xI)

TH(x− xI)

subject to Ax = AxI − b, x ≥ 0,
(A.1)

where g, H, b, A and xI are given constant quantities, with H symmetric. The QP objective
is denoted by f̂(x), with gradient ĝ(x) = g + H(x − xI). In some situations, the general
constraints will be written as ĉ(x) = 0, with ĉ(x) = A(x − xI) + b. The QP active set is
denoted by A(x). A primal-dual QP solution is denoted by (x∗, π∗, z∗). In terms of the QP

defined at the kth outer iteration of an SQP method, we have xI = xk, b = c(xk), g = g(xk),
A = J(xk) and H = H(xk, πk). It is assumed that A has rank m. No assumptions are
made about H other than symmetry. Conditions that must hold at an optimal solution
of (A.1) are provided by the following result (see, e.g., Borwein [12], Contesse [44] and
Majthay [134]).

Result A.1. (QP optimality conditions)
The point x∗ is a local minimizer of the quadratic program (A.1) if and only if

(a) ĉ(x∗) = 0, x∗ ≥ 0, and there exists at least one pair of vectors π∗ and z∗ such that

ĝ(x∗)−AT π∗ − z∗ = 0, with z∗ ≥ 0, and z∗ · x∗ = 0;

(b) pT Hp ≥ 0 for all nonzero p satisfying ĝ(x∗)Tp = 0, Ap = 0, and pi ≥ 0 for every

i ∈ A(x∗).

Part (a) gives the first-order KKT conditions (2.18) for the QP (A.1). If H is positive
semidefinite, the first-order KKT conditions are both necessary and sufficient for (x∗, π∗, z∗)
to be a local primal-dual solution of (A.1).

Suppose that (x∗, π∗, z∗) satisfies condition (a) with z∗i = 0 and x∗
i = 0 for some i. If H

is positive semidefinite, then x∗ is a weak minimizer of (A.1). In this case, x∗ is a global

minimizer with a unique global minimum f̂(x∗). If H has at least one negative eigenvalue,
then x∗ is known as a dead point. Verifying condition (b) at a dead point requires finding the
global minimizer of an indefinite quadratic form over a cone, which is an NP-hard problem
(see, e.g., Cottle, Habetler and Lemke [45], Pardalos and Schnitger [151], and Pardalos
and Vavasis [152]). This implies that the optimality of a candidate solution of a general
quadratic program can be verified only if more restrictive (but computationally tractable)
sufficient conditions are satisfied. A dead point is a point at which the sufficient conditions
are not satisfied, but certain necessary conditions hold. Computationally tractable necessary
conditions are based on the following result.

Result A.2. (Necessary conditions for optimality)
The point x∗ is a local minimizer of the QP (A.1) only if

(a) ĉ(x∗) = 0, x∗ ≥ 0, and there exists at least one pair of vectors π∗ and z∗ such that

ĝ(x∗)−AT π∗ − z∗ = 0, with z∗ ≥ 0, and z∗ · x∗ = 0;

(b) pT Hp ≥ 0 for all nonzero p satisfying Ap = 0, and pi = 0 for every i ∈ A(x∗).
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Suitable sufficient conditions for optimality are given by (a)–(b) with (b) replaced by the
condition that pT Hp ≥ ω‖p‖2 for some ω > 0 and all p such that Ap = 0, and pi = 0 for
every i ∈ A+(x), where A+(x) is the index set A+(x) = {i ∈ A(x) : zi > 0}.

Typically, software for general quadratic programming is designed to terminate at a dead
point. Nevertheless, it is possible to define procedures that check for optimality at a dead
point, but the chance of success in a reasonable amount of computation time depends on
the dimension of the problem (see Forsgren, Gill and Murray [73]).

A.1. Primal active-set methods

We start by reviewing the properties of primal-feasible active-set methods for quadratic
programming. An important feature of these methods is that once a feasible iterate is
found, all subsequent iterates are feasible. The methods have two phases. In the first phase
(called the feasibility phase or phase one), a feasible point is found by minimizing the sum
of infeasibilities. In the second phase (the optimality phase or phase two), the quadratic
objective function is minimized while feasibility is maintained. Each phase generates a
sequence of inner iterates {xj} such that xj ≥ 0. The new iterate xj+1 is defined as
xj+1 = xj + αjpj , where the step length αj is a nonnegative scalar, and pj is the QP search

direction. For efficiency, it is beneficial if the computations in both phases are performed by
the same underlying method. The two-phase nature of the algorithm is reflected by changing
the function being minimized from a function that reflects the degree of infeasibility to the
quadratic objective function. For this reason, it is helpful to consider methods for the
optimality phase first.

At the jth step of the optimality phase, ĉ(xj) = A(xj − xI) + b = 0 and xj ≥ 0. The
vector pj is chosen to satisfy certain properties with respect to the objective and constraints.

First, pj must be a direction of decrease for f̂ at xj , i.e., there must exist a positive ᾱ such
that

f̂(xj + αpj) < f̂(xj) for all α ∈ (0, ᾱ].

In addition, xj +pj must be feasible with respect to the general constraints, and feasible with
respect to the bounds associated with a certain “working set” of variables that serves as an
estimate of the optimal active set of the QP. Using the terminology of linear programming,
we call this working set of variables the nonbasic set, denoted by N = {ν1, ν2, . . . , νnN

}.
Similarly, we define the set B of indices that are not in N as the basic set, with B = {β1,
β2, . . . , βnB

}, where nB = n−nN . Although B and N are strictly index sets, we will follow
common practice and refer to variables xβr

and xνs
as being “in B” and “in N” respectively.

With these definitions, we define the columns of A indexed by N and B, the nonbasic

and basic columns of A, as AN and AB, respectively. We refrain from referring to the
nonbasic and basic sets as the “fixed” and “free” variables because some active-set methods
allow some nonbasic variables to move (the simplex method for linear programming being
one prominent example). An important attribute of the nonbasic set is that AB has rank

m, i.e., the rows of AB are linearly independent. This implies that the cardinality of the
nonbasic set must satisfy 0 ≤ nN ≤ n−m. It must be emphasized that our definition of N
does not require a nonbasic variable to be active (i.e., at its lower bound). Also, whereas
the active set is defined uniquely at each point, there are many choices for N (including the
empty set). Given any n-vector y, the vector of basic components of y, denoted by yB, is the
nB-vector whose jth component is component βj of y. Similarly, yN , the vector nonbasic

components of y, is the nN -vector whose jth component is component νj of y.

Given a basic-nonbasic partition of the variables, we introduce the definitions of station-
arity and optimality with respect to a basic set.
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Definition A.1. (Subspace stationary point) Let B be a basic set defined at an x̂ such

that ĉ(x̂) = 0. Then x̂ is a subspace stationary point with respect to B (or, equivalently,
with respect to AB) if there exists a vector π such that ĝB(x̂) = AT

B
π. Equivalently, x̂ is a

subspace stationary point with respect to B if the reduced gradient ZT
B

ĝ
B
(x̂) is zero, where

the columns of ZB form a basis for the null-space of AB.

If x̂ is a subspace stationary point, f̂ is stationary on the subspace {x : A(x − x̂) =
0, xN = x̂N}. At a subspace stationary point, it holds that g(x̂) = AT π + z, where zi = 0
for i ∈ B—i.e., zB = 0. Subspace stationary points may be classified based on the curvature
of f̂ on the nonbasic set.

Definition A.2. (Subspace minimizer) Let x̂ be a subspace stationary point with respect

to B. Let the columns of ZB form a basis for the null-space of AB. Then x̂ is a subspace
minimizer with respect to B if the reduced Hessian ZT

B
HZ

B
is positive definite.

If the nonbasic variables are active at x̂, then x̂ is called a standard subspace minimizer.
At a standard subspace minimizer, if zN ≥ 0 then x̂ satisfies the necessary conditions for
optimality. Otherwise, there exists an index νs ∈ N such that zνs

< 0. If some nonbasic
variables are not active at x̂, then x̂ is called a nonstandard subspace minimizer.

It is convenient sometimes to be able to characterize the curvature of f̂ in a form that
does not require the matrix ZB explicitly. The inertia of a symmetric matrix X, denoted by
In(X), is the integer triple (i+, i−, i0), where i+, i− and i0 denote the number of positive,
negative and zero eigenvalues of X. Gould [103] shows that if AB has rank m and ABZB = 0,
then ZT

B
H

B
Z

B
is positive definite if and only if

In(KB) = (nB, m, 0), where KB =

(
H

B
AT

B

A
B

0

)
(A.2)

(see Forsgren [71] for a more general discussion, including the case where AB does not have
rank m). Many algorithms for solving symmetric equations that compute an explicit matrix
factorization of KB also provide the inertia as a by-product of the calculation, see, e.g.,
Bunch [18], and Bunch and Kaufman [19].

Below, we discuss two alternative formulations of an active-set method. Each generates
a feasible sequence {xj} such that xj+1 = xj + αjpj with f̂(xj+1) ≤ f̂(xj). Neither method
requires the QP to be convex, i.e., H need not be positive semidefinite. The direction pj is
defined as the solution of an QP subproblem with equality constraints. Broadly speaking,
the nonbasic components of pj are specified and the basic components of pj are adjusted to
satisfy the general constraints A(xj + pj) = AxI − b. If pB and pN denote the basic and
nonbasic components of pj , then the nonbasic components are fixed by enforcing constraints
of the form pN = dN , where dN is a constant vector that characterizes the active-set method
being used. The restrictions on pj define constraints Ap = 0 and pN = dN . Any remaining
degrees of freedom are used to define pj as the direction that produces the largest reduction

in f̂ . This gives the equality constrained QP subproblem

minimize
p

ĝ(xj)
Tp + 1

2pT Hp subject to Ap = 0, pN = dN .

In the following sections we define two methods based on alternative definitions of dN . Both
methods exploit the properties of a subspace minimizer (see Definition A.2) in order to
simplify the linear systems that must be solved.
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A.1.1. Nonbinding-direction methods

We start with a method that defines a change in the basic-nonbasic partition at every
iteration. In particular, one of three changes occurs: (i) a variable is moved from the basic
set to the nonbasic set; (ii) a variable is moved from the nonbasic set to the basic set; or
(ii) a variable in the basic set is swapped with a variable in the nonbasic set. These changes
result in a column being added, deleted or swapped in the matrix AB.

In order to simplify the notation, we drop the subscript j and consider the definition of
a single iteration that starts at the primal-dual point (x, π) and defines a new iterate (x̄, π̄)
such that x̄ = x + αp and π̄ = π + αqπ. A crucial assumption about (x, π) is that it is
a subspace minimizer with respect to the basis B. It will be shown that this assumption
guarantees that the next iterate (x̄, π̄) (and hence each subsequent iterate) is also a subspace
minimizer.

Suppose that the reduced cost associated with the sth nonbasic variable is negative, i.e.,
zνs

< 0. The direction p is defined so that all the nonbasic components are fixed except for
the sth, which undergoes a unit change. This definition implies that a positive step along p
increases xνs

but leaves all the other nonbasics unchanged. The required direction is defined
by the equality constrained QP subproblem:

minimize
p

ĝ(x)Tp + 1
2pT Hp subject to Ap = 0, pN = es, (A.3)

and is said to be nonbinding with respect to the nonbasic variables. If the multipliers for
the constraints Ap = 0 are defined in terms of an increment qπ to π, then pB and qπ satisfy
the optimality conditions




HB −AT
B

HD

AB 0 AN

0 0 IN






pB

qπ

pN


 = −




ĝB(x)−AT
B
π

0

− es


 ,

where, as above, ĝB(x) are the basic components of ĝ(x), and HB and HD are the basic rows
of the basic and nonbasic columns of H. If x is a subspace minimizer, then ĝB(x)−AT

B
π = 0,

so that this system simplifies to




HB −AT
B

HD

AB 0 AN

0 0 IN






pB

qπ

pN


 =




0
0

es


 , (A.4)

yielding pB and qπ as the solution of the smaller system
(

HB −AT
B

AB 0

)(
pB

qπ

)
= −

(
(hνs

)B

aνs

)
. (A.5)

The increment qN for multipliers zN are computed from pB, pN and qπ as qN = (Hp−ATqπ)N .
Once pB and qπ are known, a nonnegative step α is computed so that x + αp is feasible and
f̂(x + αp) ≤ f̂(x). The step that minimizes f̂ as a function of α is given by

α∗ =

{
−ĝ(x)Tp/pTHp if pTHp > 0,
+∞ otherwise.

(A.6)

The best feasible step is then α = min{α∗, αM}, where αM is the maximum feasible step:

αM = min
1≤i≤nB

{γi}, where γi =





(xB)i

−(pB)i

if (pB)i < 0,

+∞ otherwise.

(A.7)
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(As pN = es and the problem contains only lower bounds, x+tp remains feasible with respect

to the nonbasic variables for all t ≥ 0.) If α = +∞ then f̂ decreases without limit along p
and the problem is unbounded. Otherwise, the new iterate is (x̄, π̄) = (x + αp, π + αqπ).

It is instructive to define the step α∗ of (A.6) in terms of the identities

ĝ(x)Tp = zνs
and pTHp = (qN)s, (A.8)

which follow from the equations (A.4) that define pB and pN . Then, if α∗ is bounded, we
have α∗ = −zνs

/(qN)s, or, equivalently,

zνs
+ α∗(qN)s = 0.

Let z(t) denote the vector of reduced costs at any point on the ray (x + tp, π + tqπ), i.e.,
z(t) = ĝ(x + tp) − AT(π + tqπ). It follows from the definition of p and qπ of (A.4) that
zB(t) = 0 for all t, which implies that x + tp is a subspace stationary point for any step

t. (Moreover, x + tp is a subspace minimizer because the KKT matrix KB is independent
of t.) This property, known as the parallel subspace property of quadratic programming,
implies that x + tp is the solution of an equality-constraint QP in which the bound on the
sth nonbasic is shifted to pass through x + tp. The component zνs

(t) is the reduced cost
associated with the shifted version of the bound xνs

≥ 0. By definition, the sth nonbasic
reduced cost is negative at x, i.e., zνs

(0) < 0. Moreover, a simple calculation shows that
zνs

(t) is an increasing linear function of t with zνs
(α∗) = 0 if α∗ is bounded. A zero reduced

cost at t = α∗ means that the shifted bound can be removed from the equality-constraint
problem (A.3) (defined at x = x̄) without changing its minimizer. Hence, if x̄ = x + α∗p,
the index νs is moved to the basic set, which adds column aνs

to AB for the next iteration.
The shifted variable has been removed from the nonbasic set, which implies that (x̄, π̄) is a
standard subspace minimizer.

If we take a shorter step to the boundary of the feasible region, i.e., αM < α∗, then at
least one basic variable lies on its bound at x̄ = x + αp, and one of these, xβr

say, is made
nonbasic. If ĀB denotes the matrix AB with column r deleted, then ĀB is not guaranteed
to have full row rank (for example, if x is a vertex, AB is square and ĀB has more rows
than columns). The linear independence of the rows of ĀB is characterized by the so-called
“singularity vector” uB given by the solution of the equations

(
HB −AT

B

AB 0

)(
uB

vπ

)
=

(
er

0

)
. (A.9)

The matrix ĀB has full rank if and only if uB 6= 0. If ĀB is rank deficient, x̄ is a subspace
minimizer with respect to the basis defined by removing xνs

, i.e., xνs
is effectively replaced

by xβr
in the nonbasic set. In this case, it is necessary to update the dual variables again

to reflect the change of basis (see Gill and Wong [98] for more details). The new multipliers
are π̄ + σvπ, where σ = ĝ(x̄)T p/(p

B
)r.

As defined above, this method requires the solution of two KKT systems at each step
(i.e., equations (A.5) and (A.9)). However, if the solution of (A.9) is such that uB 6= 0, then
the vectors pB and qπ needed at x̄ can be updated in O(n) operations using the vectors uB

and vπ. Hence, it is unnecessary to solve (A.5) when a basic variable is removed from B
following a restricted step.

Given an initial standard subspace minimizer x0 and basic set B0, this procedure gen-
erates a sequence of primal-dual iterates {(xj , πj)} and an associated sequence of basic sets
{Bj}. The iterates occur in groups of consecutive iterates that start and end at a standard
subspace minimizer. Each of the intermediate iterates is a nonstandard subspace minimizer
at which the same nonbasic variable may not be on its bound. At each intermediate iterate,
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a variable moves from B to N . At the first (standard) subspace minimizer of the group, a
nonbasic variable with a negative reduced cost is targeted for inclusion in the basic set. In
the subsequent set of iterations, this reduced cost is nondecreasing and the number of basic
variables decreases. The group of consecutive iterates ends when the targeted reduced cost
reaches zero, at which point the associated variable is made basic.

The method outlined above is based on a method first defined for constraints in all-
inequality form by Fletcher [61], and extended to sparse QP by Gould [105]. Recent refine-
ments, including the technique for reducing the number of KKT solves, are given by Gill
and Wong [98]. Each of these methods is an example of an inertia-controlling method. The
idea of an inertia-controlling method is to use the active-set strategy to limit the number of
zero and negative eigenvalues in the KKT matrix KB so that it has inertia (nB, m, 0) (for
a survey, see Gill et al. [94]). At an arbitrary feasible point, a subspace minimizer can be
defined by making sufficiently many variables temporarily nonbasic at their current value
(see, e.g., Gill, Murray and Saunders [85] for more details).

A.1.2. Binding-direction methods

The next method employs a more conventional active-set strategy in which the nonbasic
variables are always active. We start by assuming that the QP is strictly convex, i.e., that
H is positive definite. Suppose that (x, π) is a feasible primal-dual pair such that xi = 0 for
i ∈ N , where N is chosen so that AB has rank m. As in a nonbinding direction method,
the primal-dual direction (p, qπ) is computed from an equality constrained QP subproblem.
However, in this case the constraints of the subproblem not only force Ap = 0 but also
require that every nonbasic variable remains unchanged for steps of the form x + αp. This
is done by fixing the nonbasic components of p at zero, giving the equality constraints
Ap = ABpB + ANpN = 0 and pN = 0. The resulting subproblem defines a direction that is
binding, in the sense that it is “bound” or “attached” to the constraints in the nonbasic set.
The QP subproblem that gives the best improvement in f̂ is then

minimize
p

ĝ(x)Tp + 1
2pT Hp subject to ABpB = 0, pN = 0. (A.10)

The optimality conditions imply that pB and qπ satisfy the KKT system

(
HB −AT

B

AB 0

)(
pB

qπ

)
= −

(
ĝB(x)−AT

B
π

0

)
. (A.11)

These equations are nonsingular under our assumptions that H is positive definite and AB

has rank m. If (x, π) is a subspace stationary point, then zB = ĝB(x) − AT
B
π = 0 and the

solution (pB, qπ) is zero. In this case, no improvement can be made in f̂ along directions
in the null-space of AB. If the components of z = ĝ(x) − ATπ are nonnegative then x is
optimal for (A.1). Otherwise, a nonbasic variable with a negative reduced cost is selected
and moved to the basic set (with no change to x), thereby defining (A.11) with new AB,
HB and (necessarily nonzero) right-hand side. Given a nonzero solution of (A.11), x + p is
either feasible or infeasible with respect to the bounds. If x + p is infeasible, N cannot be
the correct nonbasic set and feasibility is maintained by limiting the step by the maximum
feasible step αM as in (A.7). At the point x̄ = x+αp, at least one of the basic variables must
reach its bound and it is moved to the nonbasic set for the next iteration. Alternatively, if
x + p is feasible, x̄ = x + p is a subspace minimizer and a nonoptimal nonbasic variable is
made basic as above.

The method described above defines groups of consecutive iterates that start with a
variable being made basic. No more variables are made basic until either an unconstrained
step is taken (i.e., α = 1), or a sequence of constrained steps results in the definition of
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a subspace minimizer (e.g., at a vertex). At each constrained step, the number of basic
variables decreases.

As H is positive definite in the strictly convex case, the KKT equations (A.11) remain
nonsingular as long as AB has rank m. One of the most important properties of a binding-
direction method is that once an initial nonbasic set is chosen (with the implicit requirement
that the associated AB has rank m), then all subsequent AB will have rank m (and hence the
solution of the KKT system is always well defined). This result is of sufficient importance
that we provide a brief proof.

If a variable becomes basic, a column is added to AB and the rank does not change. It
follows that the only possibility for AB to lose rank is when a basic variable is made nonbasic.
Assume that AB has rank m and that the first basic variable is selected to become nonbasic,
i.e., r = 1. If ĀB denotes the matrix AB without its first column, then AB =

(
aβr

ĀB

)
. If

ĀB does not have rank m then there must exist a nonzero m-vector v̄ such that ĀT
B
v̄ = 0.

If σ denotes the quantity σ = −aT
βr

v̄, then the (m + 1)-vector v = (v̄, σ) satisfies

(
aT

βr
1

ĀT
B

0

)(
v̄

σ

)
= 0, or equivalently,

(
AT

B
er

)
v = 0.

The scalar σ must be nonzero or else AT
B
v̄ = 0, which would contradict the assumption that

AB has rank m. Then

vT

(
AB

eT
r

)
pB = vT

(
0

(pB)r

)
= σ(pB)r = 0,

which implies that (pB)r = 0. This is a contradiction because the ratio test (A.7) will choose
βr as the outgoing basic variable only if (pB)r < 0. It follows that v̄ = 0, and hence ĀB

must have rank m.

If H is not positive definite, the KKT matrix KB associated with the equations (A.11)
may have fewer than nB positive eigenvalues (cf. (A.2)), i.e., the reduced Hessian ZT

B
H

B
Z

B

may be singular or indefinite. In this situation, the subproblem (A.10) is unbounded and
the equations (A.11) cannot be used directly to define p. In this case we seek a direction p
such that pN = 0 and ABpB = 0, where

gT
B
p

B
< 0, and pT

B
H

B
p

B
≤ 0. (A.12)

The QP objective decreases without bound along such a direction, so either the largest
feasible step αM (A.7) is infinite, or a basic variable must become nonbasic at some finite

αM such that f̂(x + αMp) ≤ f̂(x). If αM = +∞, the QP problem is unbounded and the
algorithm is terminated.

A number of methods1 maintain an unsymmetric block-triangular decomposition of KB

in which the reduced Hessian ZT
B

H
B
Z

B
is one of the diagonal blocks (the precise form of the

decomposition is discussed in Section A.4.1). Given this block-triangular decomposition,
the methods of Gill and Murray [83], Gill et al. [89,94], and Gill, Murray and Saunders [85]
factor the reduced Hessian as L

B
D

B
LT

B
, where LB is unit lower triangular and DB is diagonal.

These methods control the inertia of KB by starting the iterations at a subspace minimizer.
With this restriction, the reduced Hessian has at most one nonpositive eigenvalue, and the
direction pB is unique up to a scalar multiple. This property allows the computation to be
arranged so that DB has at most one nonpositive element, which always occurs in the last
position. The vector pB is then computed from a triangular system involving the rows and

1Some were first proposed for the all-inequality constraint case, but they are easily reformulated for
constraints in standard form.
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columns of LB associated with the positive-definite principal submatrix of ZT
B

H
B
Z

B
(see,

e.g., Gill et al. [89, 94] for further details).
The method of Bunch and Kaufman [20] allows the reduced Hessian to have any num-

ber of nonpositive eigenvalues in the KKT matrix (and therefore need not be started at a
subspace minimizer). In this case, a symmetric indefinite factorization of ZT

B
H

B
Z

B
is main-

tained, giving a block diagonal factor DB with 1× 1 or 2× 2 diagonal blocks. In the strictly
convex case, methods may be defined that employ a symmetric block decomposition of KB,
see, e.g., Gill et al. [80].

As the reduced Hessian may not be positive definite, methods that maintain a block-
triangular decomposition of KB must use customized methods to factor and modify ZT

B
H

B
Z

B

as the iterations proceed. This makes it difficult to apply general-purpose solvers that exploit
structure in A and H. Methods that factor the KKT system directly are also problematic
because KB can be singular. Fletcher [61] proposed that any potential singularity be handled
by embedding KB in a larger system that is known to be nonsingular. This idea was extended
to sparse KKT equations by Gould [105]. Fletcher and Gould define an inertia-controlling
method based on solving a nonsingular bordered system that includes information associated
with the variable xβs

that was most recently made basic. The required binding direction pB

may be found by solving the bordered system




HB AT
B

es

AB

eT
s






pB

−qπ

−µ


 =




0

0

1


 ,

which is nonsingular. A simple calculation shows that pB, qπ and µ satisfy

(
H̄

B
−ĀT

B

Ā
B

0

)(
pB

qπ

)
= −

(
(hβs

)B̄
aβs

)
and µ = pT

B
H

B
p

B
, (A.13)

where B̄ is the basic set with index βs omitted. A comparison of (A.13) with (A.5) shows that
their respective values of (pB, qπ) are the same, which implies that Fletcher-Gould binding
direction is identical to the nonbinding direction of Section A.1.1. In fact, all binding
and nonbinding direction inertia-controlling methods generate the same sequence of iterates
when started at the same subspace minimizer. The only difference is in the order in which
the computations are performed—binding-direction methods make the targeted nonbasic
variable basic at the start of the sequence of consecutive iterates, whereas nonbinding-
direction methods make the variable basic at the end of the sequence when the associated
shifted bound constraint has a zero multiplier. However, it must be emphasized that not all
QP methods are inertia controlling. Some methods allow any number of zero eigenvalues in
the KKT matrix—see, for example, the Bunch-Kaufman method mentioned above, and the
QP methods in the GALAHAD software package of Gould, Orban, and Toint [111,112,106].

A.2. Dual active-set methods

In the convex case (i.e., when H is positive semidefinite) the dual of the QP subproblem
(A.1) is

minimize
w∈Rn,π∈Rm,z∈Rn

f̂D(w, π, z) = bTπ + xT
I
z + 1

2 (w − xI)
T H(w − xI)

subject to H(w − xI)−ATπ − z = −g, z ≥ 0.
(A.14)

The dual constraints are in standard form, with nonnegativity constraints on z. The opti-
mality conditions for the dual are characterized by the following result.
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Result A.3. (Optimality conditions for the dual)
The point (w, π, z) is a minimizer of the dual QP (A.14) if and only if

(a) (w, π, z) satisfies H(w − xI)−ATπ − z = −g, with z ≥ 0;

(b) there exists an n-vector y such that

(i) H(w − xI) = H(y − xI);

(ii) Ay = AxI − b, with y ≥ 0; and

(iii) y · z = 0.

The components of y are the Lagrange multipliers for the dual bounds z ≥ 0. Similarly, the
components of y − xI are the “π-values”, i.e., the multipliers for the equality constraints
H(w − xI) − ATπ − z = −g. The relationship between the primal and dual solution was
first given by Dorn [51]. If the dual has a bounded solution, then part (b) implies that the
vector y of multipliers for the dual is a KKT point of the primal, and hence constitutes a
primal solution. Moreover, if the dual has a bounded solution and H is positive definite,
then w = y.

A.2.1. A dual nonbinding direction method

Dual active-set methods can be defined that are based on applying conventional primal
active-set methods to the dual problem (A.14). For brevity, we consider the case where
H is positive definite; the positive semidefinite case is considered by Gill and Wong [98].
Consider a feasible point (w, π, z) for the dual QP (A.14), i.e., H(w−xI)−ATπ−z = −g and
z ≥ 0. Our intention is to make the notation associated with the dual algorithm consistent
with the notation for the primal. To do this, we break with the notation of Section A.1
and use B to denote the nonbasic set and N to denote the basic set for the dual QP. This
implies that the dual nonbasic variables are {zβ1

, zβ2
, . . . , zβnB

}, where nB = n− nN .

A dual basis contains all the columns of
(
H −AT

)
together with the unit columns

corresponding to the dual basic variables, i.e., the columns of I with indices in N . It follows
that the rows and columns of the dual basis may be permuted to give

(
H

B
H

D
−AT

B
0

HT
D

H
N
−AT

N
−IN

)
, (A.15)

where AN and AB denote the columns of A indexed by N and B. The dual nonbasic set
B = {β1, β2, . . . , βnB

} now provides an estimate of which of the bounds z ≥ 0 are active at
the solution of (A.14). As H is positive definite, the dual basis has full row rank regardless
of the rank of the submatrix −AT

B
. This implies that if the columns of AB are to be used to

define a basis for a primal solution, it is necessary to impose additional conditions on the
dual basis. Here, we assume that the matrix

KB =

(
H

B
AT

B

A
B

0

)
(A.16)

is nonsingular. This condition ensures that AB has rank m. To distinguish KB from the
full KKT matrix for the dual, we refer to KB as the reduced KKT matrix. The next result
concerns the properties of a subspace minimizer for the dual QP.

Result A.4. (Properties of a subspace minimizer for the dual) Consider

the dual QP (A.14) with H positive definite.
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(a) If (w, π, z) is a subspace stationary point, then there exists a vector x such that

Hw = Hx, with ABxB + ANxN = AxI − b, and xN = 0.

(b) A dual subspace stationary point at which the reduced KKT matrix (A.16) is nonsin-

gular is a dual subspace minimizer.

(c) If (w, π, z) is a standard subspace minimizer, then zB = 0 and zN ≥ 0.

This result implies that x = w at a dual subspace minimizer for the special case of H
positive definite. However, it is helpful to distinguish between w and x to emphasize that
x is the vector of dual variables for the dual problem. At a subspace stationary point, x is
a basic solution of the primal equality constraints. Moreover, z = H(w − xI)− ATπ + g =
ĝ(w)−ATπ = ĝ(x)−ATπ, which are the primal reduced-costs.

Let (w, π) be a nonoptimal dual subspace minimizer for the dual QP (A.14). (It will
be shown below that the vector w need not be computed explicitly.) As (w, π) is not
optimal, there is at least one negative component of the dual multiplier vector xB, say
xβr

. If we apply the nonbinding-direction method of Section A.1.1, we define a dual search
direction (∆w, qπ, ∆z) that is feasible for the dual equality constraints and increases a
nonbasic variable with a negative multiplier. As (w, π, z) is assumed to be dual feasible, this
gives the constraints for the equality-constraint QP subproblem in the form

H∆w −ATqπ −∆z = 0, ∆zB = er.

The equations analogous to (A.4) for the dual direction (p, qπ, ∆z) are



HB HD 0 0 −HB −HD 0
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D

HN 0 0 −HT
D
−HN 0

0 0 0 0 AB AN 0

0 0 0 0 0 IN 0

HB HD −AT
B
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N
−IN 0 0 0

0 0 0 0 0 0 IB







∆wB
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0
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er




,

where pB and pN denote the changes in the multipliers x of the dual. Block elimination
gives H∆w = Hp, where pB, pN and qπ are determined by the equations

pN = 0, and

(
HB −AT

B

AB 0

)(
pB

qπ

)
=

(
er

0

)
. (A.17)

As H∆w = Hp, the change in z can be computed as ∆z = Hp − ATqπ. The curvature of
the dual objective is given by ∆wTH∆w = (pB)r from (A.8). If the curvature is nonzero,

the step α∗ = −(xB)r/(pB)r minimizes the dual objective f̂D(w + α∆w, π + αqπ, z + α∆z)
with respect to α, and the rth element of xB + α∗pB is zero. If the xB are interpreted as
estimates of the primal variables, the step from xB to xB +α∗pB increases the negative (and
hence infeasible) primal variable (xB)r until it reaches its bound of zero. If α = α∗ gives a
feasible point for dual inequalities, i.e., if z + α∗∆z are nonnegative, then the new iterate is
(w + α∗∆w, π + α∗qπ, z + α∗∆z). In this case, the nonbinding variable is removed from the
dual nonbasic set, which means that the index βr is moved to N and the associated entries
of H and A are removed from HB and AB.

If α = α∗ is unbounded, or (w + α∗∆w, π + α∗qπ, z + α∗∆z) is not feasible, the step is
the largest α such that g(w + α∆w)−AT (π + αqπ) is nonnegative. The required value is

αF = min
1≤i≤nN

{γi}, where γi =





(zN)i

−(∆zN)i

if (∆zN)i < 0

+∞ otherwise.

(A.18)
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If αF < α∗ then at least one component of zN is zero at (w + αF ∆w, π + αF qπ, z + αF ∆z),
and the index of one of these, νs say, is moved to B. The composition of the new dual
basis is determined by the singularity vector, adapted to the dual QP from the nonbinding
direction method of Section A.1.1. Define the vector u, uπ and v such that u = v − eνs

,
where vN = 0, and uπ and vB are determined by the equations

(
HB −AT

B

AB 0

)(
vB

uπ

)
=

(
(hνs

)B

aνs

)
.

If u is zero, then (w + αF qπ, π + αF qπ, z + αF ∆z) is a subspace minimizer with respect to
the basis defined with variable βr replaced by constraint νs. Otherwise, νs is moved to B,
which has the effect of adding the column aνs

to AB, and adding a row and column to HB.
As in the primal nonbinding direction method, the vectors p and qπ may be computed in
O(n) operations if no column swap is made.

If (w, π, z) is subspace minimizer at which the reduced KKT matrix (A.16) is nonsingular,
then the next iterate is also a subspace minimizer with a nonsingular reduced KKT matrix.
(For more details, see Gill and Wong [98]).

The algorithm described above is a special case of the method of Gill and Wong [98],
which is defined for the general convex case (i.e., when H can be singular). If H = 0 this
method is equivalent to the dual simplex method. Bartlett and Biegler [6] propose a method
for the strictly convex case that uses the Schur-complement method to handle the changes
to the KKT equations when the active set changes (see Section A.4.2).

The dual problem (A.14) has fewer inequality constraints than variables, which implies
that if H and A have no common nontrivial null vector, then the dual constraint gradi-
ents, the rows of

(
H −AT

)
, are linearly independent, and the dual feasible region has

no degenerate points. In this situation, an active-set dual method cannot cycle, and will
either terminate with an optimal solution or declare the dual problem to be unbounded.
This nondegeneracy property does not hold for a dual linear program, but it does hold for
strictly convex problems and any QP with H and A of the form

H =

(
H̄ 0
0 0

)
and A =

(
Ā −Im

)
,

where H̄ is an (n−m)× (n−m) positive-definite matrix.

A.2.2. Finding an initial dual-feasible point

An initial dual-feasible point may be defined by applying a conventional phase-one method
to the dual constraints, i.e., by minimizing the sum of infeasibilities for the dual constraints
H(x− xI)−ATπ − z = −g, z ≥ 0. If H is nonsingular and A has full rank, another option
is to define N = ∅ and compute (x0, π0) from the equations

(
H −AT

A 0

)(
x0

π0

)
= −

(
g −HxI

b−AxI

)
.

This choice of basis gives z0 = 0, ĉ(x0) = 0, with (x0, π0, z0) a dual subspace minimizer.

A.2.3. The Goldfarb-Idnani method

If H is nonsingular, the vectors

y =

(
π
z

)
, b̄ =

(
b
xI

)
, and Ā =

(
A
I

)
,
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may be used to eliminate w − xI from (A.14) to give the dual problem:

minimize
y∈Rn+m, z∈Rn

yT(b̄− ĀH−1g) + 1
2yTĀH−1ĀT y, subject to z ≥ 0.

Some references include: Goldfarb and Idnani [102], Powell [156]. A variant of the Goldfarb
and Idnani method for dense convex QP has been proposed by Boland [11].

A.3. QP regularization

The methods considered above rely on the assumption that each basis matrix AB has rank
m. In an active-set method this condition is guaranteed (at least in exact arithmetic) by the
active-set strategy if the initial basis has rank m. For methods that solve the KKT system
by factoring a subset of m columns of AB (see Section A.4.1), special techniques can be used
to select a linearly independent set of m columns from A. These procedures depend on the
method used to factor the basis—for example, the SQP code SNOPT employs a combination
of LU factorization and basis repair to determine a full-rank basis. If a factorization reveals
that the square submatrix is rank deficient, suspected dependent columns are discarded
and replaced by the columns associated with slack variables. However, for methods that
solve the KKT system by direct factorization, such as the Schur complement method of
Section A.4.2, basis repair is not an option because the factor routine may be a “black-
box” that does not incorporate rank-detection. Unfortunately, over the course of many
hundreds of iterations, performed with KKT matrices of varying degrees of conditioning, an
SQP method can place even the most robust symmetric indefinite solver under considerable
stress. (Even a relatively small collection of difficult problems can test the reliability of a
solver. Gould, Scott, and Hu [110] report that none of the 9 symmetric indefinite solvers
tested was able to solve all of the 61 systems in their collection.) In this situation it is
necessary to use a regularized method, i.e., a method based on solving equations that are
guaranteed to be solvable without the luxury of basis repair.

To illustrate how a problem may be regularized, we start by considering a QP with
equality constraints, i.e.,

minimize
x∈Rn

gT(x− xI) + 1
2 (x− xI)

TH(x− xI)

subject to Ax = AxI − b.
(A.19)

Assume for the moment that this subproblem has a feasible primal-dual solution (x∗, π∗).
Given an estimate πE of the QP multipliers π∗, a positive µ and arbitrary ν, consider the
generalized augmented Lagrangian

M(x, π;πE, µ, ν) = f̂(x)− ĉ(x)T πE +
1

2µ
‖ĉ(x)‖22

+
ν

2µ
‖ĉ(x) + µ(π − πE)‖22 (A.20)

(see Forsgren and Gill [72], and Gill and Robinson [97]). The function M involves n + m
variables and has gradient vector

∇M(x, π;πE, µ, ν) =

(
ĝ(x)−AT π + (1 + ν)AT

(
π − π̄(x)

)

νµ
(
π − π̄(x)

)
)

, (A.21)

where π̄(x) = πE − ĉ(x)/µ. If we happen to know the value of π∗, and define πE = π∗, then
simple substitution in (A.21) shows that (x∗, π∗) is a stationary point of M for all ν and
all positive µ. The Hessian of M is given by

∇2M(x, π;πE, µ, ν) =

(
H +

(
1+ν

µ

)
AT A νAT

νA νµI

)
, (A.22)
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which is independent of πE. If we make the additional assumptions that ν is nonnegative

and the reduced Hessian of the QP subproblem is positive definite, then ∇2M is positive
semidefinite for all µ sufficiently small. Under these assumptions, if πE = π∗ it follows that
(x∗, π∗) is the unique minimizer of the unconstrained problem

minimize
x∈Rn,π∈Rm

M(x, π;πE, µ, ν) (A.23)

(see, e.g., Gill and Robinson [97], Gill and Wong [99]). This result implies that if πE is an
approximate multiplier vector (e.g., from the previous QP subproblem in the SQP context),
then the minimizer of M(x, π;πE, µ, ν) will approximate the minimizer of (A.19). In order
to distinguish between a solution of (A.19) and a minimizer of (A.23) for an arbitrary πE, we
use (x∗, π∗) to denote a minimizer ofM(x, π;πE, µ, ν). Observe that stationarity of ∇M at
(x∗, π∗) implies that π∗ = π̄(x∗) = πE− ĉ(x∗)/µ. The components of π̄(x∗) are the so-called
first-order multipliers associated with a minimizer of (A.23).

Particular values of the parameter ν give some well-known functions (although, as noted
above, each function defines a problem with the common solution (x∗, π∗)). If ν = 0, then
M is independent of π, with

M(x;πE, µ) ≡M(x;πE, µ, 0) = f̂(x)− ĉ(x)T πE +
1

2µ
‖ĉ(x)‖22. (A.24)

This is the conventional Hestenes-Powell augmented Lagrangian (1.11) applied to (A.19).
If ν = 1 in (A.20), M is the primal-dual augmented Lagrangian

f̂(x)− ĉ(x)T πE +
1

2µ
‖ĉ(x)‖22 +

1

2µ
‖ĉ(x) + µ(π − πE)‖22 (A.25)

considered by Robinson [157] and Gill and Robinson [97]. If ν = −1, then M is the
proximal-point Lagrangian

f̂(x)− ĉ(x)T π −
µ

2
‖π − πE‖

2
2.

As ν is negative in this case, ∇2M is indefinite and M has an unbounded minimizer.
Nevertheless, a unique minimizer ofM for ν > 0 is a saddle-point for anM defined with a
negative ν. Moreover, for ν = −1, (x∗, π∗) solves the min-max problem

min
x

max
π

f̂(x)− ĉ(x)T π −
µ

2
‖π − πE‖

2
2.

In what follows, we use M(v) to denote M as a function of the primal-dual variables
v = (x, π) for given values of πE, µ and ν. Given the initial point vI = (xI , πI), the stationary
point ofM(v) is v∗ = vI + ∆v, where ∆v = (p, q) with ∇2M(vI)∆v = −∇M(vI). It can be
shown that ∆v satisfies the equivalent system

(
H −AT

A µI

)(
p
q

)
= −

(
ĝ(xI)−AT πI

ĉ(xI) + µ(πI − πE)

)
, (A.26)

which is independent of the value of ν (see Gill and Robinson [97]). If ν 6= 0, the primal-dual
direction is unique. If ν = 0 (i.e., M is the conventional augmented Lagrangian (A.24)),
∆v satisfies the equations

(
H −AT

A µI

)(
p
q

)
= −

(
ĝ(xI)−AT π

ĉ(xI) + µ(π − πE)

)
, (A.27)
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for an arbitrary vector π. In this case, p is unique but q depends on the choice of π. In
particular, if we define the equations (A.27) with π = πI , then we obtain directions identical
to those of (A.26). Clearly, it must hold that p is independent of the choice of ν in (A.20).

The point (x∗, π∗) = (xI + p, πI + q) is the primal-dual solution of the perturbed QP

minimize
x∈Rn

gT(x− xI) + 1
2 (x− xI)

TH(x− xI)

subject to Ax = AxI − b− µ(π∗ − πE),
(A.28)

where the perturbation shifts each constraint of (A.19) by an amount that depends on
the corresponding component of π∗ − πE. Observe that the constraint shift depends on
the solution, so it cannot be defined a priori. The effect of the shift is to regularize the
KKT equations by introducing the nonzero (2, 2) block µI. In the regularized case it is not

necessary for A to have full row rank for the KKT equations to be nonsingular. A full-rank
assumption is required if the (2, 2) block is zero. In particular, if we choose πE = πI , the
system (A.26) is: (

H −AT

A µI

)(
p
q

)
= −

(
ĝ(xI)−AT πI

ĉ(xI)

)
. (A.29)

These equations define a regularized version of the Newton equations (2.7). These equa-
tions also form the basis for the primal-dual formulations of the quadratic penalty method
considered by Gould [104] (for related methods, see Murray [143], Biggs [8] and Tapia [171]).

The price paid for the regularized equations is an approximate solution of the original
problem. However, once (x∗, π∗) has been found, πE can be redefined as π∗ and the process
repeated—with a smaller value of µ if necessary. There is more discussion of the choice
of πE below. However, before turning to the inequality constraint case, we summarize the
regularization for equality constraints.

• The primal-dual solution (x∗, π∗) of the equality constraint problem (A.19) is approx-
imated by the solution of the perturbed KKT system (A.26).

• The resulting approximation (x∗, π∗) = (xI + p, πI + q) is a stationary point of the
functionM (A.20) for all values of the parameter ν. If µ > 0 and ν ≥ 0 then (x∗, π∗)
is a minimizer ofM for all µ sufficiently small.

As the solution of the regularized problem is independent of ν, there is little reason to use
nonzero values of ν in the equality-constraint case. However, the picture changes when there
are inequality constraints and an approximate solution of the QP problem is required, as is
often the case in the SQP context.

The method defined above can be extended to the inequality constraint problem (A.1)
by solving, the bound-constrained subproblem

minimize
x∈Rn

M(x;πE, µ) subject to x ≥ 0. (A.30)

This technique has been proposed for general nonlinear programming (see, e.g., Conn, Gould
and Toint [40,41,42], Friedlander [74], and Friedlander and Saunders [76]), and to quadratic
programming (see, e.g., Dostál, Friedlander and Santos [52,53,54], Delbos and Gilbert [47],
Friedlander and Leyffer [75]), and Maes [133]). Subproblem (A.30) may be solved using
one of the active-set methods of Sections A.1.2 and A.1.1, although no explicit phase-one
procedure is needed because there are no general constraints. In the special case of problem
(A.30) a primal active-set method defines a sequence of nonnegative iterates {xj} such that
xj+1 = xj +αjpj ≥ 0. At the jth iteration of the binding-direction method of Section A.1.2,
variables in the nonbasic set N remain unchanged for any value of the step length, i.e.,
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pN = (pj)N = 0. This implies that the elements pB of the direction pj must solve the
unconstrained QP subproblem:

minimize
pB

pT
B
(∇Mj)B

+ 1
2pT

B
(∇2Mj)B

p
B
.

As in (A.26), the optimality conditions imply that pB satisfies

(
HB −AT

B

AB µI

)(
pB

qj

)
= −

(
(ĝ(xj)−AT πj)B

ĉ(xj) + µ(πj − πE)

)
, (A.31)

where πj is an estimate of the optimal multipliers π∗ of (A.30). The next iterate is defined
as xj+1 = xj + αjpj , where the steplength αj is chosen such that xj + αjpj ≥ 0. As in the
equality-constraint case, the dual variables may be updated as πj+1 = πj + αjqj . The dual
iterates πj will converge to the multipliers π∗ of the perturbed QP:

minimize
x∈Rn

gT(x− xI) + 1
2 (x− xI)

TH(x− xI)

subject to Ax = AxI − b− µ(π∗ − πE), x ≥ 0.
(A.32)

At an optimal solution (x∗, π∗) of (A.30) the vector z∗ = ĝ(x∗)−AT π∗ provides an estimate
of the optimal reduced costs z∗. As in the equality-constraint case, the vector of first-order
multipliers π̄(x∗) = πE − ĉ(x∗)/µ is identical to π∗. Problem (A.30) may be solved using a
bound-constraint variant of the nonbinding-direction method of Section A.1.1. This method
has some advantages when solving convex and general QP problems. For more details, see
Gill and Wong [99].

If the QP is a “one-off” problem, then established techniques associated with the bound-
constrained augmented Lagrangian method can be used to update πE and µ (see, e.g., Conn,
Gould and Toint [41], Dostál, Friedlander and Santos [52, 53, 54], Delbos and Gilbert [47],
Friedlander and Leyffer [75], Maes [133], and Gill and Wong [98]). These rules are designed
to update πE and µ without the need to find the exact solution of (A.30). In the SQP

context, it may be more appropriate to find an approximate solution of (A.30) for a fixed

value of πE, which is then updated in the outer iteration. Moreover, as µ is being used
principally for regularization, it is given a smaller value than is typical in a conventional
augmented Lagrangian method.

The algorithms defined above are dual regularization methods in the sense that the
regularization has the effect of bounding the Lagrange multipliers. For convex QP certain
primal regularization schemes may be used to bound the primal variables (see, e.g., Gill
et al. [84], Saunders [161], Saunders and Tomlin [163, 162], Altman and Gondzio [1], and
Maes [133]).

A.4. Solving the KKT system

The principal work associated with a QP iteration is the cost of solving one or two saddle-
point systems of the form




HB −AT
B

HD

AB µI AN

IN






yB

w
yN


 =




gB

f1

f2


 , (A.33)

where µ is a nonnegative scalar. We focus on two approaches appropriate for large-scale
quadratic programming.
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A.4.1. Variable-reduction methods

These methods are appropriate for the case µ = 0. As AB has rank m, there exists a
nonsingular QB such that

ABQB =
(
0 B

)
, (A.34)

with B an m × m nonsingular matrix. If µ = 0 the matrix QB is used to transform the
generic system (A.33) to block-triangular form. The columns of QB are partitioned so that
QB =

(
ZB YB

)
with ZB an nB −m by nB matrix, then ABZB = 0 and the columns of ZB

span the null-space of AB. Analogous to (2.11) we obtain the permuted block-triangular
system: 



ZT
B

H
B
Z

B
ZT

B
H

B
Y

B
ZT

B
HD

Y T
B

H
B
Z

B
Y T

B
H

B
Y

B
−BT Y T

B
HD

B 0 AN

IN







yZ

yY

w
yN


 =




gZ

gY

f1

f2


 , (A.35)

with gZ = ZT
B

g
B

and gY = Y T
B

g
B
. We formulate the result of the block substitution in a form

that uses matrix-vector products involving the full matrix H rather than the submatrix HB.
This is done to emphasize the practical utility of accessing the QP Hessian as an operator

that defines the product Hx for a given x. This reformulation requires the definition of the
explicit column permutation P that identifies the basic and nonbasic columns AB and AN

of A, i.e.,
AP =

(
AB AN

)
. (A.36)

Given the permutation P , we define matrices Q, WT , Y T and ZT that act on vectors of
length n, i.e., Q =

(
Z Y W

)
, where

Z = P

(
ZB

0

)
, Y = P

(
YB

0

)
, and W = P

(
0
IN

)
.

In terms of these matrices, the block substitution yields

yW = f2, y0 = WyW ,

ByY = f1 −ANf2, y1 = Y yY + y0,

ZTHZyZ = ZT(g −Hy1), y = ZyZ + y1,

BTw = −Y T(g −Hy).

(A.37)

There are many practical choices for the matrix QB. For small-to-medium scale problems
with dense A and H, the matrix QB can be calculated as the orthogonal factor associated
with the QR factorization of a row and column-permuted AT

B
(see, e.g., Gill et al. [89]). The

method of variable reduction is appropriate when A is sparse. In this case the permutation
P of (A.36) is specialized further to give

AP =
(
AB AN

)
, with AB =

(
B S

)
,

where B an m ×m nonsingular subset of the columns of A and S an m × nS matrix with
nS = nB −m. The matrix Q =

(
Z Y W

)
is constructed so that

Z = P



−B−1S

InS

0


 , Y = P




Im

0
0


 , and W = P




0
0
IN


 .

This form means that matrix-vector products ZTv or Zv can be computed using a factor-
ization of B (typically, a sparse LU factorization; see Gill et al. [91]), and Z need not be
stored explicitly.
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A.4.2. The Schur complement method

Solving a “one-off” KKT system can be done very effectively using sparse matrix factoriza-
tion techniques. However, within a QP algorithm, many systems must be solved in which
the matrix changes by a single row and column. Instead of redefining and re-solving the
KKT equations at each iteration, the solution may be found by solving a bordered system
of the form (

K0 V
V T D

)(
z
w

)
=

(
b
f

)
, with K0 =

(
HB AT

B

AB µI

)
, (A.38)

where K0 is the KKT matrix at the initial point. For simplicity, we assume that the second
block of the variables is scaled by −1 so that the (1, 2) block of K0 is AT

B
, not −AT

B
. The

Schur complement method is based on the assumption that factorizations for K0 and the
Schur complement C = D−V TK−1

0 V exist. Then the solution of (A.38) can be determined
by solving the equations

K0t = b, Cw = f − V Tt, K0z = b− V w.

The work required is dominated by two solves with the fixed matrix K0 and one solve with
the Schur complement C. If the number of changes to the basic set is small enough, dense
factors of C may be maintained.

We illustrate the definition of (A.38) immediately after the matrix K0 is factorized. (For
more details, see, e.g., Bisschop and Meeraus [9], Gill et al. [93].) Suppose that variable s
enters the basic set. The next KKT matrix can be written as




HB AT
B

(hs)B
AB µI as

(hs)
T
B

aT
s hss


 ,

where as and hs are the sth columns of A and H. This is a matrix of the form (A.38) with
D = (hss) and V T =

(
(hs)

T
B

aT
s

)
.

Now consider the case where the rth basic variable is deleted from the basic set, so that
the rth column is removed from AB. The corresponding changes can be enforced in the
solution of the KKT system using the bordered matrix:




HB AT
B

(hs)B er

AB µI as 0

(hs)
T
B

aT
s hss 0

eT
r 0 0 0


 .

Bordering with the unit row and column has the effect of zeroing out the components of the
solution corresponding to the deleted basic variable.

The Schur complement method can be extended to a block LU method by storing the
bordered matrix in block-factored form

(
K0 V
V T D

)
=

(
L

ZT I

)(
U Y

C

)
, (A.39)

where K0 = LU , LY = V , UTZ = V , and C = D − ZTY , which is the Schur complement
matrix (see Eldersveld and Saunders [57], Huynh [125]).

Using the block factors, the solution of (A.38) can be computed from the equations

Lt = b, Cw = f − ZTt, Uz = t− Y w.
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This method requires a solve with L and U each, one multiply with Y and ZT , and one
solve with the Schur complement C.

Although the augmented system (in general) increases in dimension by one at every
iteration, the K0 block is fixed and defined by the initial basic set. As the inner iterations
proceed, the size of C increases and the work required to perform a solve or update increases.
It may be necessary to restart the process by discarding the existing factors and re-forming
K0 based on the current set of basic variables.

A.5. Finding an initial feasible point

There are two approaches to finding a feasible point for the QP constraints. The first,
common in linear programming, is to find a point that satisfies the equality constraints and
then iterate (if necessary) to satisfy the bounds. The second method finds a point that
satisfies the bound constraints and then iterates to satisfy the equality constraints. In each
case we assume that an initial nonbasic set is known (in the SQP context, this is often the
final nonbasic set from the previous QP subproblem).

The first approach is suitable if the variable reduction method is used in the optimality
phase. In this case, a factorization is available of the matrix B such that ABQB =

(
0 B

)
.

Given xI , a point x0 is computed that satisfies the constraints Ax = AxI − b, i.e., we define

BpY = −ĉ(xI), pF = Y pY , x0 = xI + pF .

If x0 6≥ 0, then x0 is the initial iterate for a phase-one algorithm that minimizes the linear
function −

∑
i∈V(x) xi, where V(x) is the index set of violated bounds at x. The two-phase

nature of the algorithm is reflected by changing the function being minimized from the
sum of infeasibilities to the quadratic objective function. The function −

∑
i∈V(x) xi is a

piece-wise linear function that gives the one-norm of the constraint infeasibilities at x. A
feature of this approach is that many violated constraints can become feasible at any given
iteration.

Minimizing the explicit sum of infeasibilities directly is less straightforward for the Schur
complement method because the objective function changes from one iteration to the next.
In this case, a single phase with a composite objective may be used, i.e.,

minimize
x,v,w

gT(x− xI) + 1
2 (x− xI)

TH(x− xI) + eTu + eTv

subject to Ax− u + v = AxI − b, x ≥ 0, u ≥ 0, v ≥ 0,
(A.40)

where e is the vector of ones. This approach has been used by Gould [105], and Huynh [125].
An alternative is to define a phase-one subproblem that minimizes the two-norm of the
constraint violations, i.e.,

minimize
x,v

1
2‖v‖

2
2 subject to Ax + v = AxI − b, x ≥ 0. (A.41)

This problem is a convex QP. Given an initial point x0 and nonbasic set N0 for the phase-
two problem, the basic variables for phase one consist of the x0 variables in B0 and the m
variables v0 such that Ax0 + v0 = AxI − b. The variables v are always basic.

Another phase-one subproblem appropriate for the Schur complement method minimizes
a strictly convex objective involving the two-norm of the constraint violations and a primal
regularization term:

minimize
x∈Rn

1
2‖Ax− b‖22 + 1

2σ‖x− xI‖
2
2 subject to x ≥ 0. (A.42)

If a feasible point exists, then the problem is feasible with the objective bounded below
by zero. The only constraints of this problem are bounds on x. Applying the nonbinding
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direction method of Section A.1.1 gives

(
σIB AT

B

AB −I

)(
pB

−qπ

)
=

(
0
−aνs

)
,

with pN = es and qN = σes−AT
N
qπ. Solving this phase-one problem is equivalent to applying

the regularized QP algorithm in [99] with µ = 1 and πE = 0, to the problem

minimize
x∈Rn

σ

2
‖x− x0‖

2
2 subject to Ax = b, x ≥ 0.
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