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Abstract

We show that simple sequential randomized iterative algo-

rithms for random permutation, list contraction, and tree

contraction are highly parallel. In particular, if iterations of

the algorithms are run as soon as all of their dependencies

have been resolved, the resulting computations have log-

arithmic depth (parallel time) with high probability. Our

proofs make an interesting connection between the depen-

dence structure of two of the problems and random binary

trees. Building upon this analysis, we describe linear-work,

polylogarithmic-depth algorithms for the three problems.

Although asymptotically no better than the many prior

parallel algorithms for the given problems, their advan-

tages include very simple and fast implementations, and

returning the same result as the sequential algorithm. Ex-

periments on a 40-core machine show reasonably good

performance relative to the sequential algorithms.

1 Introduction

Over the past several decades there has been significant

research on deriving new parallel algorithms for a variety

of problems, with the goal of designing highly parallel

(polylogarithmic depth), work-efficient (linear in the se-

quential running time) algorithms. For some problems,

however, one might ask if perhaps a standard sequential

algorithm is already highly parallel if we simply execute

sub-computations opportunistically when they no longer

depend on any other uncompleted sub-computations. This

approach is particularly applicable in iterative or greedy

algorithms that iterate (loop) once through a sequence of

steps (or elements), each step depending on the results

or effects of only a subset of previous steps. In such al-

gorithms, instead of waiting for its turn in the sequential

order, a given step can run immediately once all previous

steps it depends on have been completed. The approach al-

lows for steps to run in parallel while performing the same

computations on each step as the sequential algorithm, and

consequently returning the same result. Surprisingly, this
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question has rarely been studied.

As an example, which we will cover in this paper, con-

sider the well-known algorithm for randomly permuting

a sequence of n values [13, 26]. The algorithm iterates

through the sequence from the end to the beginning (or the

other way) and for each location i, it swaps the value at i
with the value at a random target location j at or before i.
In the algorithm, each step can depend on previous steps

since on step i the value at i and/or its target j might have

already been swapped by a previous step. The question

is: What does this dependence structure look like? Also,

can the above approach be used to derive a highly parallel,

work-efficient parallelization of the sequential algorithm?

In this paper, we study these questions for three funda-

mental problems: random permutation, list contraction and

tree contraction [25, 24, 36]. For all three problems, we

analyze the dependencies of simple randomized sequential

algorithms, and show that the algorithms are efficient in

parallel, if we simply allow each step to run as soon as it no

longer depends on previous steps. To this end, we define

the notion of an iteration dependence graph that captures

the dependencies among the steps, and then we analyze the

depth of these graphs, which we refer to as the iteration

depth. We also study how to use low-depth iteration de-

pendence graphs to design efficient implementations. This

involves being able to efficiently recognize when a step no

longer depends on any uncompleted previous step.

Beyond the intellectual curiosity of whether sequential

algorithms are inherently parallel, the approach has several

important benefits for the design of parallel algorithms.

Firstly, it can lead to very simple parallel algorithms. In

particular, if there is an easy way to check for dependencies,

then the parallel algorithm will be very similar to the

sequential one. We use a framework based on deterministic

reservations [6] that makes programming such algorithms

particularly easy. Secondly, the approach can lead to very

efficient parallel algorithms. We show that if a sufficiently

small prefix of the uncompleted iterations are processed at

a time, then most steps do not depend on each other and can

run immediately. This reduces the overhead for repeated

checks and leads to work which is hardly any greater than

the sequential algorithm. Finally, the parallelization of the

sequential algorithm will be deterministic returning the

same result on each execution (assuming the same source



of random numbers). The result of the algorithm will

therefore be independent of how many threads are used,

how the scheduler works, or any other non-determinism

in the underlying hardware and software, which can make

debugging and reasoning about parallel programs much

easier [8, 6].

For the random permutation problem we consider the

algorithm described above. We show that the algorithm

leads to iteration dependence graphs that follow the same

distribution over the random choices as do random binary

search trees. Hence the iteration depth is Θ(log n) with

high probability.1 For this algorithm we also show that

recognizing when a step no longer depends on previous

steps is easy, leading to a straightforward linear-work

polylogarithmic-depth implementation. Therefore the

“sequential” algorithm is effectively parallel.

The list contraction problem is to contract a set of

linked lists each into a single node (possibly combining

values), and has many applications including list ranking

and Euler tours [24]. The sequential algorithm that

we consider simply iterates over the nodes in random

order splicing each one out.2 We show that for this

algorithm each list has an iteration dependence graph that

follows the same distribution as random binary search

trees. The iteration depth is therefore O(log n) w.h.p.

For this algorithm, determining when a step no longer

depends on previous steps is trivial—it is simply when

the node’s neighbors in the list are both later in the

ordering. This leads to a straightforward linear-work

parallel implementation of the algorithm.

The tree contraction problem is to contract a tree into

a single node (possibly combining node values), and again

has many applications [28, 29, 24]. We assume that the

tree is a rooted binary tree. The sequential algorithm that

we consider steps over the leaves of the tree in random

order and, for each leaf, it splices the leaf and its parent

out. We show that the iteration depth for this algorithm is

again O(log n) w.h.p. For this algorithm, however, there

seems to be no easy on-line way to determine when a

step no longer depends on any other uncompleted steps.

We show, however, that with some pre-processing we can

identify the dependencies. This leads to a linear-work

parallelization of the algorithm. We also show how to

relax the dependencies such that the contraction is still

correct and deterministic, but does not necessarily contract

in the same order as the sequential algorithm, giving us a

simple linear-work polylogarithmic-depth implementation.

Reducing the randomness required by algorithms is

important, as randomness can be expensive. Straightfor-

ward implementations of our algorithms require O(n log n)

1We use “with high probability” (w.h.p.) to mean probability at least

1− 1/nc for any constant c > 0.
2The random order can be implemented by first randomly permuting

the nodes, then processing them in linear order.

random bits. By making use of a pseudorandom gener-

ator for space-bounded computation by Nisan [31], we

show that the algorithms for random permutation and list

contraction require only a polylogarithmic number of ran-

dom bits w.h.p. This result is based on showing that our

algorithms can be simulated in polylogarithmic space.

We have implemented all three of our algorithms in

the deterministic reservations framework [6]. Our imple-

mentations for random permutation and list contraction

contain under a dozen lines of C code, and tree contraction

is just a few dozen lines. We have experimented with these

implementations on a shared-memory multi-core machine

with 40 cores, obtaining reasonably good speedups rela-

tive to the sequential iterative algorithms, on problems for

which it is hard to compete with sequential algorithms.

Related Work. Beyond significant prior work on algo-

rithms for the problems that we consider, which is men-

tioned in the sections on each problem, there has been

prior work on understanding the parallelism in iterative (or

greedy) sequential algorithms, including work on the max-

imal independent set and maximal matching problems [7],

and on graph coloring [21].

Contributions. The main contributions of this paper

are as follows. We show that the standard sequential

algorithm for random permutation has low sequential

dependence (Θ(log n) w.h.p.). For list contraction and

tree contraction, we show that the sequential algorithms

also have a dependence that is logarithmic w.h.p. given a

random ordering of the input. We show natural parallel

implementations of these algorithms, where steps are

processed as soon as all of their dependencies have been

resolved. These parallel algorithms give the same result as

the sequential algorithms, which is useful for deterministic

parallel programming. We show linear-work parallel

implementations of these algorithms using deterministic

reservations and activation-based approaches. We also

prove that our algorithms for random permutation and

list contraction require only a polylogarithmic number

of random bits w.h.p., in contrast to O(n log n) random

bits in a straightforward implementation. Finally, our

experimental results show that our implementations of

the parallel algorithms achieve good speedup on a 40-core

machine and outperform the sequential algorithms with

just a modest number of cores.

2 Preliminaries

The random permutation problem takes as input an array

A of length n and returns a random ordering of the

elements of A such that each of the n! possible orderings is

equally likely. The list contraction problem takes as input

a collection of linked lists represented by L, and contracts

each list into a single node, possibly combining values

on the nodes during contraction. The tree contraction



problem takes as input a tree T and contracts the tree down

to the root node, possibly combining values on the nodes

during contraction.

In this paper, we state our results in the work-

depth model, where work is equal to the number of

operations required (equivalently, the product of the time

and processors) and depth is equal to the number of time

steps required. We use the parallel random access machine

model (PRAM). We use the exclusive-read exclusive-

write (EREW) PRAM, the arbitrary-write and priority-

write versions of the concurrent-read concurrent-write

(CRCW) PRAM, where a priority-write here means that

the maximum value written concurrently is stored. We also

use the scan PRAM [5], a variant of the EREW PRAM

where scan (prefix sum) operations take unit depth. For

the priority-write model we will use a writeMax(l,i) which

writes value i to location l such that the maximum value

written to l will end up in that location.

We use the standard definition of a random binary

search tree, i.e., the tree generated by inserting a random

permutation of the integers {0, . . . , n − 1} into a binary

search tree.

In this paper, we are concerned with the parallelism

available in sequential iterative algorithms. We assume

that the iterative algorithm takes n steps, where each step

performs some computation, depending on the results or

effects of a subset of previous steps. We are interested in

running some of these steps in parallel. What we can run

safely in parallel will depend on both the algorithm and the

input, which together we will refer to as a computation.

We will model the dependencies in the computation as a

graph, where the steps I = {0, . . . , n−1} are vertices and

dependencies between steps are directed edges, denoted

by E.

DEFINITION 1. (ITERATION DEPENDENCE GRAPH)

An iteration dependence graph for an iterative compu-

tation is a (directed acyclic) graph G(I, E) such that

if every step i ∈ I runs after all predecessor steps in

the graph complete, then every step will do the same

computation as in the sequential order.

We are interested in the depth of an iteration depen-

dence graph, which we refer to as the iteration depth,

D(G). It should be clear that we can correctly simulate a

computation with iteration dependence graph G in D(G)
rounds, each running a set of steps in parallel. However, it

may not be clear how to efficiently determine for each each

step if all of its predecessors have completed. As we will

see, and not surprisingly, the method for doing this check is

algorithm specific. We will say that a step can be efficiently

checked if we can determine that all its predecessors have

completed in constant work/depth, and efficiently updated

if the step itself takes constant work/depth.

We define aggregate delay, A(G), of an iteration

1: procedure SEQUENTIALRANDPERM(A, H)

2: for i = n− 1 to 0 do

3: swap(A[H[i]], A[i])

Figure 1: Sequential algorithm for random permutation.

dependence graph G to be the sum of the heights (one

plus the longest directed path to a vertex) of the vertices in

G. To understand why this is a useful measure, consider a

process in which on every round all steps that have not yet

completed check to see if their predecessors are complete,

and if so they run and complete, otherwise they try again in

the next round. Each round can be run in parallel, and each

step is delayed by a number of rounds corresponding to

its height in G. Assuming each non-completed step does

constant work on each round, then the total work across

all steps and all rounds will be bounded by O(A(G)).
We will show that all three of our algorithms have

steps that can be checked and updated in constant time, and

have iteration dependence graphs with O(log n) depth and

O(n) aggregate delay. However, tree contraction requires

pre-processing to allow for efficient checking.

3 Bounding Iteration Depth and Aggregate Delay

In this section, we analyze the iteration depth and aggregate

delay for algorithms for the three problems that we are

concerned with: random permutation, list contraction and

tree contraction. Sections 4 and 5 will then describe how

to efficiently check for dependencies and how this leads to

efficient parallelizations of the algorithms.

3.1 Random Permutation. Durstenfeld [13] and

Knuth [26] discuss a simple sequential algorithm for

generating a random permutation which goes through the

elements of an array from the end to the beginning (or the

other way), and for each element swaps with a random at

or earlier position in the array. We assume that the random

integers used in the algorithm are generated beforehand,

and stored in an array H—i.e., for 0 ≤ i < n, H[i] is a

(uniformly) random integer from 0 to i, inclusive. The

pseudo-code for Durstenfeld’s sequential algorithm is

given in Figure 1.

Generating random permutations in parallel has been

well-studied, both theoretically [1, 2, 10, 14, 16, 17, 18,

20, 28, 33] and experimentally [9, 19]. Many of these al-

gorithms do linear work and have polylogarithmic depth.

As far as we know, however, none of this work has consid-

ered the parallelism available in Durstenfeld’s sequential

algorithm, and none of them return the same permutation

as it does, given the same source of randomness.

To analyze the iteration dependence depth of Dursten-

feld’s algorithm we will use the following definitions.

When performing a swap(x, y) we say x is the source

of the swap and y is the target of the swap. For a given H ,

we say i dominates j if H[i] = j and i 6= j. We define the
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Figure 2: Dominance and dependence forests for H = [0, 0, 1, 3, 1, 2, 3, 1] are shown in (a) and (b), respectively. (c) shows the

linked dependence tree for H and (d) shows the possible locations for inserting the 9th node; dashed circles correspond to the value

of H[8].

dominance forest of H to be the directed graph formed

on n nodes where node i points to node j if i dominates

j. Since each node can dominate at most one other node,

the graph is a forest. Note that the roots of the dominance

forest are exactly the nodes where H[i] = i.
Define the dependence forest of H to be a modifica-

tion of the dominance forest where the children of each

node (from incoming edges) are chained together in de-

creasing order. In particular, for a node i with incoming

edges from nodes j1 < . . . < jk we add an edge from jl+1

to jl for 1 ≤ l < k (creating a chain) and delete the edges

from jl to i for l > 1. Note that the dependence forest is

binary, since each node can have at most one incoming

edge from the set of nodes pointing to it in the dominance

forest, and since it can be part of at most one chain. See

Figures 2(a) and 2(b) for an example of the dominance

forest and dependence forest for a given H .

LEMMA 3.1. The dependence forest of H is an iteration

dependence graph for SEQUENTIALRANDPERM.

Proof. We define a step to be ready if all of its descendants

in the dependence forest have been processed. We will

show that when a step is ready, its corresponding location

in A will contain the same value as it would have when

the sequential algorithm processes it. The proof uses

induction on the iteration in which a step is processed

in the sequential algorithm (i.e., step n− 1 is the first and

step 0 is the last).

The base case is trivial as step n − 1 is ready at the

start of any ordering (no node can point to n − 1 in the

dependence forest) and has the correct value (location n−1
cannot be the target of any swap with another element).

Consider some step i. Suppose there are multiple steps

j1, . . . , jk where j1 < j2 < . . . < jk with location i as the

target of a swap operation. Since i < j1 < . . . < jk, by the

inductive hypothesis we may assume that steps j1, . . . , jk
had the correct value in their corresponding locations in

A when they were ready. The sequential algorithm will

perform the swaps in decreasing order of the steps (jk
down to j1), and since i < j1, in the sequential algorithm

location i will not be the source of a swap until all of steps

j1, . . . , jk have been processed. Any ordering respecting

the dependence forest will also process steps j1, . . . , jk
in decreasing order, since by definition the dependence

forest contains a directed path from jk to j1. The fact

that j1, . . . , jk have the same value as in the sequential

algorithm when they are ready, and that they are processed

in the same order as the sequential algorithm implies that

the location corresponding to step i will also have the same

value as in the sequential algorithm when it is ready (i.e.,

after all of its incoming steps have been processed). �

We are interested in showing that the dependence

forest is shallow. To do this we will actually add some

additional edges to make a tree and then show that this

tree has an identical distribution as random binary search

trees, which are known to have Θ(log n) depth with high

probability. We define the linked dependence tree as the

tree created by linking the roots of the dependence forest

along the right spine of a tree with indices appearing in

ascending order from the top of the spine to the bottom (see

Figure 2(c) for an example of the linked dependence tree).

The linked dependence tree is clearly also an iteration

dependence graph since it only adds constraints.

THEOREM 3.1. Given a random H , the distribution of

(unlabeled) linked dependence trees for H is identical to

the distribution of (unlabeled) random binary search trees.

Proof. We prove this by induction on the input size n.

For the base case, n = 1, there is a single vertex and the

claim is trivially true. For the inductive case note that

the linked dependence tree for the first n − 1 locations

is not affected by the last location since numbers at H[i]
point at or before i—i.e., the last location will end up as

a leaf. By the inductive hypothesis, the distribution of

trees on the first n− 1 locations has the same distribution

as random binary search trees of size n − 1. Now we

claim that, justified below, the nth element can go into

any leaf position. Since the nth location is a uniformly

random integer from 0 to n − 1 and there are n possible



leaf positions in a binary tree of size n−1, all leafs must be

equally likely. Hence this is the same process as inserting

randomly into a binary search tree.

To see that the nth location can go into any leaf,

first note that if it picks itself (index n − 1), then it is

at the bottom of the right spine of the tree, by definition.

Otherwise if it picks j < n − 1, and it will be placed at

the bottom of the right spine of the left child of j. This

allows for all possible tree positions—to be a left child of

a node just pick the parent, and to be a right child follow

the right spine up to the top, then pick its parent (e.g., see

Figure 2(d)). �

THEOREM 3.2. For SEQUENTIALRANDPERM on a ran-

dom H of length n, there is an iteration dependence graph

G with D(G) = Θ(log n) w.h.p., and A(G) = Θ(n) in

expectation.

Proof. For the depth, it is a well-known fact that the height

of a random binary search tree on n nodes is Θ(log n)
w.h.p. [12], so Theorem 3.1 implies that the longest path in

the iteration dependence graph is O(log n) w.h.p. To show

that this is tight, note that node 0 has Θ(log n) incoming

edges in the dominance forest w.h.p., and hence the longest

path to it in the iteration dependence graph is Ω(log n)
w.h.p.

To analyze the aggregate delay we analyze the sum

of heights of the nodes in a random binary search tree.

Let W (n) indicate the expected sum. The two children of

the root of a random binary search tree are also random

binary search trees of size i and n − i − 1, respectively,

for a randomly chosen i in {0, . . . , n− 1}. We therefore

have the recurrence: W (n) = H(n) + 1
n

∑n−1
i=0 (W (i) +

W (n− i− 1)), where H(n) = Θ(log n) is the expected

height of a random binary search tree with n nodes. This

solves to Θ(n) and hence the theorem follows. �

3.2 List Contraction. List contraction, and the related

list ranking, is one of the most canonical problems in the

study of parallel algorithms. The problem has received

considerable attention both because of its fundamental

nature as a pointer-based algorithm, and also because it

has many applications as a subroutine in other algorithms.

A summary of the work can be found in a variety of books

and surveys (see e.g. [25, 24, 36]).

Here we are concerned with analyzing a simple

sequential algorithm for list contraction and showing that

it has low iteration depth and aggregate delay. We assume

the linked list is represented as an array L of nodes, where

L[i].prev stores the index of the predecessor of node i (null

if none) and L[i].next stores the index of the successor

of node i (null if none). A natural sequential iterative

algorithm works by splicing out the nodes in order of

increasing index, as shown in Figure 3. Each list in L is

contracted down to a single node. For simplicity we do not

1: procedure SEQUENTIALLISTCONTRACT(L)

2: for i = 0 to n− 1 do

3: if L[i].prev 6= null then

4: L[L[i].prev].next = L[i].next

5: if L[i].next 6= null then

6: L[L[i].next].prev = L[i].prev

Figure 3: Sequential algorithm for list contraction.
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Figure 4: (a) An example list, where the numbers represent the

position in the input array L, and (b) its dependence forest.

show the values stored on the nodes. If values are stored,

then when a node is spliced out its value is combined with

its predecessor’s value using a combining function, and

stored on its predecessor. To perform list ranking, the

process is then reversed, adding the nodes back in with the

appropriate values. Note that when the combining function

is non-associative, then the result depends on the order in

which the nodes are spliced out. In such a case, a parallel

computation returns the same answer as the sequential

algorithm if it satisfies the dependence structure of the

sequential algorithm, which we define next.

We define the following dependence forest for an

input L. For a list, place the last position k in which any of

its links appear at the root r of a tree. Now recursively for

the sublists on each side of the node in position k, do the

same and make the two roots the children of r. If either

sublist is empty, r will not have a child on that side. This

defines a tree for each list and a forest across multiple lists.

As with the dependence forest for random permutation, the

dependencies go up the tree—i.e., each parent depends on

its children. An example list along with its dependence

forest is shown in Figure 4.

LEMMA 3.2. The dependence forest of L is an iteration

dependence graph for SEQUENTIALLISTCONTRACT(L).

Proof. For each step i, let j and k be the indices of prev

and next nodes when i is spliced out in the sequential order.

Clearly j and k must both be larger than i (or null) since

they have not yet been spliced out. We need to show that for

each i, once all of its descendants in the dependence forest

are completed (spliced out), possibly not in the sequential



order, it will point to j and k, and hence will do an identical

splice as in the sequential order. By induction we assume

this was true for all indices less than i.
Consider the sublist between j and k (not inclusive).

The index i must be the largest index on this list because

if there were a larger index l, when i is contracted in the

sequential order it cannot be linked with both j and k—l
must be in the way. By construction of the dependence

forest, and because i is the largest on the sublist, it is

picked as the root of a tree containing the sublist. Therefore

when all descendants are completed (and by induction we

assumed they operated correctly) all other nodes on the

sublist have been spliced out and i will point to j and k. �

LEMMA 3.3. Assuming the ordering of L has been ran-

domized, for each list in L the distribution of (unlabeled)

dependence trees is identical to the distribution of (unla-

beled) random binary search trees of the same size.

Proof. The root node of the dependence tree can appear

in any position of the list with equal probability, since L
is randomly ordered. This property also holds for each

sublist of the list. Therefore in each subtree all nodes are

equally likely to be the root, which is equivalent to the

distribution for random binary search trees. �

The following theorem now follows from the same

argument as in Theorem 3.2 since the iteration dependence

graph (for each list) has the same distribution—a random

binary search tree. There are no dependencies among

different lists.

THEOREM 3.3. For SEQUENTIALLISTCONTRACT on a

randomly ordered L of length n, there is an iteration

dependence graph G with D(G) = O(log n) w.h.p., and

A(G) = Θ(n) in expectation.

3.3 Tree Contraction. As with list contraction, parallel

algorithms for tree contraction has received considerable

interest [28, 24, 36]. There are many variants of parallel

tree contraction. Here we will assume we are contracting

rooted binary trees in which every internal node has exactly

two children. To represent the tree we use an array T of

nodes, each with a parent and two child pointers, with the

first n nodes being leaves, and the next n − 1 being the

internal nodes.

We consider an iterative sequential algorithm for tree

contraction that rakes the leaves of the tree one at a time,

shown in Figure 5. To rake a leaf v, we splice it and

its parent p out of the tree—i.e, set v’s sibling’s parent

pointer to be v’s grandparent, and v’s grandparent’s child

pointer to point to v’s sibling instead of p. At the end only

the root node remains. As in list contraction, values can

be stored on the nodes, and combined during contraction

(e.g., for evaluating arithmetic expressions), but we leave

1: procedure SEQUENTIALTREECONTRACT(T )

2: for i = 0 to n− 1 do

3: p = T [i].parent

4: if T [p].parent 6= null then ⊲ p is not root

5: s = sibling(T, i)
6: T [s].parent = T [p].parent

7: switchParentsChild(T, p, s)
8: else switchParentsChild(T, i, null) ⊲ p is root

Figure 5: Sequential algorithm for tree contraction, where

sibling(T, i) returns the sibling of i in T , and switchPar-

entsChild(T, i, v) resets the appropriate child pointer of the par-

ent of i to point to v instead of i.

it out of the code. Again, if the combining function is

non-associative, then the result depends on the order that

we rake the leaves in, and a parallel computation returns

the same result as the sequential algorithm if it satisfies the

dependence structure of the sequential algorithm.

We define the following labeling of internal nodes,

and then define a dependence structure based on it. Let

M(i) for each node i be the maximum index of any of

the leaves in its subtree, and the label of each internal

node be L(i) = min{M(j),M(k)}, where j and k are

the two children of i. The following fact about labels will

be useful.

LEMMA 3.4. In SEQUENTIALTREECONTRACT on a tree

T the internal node with label i will be raked by the leaf

with index i.

Proof. We prove this by induction. The base case for a

tree with a single leaf is trivial as there are no internal

nodes. Now assume by induction that this holds for the

internal nodes of two separate subtrees, joined together by

a new root r. The highest-indexed leaf in each subtree will

not appear as a label in the subtrees since the root takes

the minimum of the two subtrees, and hence the highest-

indexed leaf must be the leaf that remains when the tree is

contracted (by induction). Thus, one of the two highest-

indexed leaves in the two subtrees must be the node that

rakes r. The smaller of these two leaves will be processed

first, which is also the label on r by definition. This proves

the lemma. �

The dependence tree for a tree T is the tree created

by taking the maximum label i and placing it at the root.

We then partition the tree T by removing the internal node

labeled with i, and recursively apply this process to each

subtree. The three resulting dependence trees become the

children of i. This is repeated until we reach a leaf. Note

that this process creates a tree over the leaf indices, since

each label corresponds to a leaf index. Also note that this

process is similar to how we defined the dependence forest

for the list contraction problem, and hence the proof of the

lemma below has a similar structure.



(a) Tree decomposition for P-

state tree

(b) Tree decomposition for Q-

state tree

Figure 6: P-state and Q-state trees used in the proof of

Theorem 3.4. The red node is vs, the interior node corresponding

to the leaf with the second largest label. The yellow node is leaf

l, the leaf with the largest label.

LEMMA 3.5. The dependence tree of T is an iteration

dependence graph for SEQUENTIALTREECONTRACT(T ).

Proof. For each step i, let j and k be the labels of i’s
sibling and grandparent when it is raked in the sequential

order. We assume leaves have null labels, so the sibling

could be null. The labels j and k must both be larger than

i (or null) since they have not yet been raked out. We need

to show that for each i, once all of its descendants in the

dependence tree are completed (raked out), it will have

sibling j and grandparent k, and hence will do an identical

rake as in the sequential order. By induction we assume

this was true for all indices less than i.
Consider the tree between j and k (not inclusive).

The label i must be the largest label in this tree since if

there were a larger label l, when i is contracted in the

sequential order it cannot have both j as a sibling and k as

a grandparent—the node with label l is not yet raked out

and must be in the way. By construction of the dependence

tree, and since i is the largest label in the subtree, it is

picked as the root of a dependence tree containing the

subtree. Therefore when all descendants are completed

(and by induction we assumed they operated correctly), all

other nodes on the subtree have been raked out and i will

have j as a sibling and k as a grandparent. �

We are now ready to analyze the iteration depth and

work of a dependence tree.

THEOREM 3.4. For SEQUENTIALTREECONTRACT on

T with n randomly ordered leaves, there is an iteration

dependence graph G with D(G) = O(log n) w.h.p., and

A(G) = Θ(n) in expectation.

Proof. The dependence tree for T is based on recursively

partitioning T into subtrees. To analyze the depth of the

dependence tree, we need to consider two types of subtrees,

which have different properties. We define a (sub)tree to be

in the P-state if the distribution of its leaves is uniformly

random. We define a subtree to be in the Q-state if the

location of its highest-indexed leaf is fixed. Without loss of

generality, we assume a Q-state tree has its highest-indexed

leaf on its left spine. We denote the leaf with the largest

index in a subtree by l, the leaf with the second largest

index by s, and the internal node with label s by vs.

The initial tree is in the P-state since the ordering

of the leaves is uniformly random. For a P-state tree, it

is partitioned by vs into three subtrees, where the two

subtrees of the children of vs are also in the P-state but

the final tree is in the Q-state (see Figure 6(a)). This is

because as we process vs’s children’s subtrees there is no

information about the location of the highest-indexed leaf.

However after both of the children’s subtrees are processed,

then leaf l will become a leaf in vs’s original position in

(note that leaf l must be in vs’s subtree by definition),

hence fixing the location of the highest-indexed leaf in the

remaining subtree.

For a tree in the Q-state, it is partitioned by vs into

three subtrees (see Figure 6(b)), where vs’s left child

subtree is in the Q-state (as we fixed leaf l to be on the left

spine), vs’s right child subtree is in the P-state (we have

no information about the location of the highest-index leaf

in this subtree), and the remaining subtree is in the Q-state

as after vs’s subtree is completely processed, leaf l will

become a leaf in vs’s original position.

For a tree with n nodes in the P-state, the size of vs’s

subtree is greater than 3n/4 with at most probability 1/4.

This is because the location of leaf l is random and for vs’s

subtree not to contain leaf l, it must appear in the rest of

the tree, which has at most 1/4 probability of occurring

if vs’s subtree size is greater than 3n/4. Hence, at least

one of vs’s children’s subtree has size greater than 3n/4
with probability at most 1/4. By a similar argument, the

other subtree (of the Q-state) also has size greater than

3n/4 with probability at most 1/4.

For a tree with n nodes in Q-state, the size of vs’s

left child’s is greater than 3n/4 with at most probability

1/4. This is because the location of leaf s must appear in

vs’s right subtree by definition, and the location of leaf s
is uniformly random, so with at most 1/4 probability it

causes vs to have a left child of size at least 3n/4. For

the subtree remaining after removing vs’s subtree, it’s size

is greater than 3n/4 with probability at most 1/4 by a

similar argument. Note that we have no bound on the size

of vs’s right child subtree in the P-state. However, this is

fine because once a tree transitions into P-state, it will be

divided into small subtrees according to the analysis for

P-state trees in the previous paragraph.

We consider paths from the root to each leaf in the

dependence tree. Every two steps on such a path will

shrink the size of the tree by a factor of 3/4 with constant

probability (by the arguments above). Therefore, using

standard arguments, each path will have O(log n) steps

w.h.p., and by a union bound (multiplying the failure

probability by n), all path lengths and hence the tree depth

will be O(log n) w.h.p.

To show A(G), we note that a node in the dependence



tree with a subtree of size k will have height O(log k)
in expectation since it is true w.h.p. from the previous

discussion. Let W (n) indicate the expected sum of the

heights of the nodes in the dependence tree. For a tree of

size n, after two levels with constant probability the largest

remaining component will be 3/4n. Assuming the worst

case split is 3/4n and 1/4n when this is true, we have the

recurrence W (n) ≤ O(log n)+p×
(

W ( 34n) +W ( 14n)
)

+
(1 − p) × W (n) for some constant 0 < p < 1. By

substitution, we have that W (n) = O(n). �

4 Algorithmic Design Techniques

We note that we can easily obtain implementations from the

iteration dependence graph. If steps in a computation can

be efficiently checked and updated, then an algorithm for

a problem with iteration depth D(G) can be implemented

with O(nD(G)) work and O(D(G)) depth simply by

proceeding in rounds, where in each round all steps check

if their predecessors in the iteration dependence graph have

been processed, and proceed if so. Since we are interested

in work-efficient (linear-work) algorithms, we will prove

the following lemma, which we use in Section 5 to obtain

linear-work algorithms for the three problems.

LEMMA 4.1. If steps can be efficiently checked and

updated, then an algorithm for a problem with itera-

tion depth D(G) can be implemented with O(A(G))
work and O(D(G) log n) depth on the EREW PRAM,

O(D(G) log∗ n) depth w.h.p. on the CRCW PRAM, or

O(D(G)) depth on the scan PRAM.

Proof. We define a step to be ready if all of its predeces-

sors in the iteration dependence graph have been processed.

The algorithm proceeds in rounds, where in each round all

remaining steps check if they are ready. If a step is ready,

it proceeds in executing its computation. After processing

the ready steps, consider them as having been removed

from the iteration dependence graph, and hence the itera-

tion depth of the remaining iteration dependence graph is

1 less than before. The initial iteration depth is D(G), so

D(G) rounds suffice. In each round, we pack out the suc-

cessful steps so that no additional work is done for them in

later rounds. The pack requires linear work in the number

of remaining steps. Since each round removes the leaves

of the iteration dependence graph, and the steps can be

efficiently checked and updated, the work done on each

step is proportional to its height in the graph. The total

work is proportional to the sum of the heights of all steps

in the iteration dependence graph, which is the aggregate

delay A(G). The depth of the algorithm is O(D(G)P (n)),
where P (n) is the depth of the pack, which is O(log n)
on the EREW PRAM, O(log∗ n) w.h.p. on the CRCW

PRAM using approximate compaction [17] and O(1) on

the scan PRAM. This proves the lemma. �

We now describe two techniques that we use to ob-

tain algorithms for the three problems in Section 5. The

deterministic reservations method checks all remaining

steps in each round, executing the ones whose dependen-

cies have all been satisfied, and gives algorithms satisfying

the bounds of Lemma 4.1. The activation-based approach

directly activates a step when it is ready.

4.1 Deterministic Reservations. Deterministic reserva-

tions is a framework introduced by Blelloch et al. [6] for

designing deterministic parallel algorithms. It gives a way

for steps in a parallel algorithm to check if all of their de-

pendencies have been satisfied using shared data structures.

Deterministic reservations proceeds in rounds, where each

round consists of a reserve phase, followed by a synchro-

nization point, and then a commit phase. In the reserve

phase, all (or a prefix) of the steps first write to locations in

shared data structures corresponding to the steps it conflicts

with in the iteration dependence graph. After synchroniz-

ing, then all (or a prefix) of the steps each check whether

it can proceed with its computation in the commit phase.

Steps that fail to proceed in the commit phase (it has a

conflict with a step earlier in the ordering) survive to the

next round. This is repeated until no steps remain. In deter-

ministic reservations, one can either execute all of the steps

in a round, or just a prefix of them. In the prefix-based

approach, each prefix is processed until completion before

moving on to the next prefix. In practice, this gives a nice

trade-off between extra work and parallelism by adjusting

the size of the prefix.

In the framework, each algorithm specifies only a

RESERVE function and a COMMIT function for the steps,

executed in the reserve and commit phase, respectively.

This yields very concise code. Each function takes the step

number as an argument. RESERVE returns 0 if the step

drops out; otherwise it applies the reservation and returns

1. COMMIT returns 0 if the step successfully commits

(and drops out), and 1 otherwise. The steps that drop out

are removed at the end of the round. The deterministic

reservations approach directly gives algorithms satisfying

the bounds in Lemma 4.1.

4.2 Activation-based Approach. The activation-based

approach directly “wakes-up” (activates) each step exactly

when it is ready [7, 21]. In particular, the predecessors

in the iteration dependence graph are responsible for

activating the step. At the beginning, we identify all the

steps that do not depend on any others (in our examples,

these can be determined easily). Then on each round,

each active step executes its computation, and then detects

whether it is the last predecessor of a successor; if so, it

wakes up the successor. The approach is work-efficient

since it only runs steps exactly when they are needed. As

we will see, the implementations are problem-specific.



1: H = swap targets

2: R = {−1, . . . ,−1}

3: procedure RESERVE(i)

4: writeMax(R[i], i) ⊲ reserve own location

5: writeMax(R[H[i]], i) ⊲ reserve target location

6: return 1

7: procedure COMMIT(i)

8: if (R[i] = i and R[H[i]] = i) then

9: swap(A[H[i]], A[i]) ⊲ swap if reserved

10: return 0

11: else return 1

Figure 7: RESERVE and COMMIT functions and associated data

for random permutation.

5 Parallel Algorithms

In this section, we describe parallel algorithms for random

permutation, list contraction and tree contraction designed

using the deterministic reservations approach and the

activation-based approach, discussed in Section 4.

5.1 Random Permutation. To implement the random

permutation algorithm using deterministic reservations,

we specify the RESERVE and COMMIT functions shown in

Figure 7. The implementation uses an array R, initialized

to contain all −1, to store reservations. The RESERVE

function for index i simply calls writeMax to the two

locations R[i] and R[H[i]] with value i and returns 1. The

COMMIT function simply checks if both writeMax’s were

successful (i.e., both R[i] and R[H[i]] store the value i)
and if so, swaps A[H[i]] and A[i] and returns 0; otherwise

it returns 1. This process guarantees that a step will

successfully commit (swap) if only if its children in the

dependence forest have finished in a previous round of

deterministic reservations. This is because if any child

were not finished, then it would have competed in the

writeMax and won since it has a higher index. In particular,

the left child as shown in Figure 2(b) will win on R[i] and

the right child in that figure will win on R[H[i]].

THEOREM 5.1. For a random H , deterministic reser-

vations using the RESERVE and COMMIT functions for

random permutation runs in O(n) expected work and

O(log n log∗ n) depth w.h.p. on the priority-write CRCW

PRAM.

Proof. Apply Theorem 3.2 and Lemma 4.1. The RESERVE

and COMMIT functions take constant work/depth, so the

steps of the computation can be efficiently checked and

updated. The writeMax requires the priority-write CRCW

PRAM. �

Activation-Based Implementation. We now discuss a

linear-work activation-based implementation of the parallel

random permutation algorithm. The implementation keeps

track of the nodes ready to be executed of the dependence

graph, processes and deletes these nodes from the graph in

each round, and identifies the new nodes that are ready for

the next round. It relies on constructing the dependence

forest, and the following lemma states that this can be done

efficiently.

LEMMA 5.1. The dependence forest for a given H can be

constructed in O(n) expected work and O(log n) depth

w.h.p. on the CRCW PRAM.

Proof. Building the dependence forest of random permu-

tation for a given H requires sorting all of the nodes which

point to the same node in the forest. We do this by (1)

using a non-stable integer sort in the range [1, . . . , n] [33]

to group all the nodes, and then (2) sorting the nodes

within each group using a parallel comparison sort [24].

(1) can be done in O(n) work and O(log n) depth on the

CRCW PRAM. The depth for (2) is O(log log n) w.h.p.

since the largest group is of size O(log n) w.h.p. The total

work for (2) is
∑n−1

i=0 csi log si where si is the number of

nodes pointing to node i and c1 is a constant. To show that
∑n−1

i=0 c1si log si = O(n), we use a similar argument used

in the analysis of perfect hash tables [30]. Let Xij = 1 if

H[i] = H[j] and Xij = 0 otherwise.

n−1∑

i=0

c1si log si ≤

n−1∑

i=0

c2s
2
i for some constant c2

= c2

n−1∑

i=0

n−1∑

j=0

Xij

= c2(n+ 2

n−1∑

i=0

n−1∑

j=i+1

Xij) consider Xij where i < j

≤ c2(n+ 2

n−1∑

i=0

n−1∑

j=i+1

1

i+ 1

1

j + 1
) (*)

≤ c2(n+ 2

n−1∑

i=0

n−1∑

j=i+1

1

(i+ 1)2
)

≤ c2(n+ 2n

n∑

i=1

1

i2
)

< c2(n+ 2n ·
π2

6
)

= O(n)

(*) follows because H[i] and H[j] are independent.

After sorting, creating the pointers in the dependence

forest takes O(n) work and O(1) depth. �

We now use Theorem 5.1 to design an activation-based

random permutation algorithm.

THEOREM 5.2. For a random H , an activation-based

implementation of random permutation runs in O(n)
expected work and O(log n log∗ n) depth w.h.p. on the

CRCW PRAM.

Proof. We form the dependence forest for a given H ,



which by Lemma 5.1 can be done in O(n) expected work

and O(log n) depth w.h.p. on the CRCW PRAM.

We first identify the leaves of the dependence forest

and maintain the set of leaves at each step (these are the

steps that are ready to be processed). Then we repeatedly

process the leaf set, remove it and its edges from the graph,

and identify the new leaf set until the dependence forest

has been completely processed. Since we are satisfying

all dependencies in the dependence forest, by Lemma 3.1,

this guarantees correctness. We assume that the neighbors

of a node are represented in an array, and partitioned into

incoming edges and outgoing edges. To identify the new

leaf set at each step, nodes that are removed perform a

check on its parent to see if it has any incoming edges

remaining. The check can be done in O(1) work and time

per neighbor since each node has at most two incoming

edges.

After all checks are completed, nodes with no incom-

ing edges are added to the next leaf set. Duplicates can

be eliminated by filtering in work linear in the size of the

new leaf set since each node can be duplicated at most

once (each node has at most 2 incoming edges). The new

leaf set is packed with approximate compaction, requiring

work linear in the leaf set size and O(log∗ n) depth w.h.p.

Each step is processed a constant number of times, so the

total work is O(n). Each round reduces the iteration depth

of the iteration dependence graph on the remaining steps

by 1, and since the initial iteration depth is Θ(log n) w.h.p.

by Theorem 3.2, the overall depth is O(log n log∗ n) w.h.p.

�

Adapting to the CRQW PRAM. We adapt our random

permutation algorithms to the concurrent-read queue-write

(CRQW) PRAM [14, 15], which closely models cache

coherence protocols in multi-core machines. In this model,

concurrent reads to a memory location are charged unit

cost but concurrent writes to a memory location have a

contention cost equal to the total number of concurrent

writes to the location. In each step, the maximum

contention over all locations is charged to the depth.

Lemma 5.1 also applies for the CRQW PRAM as

integer sorting can be done in O(n) work and O(log n)
depth w.h.p. on the CRQW PRAM [14], and comparison

sorting can be implemented on an EREW PRAM (a weaker

model than the CRQW PRAM). Packing on the CRQW

PRAM can be done in linear work and O(
√
log n) depth

w.h.p. [15], so an activation-based implementation of the

sequential algorithm can be made to run in O(n) expected

work and O(log1.5 n) depth w.h.p.

The deterministic reservation-based implementation

of random permutation can also be adapted to the CRQW

PRAM, using prefix sums for packing. The only place

in the algorithm that requires concurrent writes is the

call to writeMax. However since the dominance forest

1: R = {0, . . . , 0} ⊲ boolean array

2: procedure RESERVE(i)

3: if i < L[i].prev and i < L[i].next then

4: R[i] = 1 ⊲ reserve own location

5: return 1

6: procedure COMMIT(i)

7: if (R[i] = 1) then

8: if L[i].prev 6= null then

9: L[L[i].prev].next = L[i].next

10: if L[i].next 6= null then

11: L[L[i].next].prev = L[i].prev

12: return 0

13: else return 1

Figure 8: RESERVE and COMMIT functions and associated data

for list contraction.

has in-degree O(log n) w.h.p., there can be at most

O(log n) concurrent calls to writeMax to a given location,

leading to O(log n) contention. This requires O(log n)
additional slackness (depth) per step. Using prefix sums

for packing, each round already requires O(log n) depth,

so this slackness does not affect the overall bounds, and

we are left with an algorithm that does linear work and

O(log2 n) depth w.h.p. on the CRQW PRAM.

Random Permutation via Rotations. Here we describe

another parallel implementation of the sequential algo-

rithm, using the fact that the values at the locations of

the nodes pointing to the same node in the dominance

forest just get rotated. In particular, if i1, . . . , ik with

il < il+1 point to j, then after all other dependencies to

i1, . . . , ik are resolved, then A[j] = A[ik], A[i1] = A[j]
and A[il+1] = A[il] for 1 ≤ l < k. We can build the dom-

inance forest using an integer sort to group the nodes and

then a comparison sort within each group in O(n) work

and O(log n) depth w.h.p. on the CRCW PRAM by the

same analysis as done in the proof of Lemma 5.1. Then

we can process the forest level by level, starting with the

leaves, and rotating the values of each group of leaves and

the target node. The level numbers for the nodes can be

computed using leaffix operations or Euler tours [24] in

linear work and O(log n) depth. Rotating the values can

be done in work proportional to the number of nodes pro-

cessed, and O(1) depth. As the height of the dominance

forest is Θ(log n) w.h.p., this gives an algorithm with O(n)
work and O(log n) depth w.h.p. on the CRCW PRAM. It

can also be implemented in the same bounds, as the integer

sort can be done in O(n) work and O(log n) depth w.h.p.

on the CRQW PRAM. We note that however this approach

is less practical than the approach using deterministic reser-

vations.

5.2 List Contraction. The deterministic reservations

implementation (pseudo-code shown in Figure 8) of list

contraction maintains a boolean array R initialized to



all 0’s. The RESERVE function for index i checks if

i < L[i].prev and i < L[i].next, and if so, writes a value

of 1 to R[i]. The COMMIT function for index i checks if

R[i] is equal to 1 and if so, splices out the node L[i] and

returns 0; otherwise it returns 1. These functions preserve

the ordering imposed by the iteration dependence graph of

L throughout its execution. To see this, note that if neither

of its current neighbors in the list is lower-indexed, then

step i will be a leaf in the iteration dependence graph by

definition (both neighbors will be selected as roots before

i in the dependence graph construction process, so i will

have no descendants). Only in this case will R[i] be set

to 1 in the RESERVE step and step i executes its COMMIT

step. Otherwise, step i will not proceed. Therefore, by

Lemma 3.2, it generates the same result as the sequential

algorithm.

The RESERVE and COMMIT functions take constant

work/depth, so the steps of the computation can be effi-

ciently checked and updated. By applying Theorem 3.3

and 4.1, we obtain the following theorem for list contrac-

tion. We can implement list contraction on the EREW

PRAM because reads and writes of the neighbors inside

the RESERVE and COMMIT steps can be separated into a

constant number of phases such that there are no reads or

writes to the same location in a phase.

THEOREM 5.3. For a random ordering of L, determinis-

tic reservations using the RESERVE and COMMIT func-

tions for list contraction runs in O(n) expected work

and O(log2 n) depth w.h.p. on the EREW PRAM,

O(log n log∗ n) depth w.h.p. on the CRCW PRAM, or

O(log n) depth on the scan PRAM.

Activation-Based Implementation.

THEOREM 5.4. For a random ordering of L, an

activation-based implementation of list contraction runs

in O(n) work and O(log2 n) depth w.h.p. on the EREW

PRAM, O(log n log∗ n) depth w.h.p. on the CRCW PRAM,

or O(log n) depth on the scan PRAM.

Proof. For each node, we store a counter keeping track

of the number of lower-indexed neighbors it has in the

list. These counters can be initialized in linear work and

constant depth. Then we identify the “roots”, which are the

nodes whose counters are 0 (they have no lower-indexed

neighbors). In each round, we process all roots, and update

the counters of their neighbors as follows. For a root

v, let vnext be the successor node of v and vprev be the

predecessor node of v. We first analyze the case where

vnext > vprev. We also have that vprev > v by definition

of a root. After splicing out v, vnext becomes a neighbor

of vprev so we decrement the counter of vprev. If the

counter of vprev reaches 0, then we add it to the next set

of roots. The counter of vnext is left unchanged as its

new neighbor is still a lower-indexed neighbor. In the case

where vprev > vnext, we decrement the counter of vnext,
and check whether it reaches 0. By splitting the reads and

updates of neighbors into a constant number of phases, no

concurrent reads or writes are required.

This algorithm satisfies the iteration dependence graph

by noting that a node will only be spliced out if both

of its neighbors in the list have higher indices, and

appealing to the same argument made for the correctness

of the deterministic reservations-based implementations

of list contraction. Each round processes all leaves in the

dependence graph, so by Theorem 3.3, O(log n) rounds

are sufficient w.h.p. to process all of the nodes. On each

round, O(P (n)) depth is required for packing the new

roots into an array, leading to a total of O(P (n) log n)
depth w.h.p. across all rounds. P (n) is O(log n) if using

prefix sums on the EREW PRAM, O(log∗ n) w.h.p. if

using approximate compaction on the CRCW PRAM, and

O(1) on the scan PRAM. The work spent on each node

is constant, since its counter is decremented a constant

number of times. The work for packing is linear in the

number of nodes. Thus the total work is O(n).

5.3 Tree Contraction. With a pre-processing phase, we

can label each internal node with the highest-indexed leaf

in its sub-tree using a parallel leaffix operation (with the

minimum operator) in O(n) work and O(log n) depth.

Then each internal node stores the smaller of the two

computed labels of its children. Since the minimum

operator does not have an inverse, we must do this

with tree contraction. Note that, however, minimum is

associative, so the result of this pre-processing phase

would be consistent with any tree contraction algorithm.

After pre-processing, we can run the parallel algorithms

described in this section with any operator (does not have to

be associative), and get the same answer as the sequential

algorithm (Algorithm 5). With the internal nodes labeled,

the neighborhood of a leaf is defined as the leaves labeled

on its parent and its grandparent nodes. Only if the labels

on these two internal nodes are greater than or equal to the

leaf’s ID can it proceed in raking.

Deterministic reservations-based implementation. Fig-

ure 9 defines the RESERVE and COMMIT functions and as-

sociated data required for deterministic reservations. N(i)
corresponds to the neighborhood of step i, which includes

the leaf labeled on its parent (if it has one) and the leaf

labeled on its grandparent (if it has one). These functions

preserve the ordering imposed by the iteration dependence

graph of T (defined in Section 3.3) throughout its execu-

tion because if the ith leaf is spliced out, the RESERVE step

guarantees that if R[i] is set to 1, and guarantees that there

are no lower-indexed leaves in the neighborhood of step i
(i.e. step i has no children in the dependence forest). Only

in this case does step i rake itself out in the COMMIT step



1: R = {0, . . . , 0} ⊲ boolean array

2: procedure RESERVE(i)

3: if i < j, ∀j ∈ N(i) then

4: R[i] = 1 ⊲ reserve own location

5: return 1

6: procedure COMMIT(i)

7: if (R[i] = 1) then

8: p = T [i].parent

9: if T [p].parent 6= null then ⊲ p is not root

10: s = sibling(T, i)
11: T [s].parent = T [p].parent

12: switchParentsChild(T, p, s)
13: else ⊲ p is root

14: switchParentsChild(T, i, null)
15: return 0

16: else return 1

Figure 9: RESERVE and COMMIT functions and associated data

for tree contraction. sibling(T, i) returns the sibling of i in T , and

switchParentsChild(T, i, v) resets the appropriate child pointer

of the parent of i to point to v instead of i.

(the procedure for raking is the same as in the sequential

algorithm shown in Algorithm 5).

Again, the steps can be efficiently checked and

updated because the RESERVE and COMMIT functions take

constant work/depth. By applying Theorem 3.4 and 4.1, we

obtain the following theorem for tree contraction. Again,

we can use the EREW PRAM because reads and writes of

the neighbors inside the RESERVE and COMMIT steps can

be separated into a constant number of phases such that

there are no reads or writes to the same location in a phase.

THEOREM 5.5. For a random ordering of T , deter-

ministic reservations using the RESERVE and COMMIT

functions for tree contraction runs in O(n) expected

work and O(log2 n) depth w.h.p. on the EREW PRAM,

O(log n log∗ n) depth w.h.p. on the CRCW PRAM, or

O(log n) depth on the scan PRAM.

The tree contraction used for pre-processing can

be done deterministically in linear work and O(log n)
depth on the EREW PRAM, which is within the stated

complexity bounds of Theorem 5.5.

Activation-based implementation.

THEOREM 5.6. An activation-based implementation of

Algorithm 5 runs in O(n) work and O(log2 n) depth w.h.p.

on the EREW PRAM, O(log n log∗ n) depth w.h.p. on the

CRCW PRAM, or O(log n) depth on the scan PRAM.

Proof. The activation-based implementation of list con-

traction described in Theorem 5.4 can be adapted for tree

contraction. The “roots” are the steps with no lower labels

on its parent and grandparent, which implies that it has

no lower-indexed steps in its neighborhood. A root that is

successfully processed potentially updates the counters of

the steps in its neighborhood. The counter of each step is

initialized to the number of lower-indexed steps that are

in its neighborhood. Overall this takes linear work and

constant depth. This algorithm satisfies the dependencies

of the iteration dependence graph defined in Section 3.3

because the roots are the steps that have no more dependen-

cies. Again, the reads and updates are split into a constant

number of phases to avoid concurrency. Since the iteration

depth is O(log n) w.h.p. by Theorem 3.4, and each round

of the algorithm reduces the iteration depth of the remain-

ing dependence graph by 1, O(log n) rounds are required

w.h.p. Therefore, we have a depth of O(P (n) log n) w.h.p.,

where P (n) is O(log n) on the EREW PRAM, O(log∗ n)
w.h.p. on the CRCW PRAM and O(1) on the scan PRAM.

The work is linear because each step is processed a con-

stant number of times. �

6 Limited Randomness

The parallel algorithms that we described in Section 5 use

O(log n) random bits per input element, thus requiring

O(n log n) bits of randomness in total. In this section, we

describe how to reduce the amount of randomness to a

polylogarithmic number of random bits while preserving

the iteration dependence depth for random permutation

and list contraction.

To show that limited randomness suffices, we use

Nisan’s [31] pseudorandom generator for space-bounded

computation, which uses O(S log n) truly random bits to

generate pseudorandom bits that are capable of fooling

an S-space machine. More accurately, the probability of

failure event given the generated stream of pseudorandom

bits differs by at most (an additive) ǫ from the failure

probability given truly random bits, where the bias ǫ
can be driven down to O(1/nc) for any constant c by

increasing the number of truly random bits by a constant

factor. Thus, a result that holds with high probability using

truly random bits also holds with high probability using

the pseudorandom bits, provided that the failure event can

be tested by an S-space machine.

For our purposes, it suffices to show that a space-

S computation can verify the iteration depth of the

dependence graph. As long as the low-space computation

uses the same mapping from random bits to steps, the

actual computation would have the same dependence graph.

The challenge in designing these low-space verifiers and

applying Nisan’s theorem is that the verifier must consume

the random bits as a one-pass stream of bits. By exhibiting

such O(log n)-space and O(log2 n)-space verifiers for the

iteration depths of random permutation and list contraction,

respectively, we prove that O(log2 n) random bits suffice

for random permutation and O(log3 n) random bits suffice

for list contraction.

THEOREM 6.1. Using Nisan’s generator with a seed

of O(log2 n) random bits, the iteration depth of the



dependence graph for random permutation is O(log n)
w.h.p.

Proof. Consider a single step i. Theorem 3.2 states that

if each step chooses uniformly random numbers, then

for any constant c the probability of step i exceeding

depth O(c log n) is O(1/nc). Assuming we can verify

the depth bound for step i in O(log n) space, Nisan’s

theorem states that the probability of exceeding the depth

bound using the generated pseudorandom bits is at most

O(1/nc) + ǫ = O(1/nc). Taking a union bound over all

steps, the probability of choosing a seed that causes any

step to have high depth is O(1/nc−1).
The following is an O(log n)-space procedure for

calculating the depth of step i, using a single pass through

the stream of random bits. Scan from step i down to step

H[i] in the input array, counting the number of intervening

steps k such that H[k] = H[i]. These steps form a chain

in the dependence forest directed from i to H[i]. Repeat

this process starting from i′ = H[i] down to H[i′], until

reaching the root of this tree (i.e., the starting node i′ has

H[i′] = i′). The sum of the lengths is equal to the depth of

i in the dependence forest. This process requires O(log n)
space to maintain a few pointers and the sum.

One additional detail is that the permutation algorithm

expects random values in the range [0, . . . , i], but what we

have access to is a stream of (pseudo)random bits. Without

loss of generality, assume n is a power of 2. To generate

a number in the range [0, . . . , i], for any constant c first

generate a number x in the range [0, . . . , nc−1]. For values

x < (i+1)⌊nc/(i+1)⌋, use H[i] = x/(⌊nc/(i+1)⌋). If

any larger value is generated, the algorithm fails. The

probability of failure for a particular value is at most

n/nc = 1/nc−1, and using a union bound over all values,

the failure probability becomes O(1/nc−2). �

We note that the random permutation produced using

limited randomness is not truly random.

For list contraction, we assume that each node is

assigned a random number, which we call a priority, from

the random bits of Nisan’s generator. The random ordering

of the list L can be viewed as the ordering in which the

priorities are sorted in increasing order. By choosing

random numbers from the range [0, . . . , nc−1] for constant

c > 1, the priorities are distinct w.h.p. and Theorem 3.3

applies.

THEOREM 6.2. Using Nisan’s generator with a seed

of O(log3 n) random bits to assign each node a

(pseudo)random priority, the iteration depth of the depen-

dence graph for list contraction is O(log n) w.h.p.

Proof. As in Theorem 6.1, we will exhibit an algorithm

that can verify the depth of a node/step in the dependence

tree using a single pass through the random priorities.

Since the probability of the depth bound being exceeded is

polynomially small, a union bound over all steps completes

the proof.

To verify the depth of node x in the dependence forest,

the verifier simulates the incremental insertion of nodes,

in input order, into the dependence forest. After each

step, the structure of the dependence tree containing x
is identical to a treap using the same priorities and node

comparisons respecting list-order. We begin the simulation

by inserting the node x, assuming pessimistically that it

has minimum priority (which only increases its depth).

Throughout the process, we maintain the root-to-leaf path

down to x. When inserting a new node z, the idea is to

simulate the treap insertion process with respect to the path

down to x. To insert z, step down the path until finding

the first (highest) node y such that either x and z are in

different subtrees of y, or y = x. If z has lower priority

than y, then the path to x is unchanged. Otherwise, splice

in z to be the parent of y, and repeatedly rotate z and

its parent until z has lower priority than its parent. This

rotation process may result in the path shortening and/or

the ancestors being rearranged, depending on the list-order

comparisons among nodes.

List-order comparisons can be performed in O(log n)
space using a constant number of pointers and travers-

ing the list. As long as the depth of a node never ex-

ceeds O(log n), then the space used by the simulation is

O(log2 n). If the depth ever exceeds O(log n), then the

simulation stops and reports a high-depth node. By Theo-

rem 3.3, this is a low probability event. �

We now discuss the work and depth required to

generate the random numbers from Nisan’s pseudorandom

generator. The generator uses O(log n) independent

hash functions h1, . . . , hS , each requiring O(S) random

bits, and a seed x with O(S) random bits [31]. Define

G0(x) = x and Gt(x) = (Gt−1(x), ht(Gt−1(x))) for

t ≥ 1. The output of the generator is Gt′(x), where

t′ = O(log(n log n/S)), which has O(n log n) bits.

LEMMA 6.1. The output of Nisan’s pseudorandom gen-

erator can be computed in O(nS/ log n) work and

O(log n log(1 + S/ log n)) depth.

Proof. We construct Gt′(x) recursively using the def-

inition above. Level t of the recursion requires

O(2t(S/ log n)2) work and O(log(1 + S/ log n)) depth,

as the hash functions can be evaluated in O((S/ log n)2)
work and O(log(1 + S/ log n)) depth using naive multi-

plication (we can evaluate O(log n) bits with one unit of

work). To generate O(n log n) pseudorandom bits, we

perform O(log(n log n/S)) levels of recursion. The total

work is
∑log(n logn/S)

t=0 O(2t(S/ log n)2) = O(nS/ log n)
and depth is O(log n log(1 + S/ log n)). �



By plugging in the space bounds for random permu-

tation and list contraction into Lemma 6.1, we obtain the

following corollary.

COROLLARY 6.1. The random bits of Nisan’s pseudo-

random generator for our random permutation and

list contraction algorithms can be computed in O(n)
work and O(log n) depth, and O(n log n) work and

O(log n log log n) depth, respectively.

7 Experiments

We implement the deterministic parallel iterative algo-

rithms for random permutation, list contraction and tree

contraction. For tree contraction, we use a version that

does not do a pre-processing step, and each leaf simply

checks its nearby leaves to see if there are any conflicts.

This version is described in the Appendix, and while it

does not return the same answer as the sequential algo-

rithm (but is still deterministic), it is more efficient as it

does not require a pre-processing step. All of our parallel

implementations use the prefix-based version of determin-

istic reservations [6], which performs better in practice

than the version which processes all remaining steps in

each round. In the Appendix, we prove complexity bounds

for these versions. In our implementations, each prefix

is processed once, and the unsuccessful steps are moved

to the next prefix. For random permutation, we chose a

prefix size of ni/50 where ni is the number of remaining

steps. For list contraction we chose a fixed prefix size

of n/100 and for tree contraction we chose a fixed prefix

size of n/50. These were experimentally determined to

give the best performance. Our implementations are all

very simple—the random permutation and list contraction

implementations use under a dozen lines of C code and

the tree contraction implementation uses a few dozen lines.

For comparison, we also implement the sequential iterative

algorithms.

We run our experiments on a 40-core (with two-way

hyper-threading) machine with 4× 2.4GHz Intel 10-core

E7-8870 Xeon processors, a 1066MHz bus, and 256GB

of main memory. We ran all parallel experiments with

two-way hyper-threading enabled, for a total of 80 threads.

We compiled all of our code with g++ version 4.8.0 with

the -O2 flag. The parallel codes use Cilk Plus [27]

to express parallelism, which is supported by the g++

compiler that we use. The writeMax operation used in

random permutation is implemented using a compare-and-

swap loop [38]. We obtain randomness via hash functions,

although more sophisticated random number generators

could be used.

The number of elements for random permutation, num-

ber of nodes for list contraction, and number of leaves for

tree contraction is 109. For random permutation, the data

array A stores 32-bit integers and we randomly generated

Algorithm (1) (40h) (seq)

Random permutation 92.1 4.62 38.8

List contraction 160 3.97 46

Tree contraction 350 10.0 172

Table 1: Times (seconds) for n = 109 on 40 cores with hyper-

threading. (1) indicates 1 thread, (40h) indicates 80 hyper-threads,

and (seq) is the sequential iterative implementation.

the swap targets (the H array). For list contraction, to gen-

erate the input, we first generated a random permutation,

giving us a collection of cycles on the nodes, and then

deleted one edge on each cycle, giving us a collection of

linked lists. For tree contraction our input was a random

binary tree with 109 randomly-indexed leaves, giving us

a total of 2 × 109 − 1 nodes. Often, list and tree con-

traction are used as a part of a larger algorithm, so the

pre-processing step of randomly permuting the elements

only needs to be applied once. In our experiments, we

do not store values on the nodes for list contraction and

tree contraction. A summary of the timings for each of the

three algorithms are shown in Table 1. The times that we

report are based on a median of three trials.

Plots of running time versus number of threads in

log-log scale for each of the three algorithms are shown

in Figure 10. We see that the parallel implementations

all get good speedup, and outperform the corresponding

sequential implementation with a modest number of

threads.

For random permutation, the parallel implementation

outperforms the standard simple sequential implementa-

tion [26] with 4 or more threads. We also compared it to a

sorting-based random permutation algorithm that we im-

plemented, where we create pairs (A[i], ri) where each ri
is a random number drawn from [1, . . . , n2], and the key to

sort on is the second value of the pair. Note that this does

not give the same permutation as the sequential algorithm.

We used a parallel sample sort, which is part of the Prob-

lem Based Benchmark Suite [39]. On 80 hyper-threads

the sorting-based algorithm took 5.38 seconds, and on a

single thread it took 204 seconds. Both of these timings are

inferior to the random permutation algorithm implemented

with deterministic reservations.

We note that an experimental study of other parallel

random permutation algorithms has recently been con-

ducted by Cong and Bader [9], which compares algorithms

based on sorting [33], dart-throwing [28, 14, 16] and an

adaptation of Sander’s distributed algorithm [37]. None

of these algorithms generate the same permutation as the

sequential algorithm. It is difficult to directly compare with

their reported numbers because their numbers include the

cost for generating random numbers, while our numbers

do not, their input sizes are much smaller (the largest size

was 20 million elements), and the machine specifications

are different.

For list contraction, the parallel implementation out-
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Figure 10: Running time vs. number of threads for n = 109 on 40 cores with hyper-threading (log-log scale). (40h) indicates 80

hyper-threads.
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Figure 11: Total work vs. prefix size for n = 108.

performs the serial implementation with 8 or more threads.

We also implemented a parallel version of list contraction

where the random numbers are regenerated in each round.

In this strawman implementation, we cannot directly ap-

ply the prefix processing idea because the priorities of the

nodes are not fixed. Therefore all remaining nodes are

processed in each iteration. On 80 hyper-threads, the im-

plementation took 6.46 seconds to finish. This is slower

than our parallel implementation, which takes 3.97 seconds

on the same input. The reason is that there is more wasted

work in processing all of the nodes on each iteration, and

also an added cost of regenerating random numbers on

each iteration. In addition, this implementation does not

return the same answer as the sequential implementation.

List ranking algorithms have been studied experimen-

tally in the literature [35, 40, 32, 11, 22, 23, 3, 34]. None

of these implementations return the same answer as a se-

quential ordering of processing the nodes would. The most

recent experimental work on list ranking for multi-cores is

by Bader et al. [3]. However since they used a much older

machine, and they are solving list ranking instead of list

contraction, it is hard to compare.

Finally, for tree contraction the parallel implemen-

tation outperforms the sequential implementation with 4

or more threads. Again, we compare it with a parallel

strawman version that processes all remaining leaves and

regenerates the random numbers on each iteration. On

80 hyper-threads this implementation took 23.3 seconds,

compared to 10 seconds for our parallel implementation.

As in list contraction, this is due to the wasted work of

processing all leaves on each iteration and the added cost

of regenerating the random numbers.

The most recent experimental work on tree contraction

on multi-cores is by Bader et al. [4]. They present an

implementation of tree contraction based on the standard

algorithm that only rakes leaves [24]. The algorithm is

more complicated than ours as it involves using Euler tours

and list ranking to label the leaves to allow non-conflicting

leaves to be raked in parallel. Furthermore, it does not

return the same answer as a sequential algorithm. Again,

because they use a much older machine and they solve the

more expensive arithmetic expression computation, it is

hard to compare.

In Figure 11, we plot the total work performed by

the three algorithms as a function of the prefix size for

n = 108. Since the prefix size is a constant fraction for

random permutation, in the plots, the x-axis shows the

fraction used. For list contraction and tree contraction, the

prefix size is fixed across rounds, so the x-axis shows the

actual size of the prefix. We see that the work goes up as

we increase the prefix size as there is more wasted work

due to failed steps. Note that a prefix size of 1 corresponds

to the work performed by the sequential algorithm. In

Figure 12, we plot the number of rounds of deterministic

reservations as a function of prefix size in log-log scale.

We see the opposite effect here—a larger prefix size leads

to fewer rounds because there is more parallelism. These

plots show the trade-off between work and parallelism.

Finally, in Figure 13 we plot the parallel running time as a

function of the prefix size in log-log scale. We see that the

best running time uses a prefix size somewhere in between

1 and n.
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Figure 12: Number of rounds vs. prefix size for n = 108 (log-log scale).
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Figure 13: Running time vs. prefix size for n = 108 on 40 cores with hyper-threading (log-log scale).

8 Conclusion

We have shown that simple “sequential” iterative algo-

rithms for random permutation, list contraction and tree

contraction are surprisingly parallel. We prove that the

iteration dependence depth for these problems is loga-

rithmic with high probability, and describe linear-work

polylogarithmic-depth parallel algorithms for solving these

problems. For random permutation and list contraction, we

show that the iteration depth bounds are maintained with

high probability even when using only a polylogarithmic

number of random bits. Using limited randomness in tree

contraction is left for future work. We show experimentally

that our implementations for the three problems get good

speedup and outperform the sequential implementations

with a modest number of cores. The simplicity, practical

efficiency, determinism, and theoretical guarantees of our

algorithms make them very attractive.
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A Appendix

A.1 Prefix-based deterministic reservations for ran-

dom permutation. For our experiments, we use the

prefix-based version of deterministic reservations. The

idea is that selecting a small enough prefix ensures that the

amount of wasted work is small in practice. We analyze a

version of the algorithm which processes each prefix until

completion before moving on to the next prefix. This dif-

fers from our implementation, but our implementation only

process more steps per round, so can only have lower depth.

If we select a constant fraction (e.g., half) of the remaining

elements as the prefix, then there are O(log n) iterations.

Processing each prefix requires O(log n log∗ n) depth by

Theorem 5.1 (the dependence forest of the prefix can only

be shallower than the dependence forest of all the steps).

Hence the total depth is O(log2 n log∗ n) w.h.p. Since pro-

cessing all steps per round gives expected linear-work by

Theorem 5.1, and processing a prefix only decreases the

amount of wasted work (work spent on processing failed

steps), the work is still O(n) in expectation.

A.2 Prefix-based deterministic reservations for list

contraction. Similar to the analysis for random permuta-

tion in Section A.1, a prefix-based version of list contrac-

tion with a prefix consisting of a constant fraction of the

remaining steps leads to an algorithm with O(n) expected

work and polylogarithmic depth by applying Theorem 5.3.

A.3 Variant of tree contraction algorithm. Here we

analyze the simpler version of tree contraction that does

not require a pre-processing phase. It does not return



the same answer as the sequential algorithm, but is still

deterministic.

The deterministic reservations-based algorithm still

uses the functions shown in Figure 9, but with a modified

definition of the neighborhood N(i). Define the region of

leaf i to contain i’s parent (if it exists) and i’s grandparent

(if it exists). Define N(i) to contain the leaves j, j 6= i,
such that the intersection of i’s region and j’s region is

non-empty. The dependence forest for a tree T is the tree

on the n leaf nodes such that leaf i has a directed edge to

leaf j if i < j and j is in i’s neighborhood.

LEMMA A.1. For any i, N(i) ≤ 4.

Proof. There can be at most 3 other regions that contain

i’s grandparent and at most 2 other regions that contain

i’s parent. If the number of other regions that contain i’s
grandparent is exactly 3 then the 4 grandchildren of i’s
grandparent are all leaves and N(i) = 3. In all other

cases, there are at most 2 other regions containing i’s
grandparent and at most 2 other regions containing i’s
parent, so N(i) ≤ 4. �

We now show that for a random ordering of the leaves

of T , the algorithm does not have a very long chain of

dependencies.

THEOREM A.1. For a random ordering of the leaves of

T , the parallel implementation of greedy tree contraction

requires O(log2 n) rounds to terminate w.h.p.

Proof. We analyze the prefix-based version of the algo-

rithm, which can only be slower than the fully parallel

version. Consider the dependence forest induced by the

δn lowest indexed leaves, where δ is the fraction of the re-

maining elements to take as the prefix. If there processing

the prefix takes k rounds, then there must be a k-length

(undirected) path in the dependence forest. The probability

of a k-length path is δk. By Lemma A.1, each node has

at most 4 neighbors so the maximum number of k-length

paths starting at any node in the dependence forest is 4k.

By a union bound over all nodes, the probability of a k-

length path in the prefix is at most n · 4k · δk. For δ = 1/8
and k = 2 log n, this gives a high probability bound. Since

δ is a constant fraction, the number of prefixes is O(log n),
giving O(log2 n) rounds w.h.p. overall. �

A straightforward implementation of this algorithm

using deterministic reservations has O(n log2 n) work

and O(log2 n) depth w.h.p. The algorithm can also be

implemented in linear work as the following theorem

shows.

THEOREM A.2. For a random ordering of the leaves of T ,

prefix-based deterministic reservations using the RESERVE

and COMMIT functions for tree contraction runs in O(n)

expected work and O(log3 n) depth w.h.p. on the EREW

PRAM.

Proof. Define a maximal path in the dependence forest

to be a path whose length cannot be extended following

either forward edges or backward edges. Since each

iteration processes all nodes in each maximal path of the

dependence forest, we need to show that the size of each

maximal path in the dependence forest is constant. Let Si

be the expected size of the ith maximal path. The work

for each maximal path is proportional the square of its

length, as each iteration processes all nodes and removes

one node. For a prefix of size δn, the probability of a

k-length path in the prefix starting at any node is at most

δk and number of paths is at most 4k. Therefore, we have

E[S2
i ] =

∑δn
k=1 k

2 · 4k · δk. For δ = 1/8, E[S2
i ] = O(1).

Note that our analysis is loose since we over-count the

work for maximal paths that intersect.

We pack out successful steps after each round, so that

the expected amount of work spent processing a prefix is

linear in its size, giving us overall expected O(n) work.

The pack requires O(log n) depth per round on the EREW

PRAM, and by Theorem A.1, there are O(log2 n) rounds

w.h.p., so the overall depth is O(log3 n) w.h.p. The reads

and writes are split into a constant number of phases to

avoid concurrency. �

The version we use in our experiments is slightly

different, but it only processes more steps per round so

the depth bound still applies. We do not analyze its work

bound here.


