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Abstract
With a large amount of user activity data accumu-
lated, it is crucial to exploit user sequential behav-
ior for sequential recommendations. Convention-
ally, user general taste and recent demand are com-
bined to promote recommendation performances.
However, existing methods often neglect that user
long-term preference keep evolving over time, and
building a static representation for user general
taste may not adequately reflect the dynamic char-
acters. Moreover, they integrate user-item or item-
item interactions through a linear way which lim-
its the capability of model. To this end, in this
paper, we propose a novel two-layer hierarchical
attention network, which takes the above proper-
ties into account, to recommend the next item user
might be interested. Specifically, the first attention
layer learns user long-term preferences based on
the historical purchased item representation, while
the second one outputs final user representation
through coupling user long-term and short-term
preferences. The experimental study demonstrates
the superiority of our method compared with other
state-of-the-art ones.

1 Introduction
With the emergence of platform economy, many companies
like Amazon, Yelp, and Uber, are creating self-ecosystems to
retain users through interaction with products and services.
Users can easily access these platforms through mobile de-
vices in daily life, as a result large amounts of behavior logs
have been generated. For instance, 62 million user trips have
been accumulated in July 2016 at Uber, and more than 10 bil-
lion check-ins have been generated by over 50 million users at
Foursquare. With such massive user sequential behavior data,
sequential recommendation, which is to recommend the next
item user might be interested, has become a critical task for
improving user experience and meanwhile driving new value
for platforms.

Different from traditional recommender systems, there
are new challenges in sequential recommendation scenar-
ios. First, user behaviors in the above examples only reflect
their implicit feedbacks (e.g., purchased or not), other than

explicit feedbacks (e.g., ratings). This type of data brings
more noises because we cannot differentiate whether users
dislike unobserved items or just do not realize them. There-
fore, it is not appropriate to directly optimize such one-class
score (i.e., 1 or 0) through conventional latent factor model
[Bayer et al., 2017]. Second, more and more data is orig-
inated from sessions or transactions, which form user’s se-
quential pattern and short-term preference. For instance,
users prefer resting at hotels than sporting after they leave
the airport, while after buying a camera, customers choose
purchasing relevant accessories rather than clothes. How-
ever, previous methods mainly focus on user general taste
and rarely consider sequential information, which leads to re-
peated recommendations [Hu et al., 2017; Ying et al., 2016;
Zhang et al., 2016].

In the literature, researchers usually employ separate mod-
els to characterize user’s long-term preference (i.e, general
taste) and short-term preference (i.e., sequential pattern), and
then integrate them together [Rendle et al., 2009; Feng et
al., 2015; He and McAuley, 2016]. For example, Rendel
et al. [Rendle et al., 2010] propose factoring personalized
Markov chains for next basket prediction. They factorize ob-
served user-item matrix to learn user’s long-term preference
and utilize item-item transitions to model sequential informa-
tion, and then linearly add them to get final scores. How-
ever, these models neglect the dynamics of user general taste,
which means user’s long-term preference keep evolving over
time. It is not adequate to learn a static low-rank vector for
each user to model her general taste. Moreover, they mainly
assign fixed weights for user-item or item-item interactions
through linear modeling, which limits the model capability.
It has been shown that nonlinear models can better model the
user-item interaction in user activities [He and Chua, 2017;
Xiao et al., 2017; Cheng et al., 2016].

To this end, we propose a novel approach, namely Sequen-
tial Hierarchical Attention Network (SHAN), to solve the
next item recommendation problem. The attention mecha-
nism can automatically assign different influences (weights)
of items for user to capture the dynamic property, while the
hierarchical structure combines user’s long- and short-term
preferences. Specifically, we first embed users and items into
low-dimensional dense spaces. Then an attention layer is em-
ployed to compute different weights of items in user long-
term set and then compress item vectors with weights to gen-



erate user long-term representation. After that, we use an-
other attention layer to couple user sequential behavior with
long-term representation. User embedding vector is used as
context information in both attention networks to compute
different weights for different users. To learn the parameters,
we employ the Bayesian personalized ranking optimization
criterion to generate a pair-wise loss function [Rendle et al.,
2009]. From the experiments, we can observe that our model
outperforms state-of-the-art algorithms on two datasets. Fi-
nally, our contributions are summarized as follows:
• We introduce the attention mechanism to model user dy-

namics and personal preferences for sequential recom-
mendations.
• Through the hierarchical structure, we combine user’s

long- and short-term preferences to generate a high-level
hybrid representation of user.
• We perform experiments on two datasets which show

our model consistently outperforms state-of-the-art
methods in terms of Recall and Area Under Curve.

2 Related Work
To model user’s individual and sequential information jointly,
Markov chains have been introduced by previous work for
traditional recommendations. [Rendle et al., 2010] combined
factorization method to model user general taste and Markov
chains to mine user sequential pattern. Following this idea,
researchers have utilized different methods to extract these
two different user preferences. [Chen et al., 2012] and [Feng
et al., 2015] used metric embedding to project items into
points in a low-dimension Euclidean space for play list pre-
diction and successive location recommendation. [Liang et
al., 2016] utilized word embedding to extract information
from item-item co-occurrence to improve matrix factoriza-
tion performance. However, these methods have limited ca-
pacity on capturing high-level user-item interactions, because
the weights of different components are fixed.

Recently, researchers turn to graphical models and neu-
ral networks in recommender systems. [Liu et al., 2016]
proposed a bi-weighted low-rank graph construction model,
which integrates users’ interests and sequential preferences
with temporal interval assessment. [Cheng et al., 2016] com-
bined wide linear models with cross-product feature transfor-
mations and employed deep neural network to learn highly
nonlinear interactions between feature embeddings. How-
ever, this model needs feature engineering to design cross
features, which can be rarely observed in real data with high
sparsity. To deal with this problem, [He and Chua, 2017]
and [Xiao et al., 2017] designed B-Interaction and attentional
pooling layers, respectively, to automatically learn second-
order feature interaction based on traditional factorization
machine technology. [Hidasi et al., 2015] and [Wu et al.,
2017] employed recurrent neural network (RNN) to mine dy-
namic user and item preferences in trajectory data. However,
items in a session may not follow rigidly sequential order in
many real scenarios, e.g., transactions in online shopping,
where RNN is not applicable. Beyond that, [Wang et al.,
2015] and [Hu et al., 2017] learned user hierarchical repre-
sentation to combine user long- and short-term preferences.

Our work follows this pipeline but contributes in that: (1)
Our model is built on hierarchical attention networks, which
can caputure dynamic long- and short-term preferences. (2)
Our model utilizes nonlinear modeling of user-item interac-
tions. It is able to learn different item influences (weights) of
different users for the same item.

3 Sequential Hierarchical Attention Network
In this section, we first formulate our next item recommen-
dation problem and then introduce the details of our model.
Finally, we present the optimization procedures.

3.1 Problem Formulation
Let U denote a set of users and V denote a set of items, where
|U| and |V| are the total numbers of users and items, respec-
tively. In this work, we focus on extracting information from
implicit, sequential user-item feedback data (e.g., users’ suc-
cessive check-ins and purchase transaction records). For each
user u ∈ U , his/her sequential transactions (or sessions) are
denoted as Lu = {Su

1 , S
u
2 , ..., S

u
T }, where T is the total num-

ber of time steps and Su
t ⊆ V (t ∈ [1, T ]) represents the item

set corresponding to the transaction of user u at time step t.
For a fixed time step t, the item set Su

t can reflect user u’s
short-term preference at time t, which is an important fac-
tor for predicting the next item he/she will purchase. On the
other hand, the set of items purchased before time step t, de-
noted as Lu

t−1 = Su
1 ∪ Su

2 ∪ ... ∪ Su
t−1, can reflect user u’s

long-term preference (i.e., general taste). In the following,
we name Lu

t−1 and Su
t the long- and short-term item sets w.r.t

time step t, respectively.
Formally, given users and their sequential transactions L,

we aim to recommend the next items users will purchase
based on long- and short-term preferences learned from L.

3.2 The Network Architecture
We propose a novel approach based on hierarchical attention
network, as shown in Figure 1, according to the following
characteristics of user preference. 1) User preference is dy-
namic at different time steps. 2) Different items have different
influences on the next item that will be purchased. 3) For dif-
ferent users, same items may have different impacts on the
next item prediction.

The basic idea of our approach is to generate a hybrid rep-
resentation for each user through jointly learning the long-
and short-term preferences. More specifically, we first embed
sparse user and item inputs (i.e., one-hot representations) into
low-dimensional dense vectors, which endow each user or
item an informative representation instead of the basic index.
After that, a hybrid representation for each user is learned
through a two-layer structure, which combines both the long-
and short-term preferences. To capture the long-term prefer-
ence before time step t, we learn a long-term user representa-
tion, which is a weighted sum over the embeddings of items
in the long-term item set Lu

t−1, while the weights are inferred
by an attention-based pooling layer guided by the user em-
bedding. To further incorporate the short-term preference, the
final hybrid user representation combines the long-term user
representation with the embeddings of items in the short-term
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Figure 1: The architecture of our model. A hybrid user representation is learned by a sequential hierarchical attention network, which
combines both the long- and short-term user preference.

item set, where the weights are learned by another attention-
based pooling layer.

As shown above, our model simultaneously considers the
dynamic long- and short-term user preferences. Moreover,
they have different influences on the next item to be pur-
chased by using the different learned weights. Finally, it is
worthy pointing out that impacts of same items are also differ-
ent on different users, since the leaning procedure of weights
in attention layers is guided by the user embedding. Next we
introduce each part of our model in details.
Embedding Layer. Similar to discrete word symbols in
natural language processing, the original user and item IDs
have very limited representation capacity. Therefore, our
model first employs a fully connected layer to embed user
and item IDs (i.e., one-hot representations) into two continu-
ous low-dimensional spaces. Formally, let U ∈ RK×|U| and
V ∈ RK×|V| be two matrices consisting of the user and item
embeddings, respectively, where K is the dimensionality of
the latent embedding spaces. Theoretically, traditional ma-
trix factorization is equivalent to a two-layer neural network,
which constructs low-rank embeddings for users and items
in the first layer and employs inner product operation in the
second layer. However, embeddings through matrix factor-
ization only capture low-level, bi-linear and static representa-
tion, which limits the representation capability [Liang et al.,
2016]. Differently, our model learns the dynamic and high-
level user representations based on these basic embeddings as
will be explained later.
Long-term Attention-based Pooling Layer. In sequential
recommender systems, long- and short-term preferences cor-
respond to users’ general taste and sequential behavior, re-
spectively [Rendle et al., 2010]. Since the long-term item set
of a user usually changes over time, learning a static long-
term preference representation for each user cannot fully ex-
press the dynamics of long-term user preference. On the other
hand, reconstructing long-term user representations from the
up-to-date long-term item set is more reasonable. Moreover,
we argue that the same items might have different impacts on
different users. For instance, assume that user a buys item x

for himself because of interest, while user b buys item x as
a gift for others. In such a case, it is reasonable to infer that
item x has different weights or attentions on users a and b
when predicting their next items.

To meet the above requirements, we propose to use the at-
tention mechanism which has been successfully applied in
many tasks, such as image question answering [Yang et al.,
2016a], document classification [Yang et al., 2016b] and rec-
ommendation [Xiao et al., 2017]. It first computes the impor-
tance of each item in the long-term item set of a given user,
and then aggregates the embedding of these items to form
the long-term user preference representation. Formally, the
attention network is defined as:

h1j = φ(W1vj + b1), (1)

αj =
exp(u>h1j)∑

p∈Lu
t−1

exp(u>h1p)
, (2)

where W1 ∈ RK×K and b1 ∈ RK×1 are model parameters.
We assume that the items are consecutively labeled from 1 to
|V|, and vj represents the dense embedding vector of item j.
We first feed the dense low-dimensional embedding of each
item j ∈ Lu

t−1 through a multi-layer perceptron (MLP) to
get the hidden representation h1j . Function φ(·) is the ac-
tivation function and we utilize RELU to enhance nonlinear
capability. Unlike traditional attention models that use the
same context vectors for each input, we put the embedding u
of user u as the context vector and measure the attention score
αj as the normalized similarity between h1j and u with the
softmax function, which characterizes the importance of item
j for user u. Finally, we compute the long-term user repre-
sentation ulong

t−1 as a sum of the item embeddings weighted by
the attention scores as follows:

ulong
t−1 =

∑
j∈Lu

t−1

αjvj (3)

Long- and Short-term Attention-based Pooling Layer. In
addition to user’s general taste, sequential behavior (i.e.,



short-term preference) is also incorporated. Short-term pref-
erence is important for predicting next items, and there
has been studies on combining long- and short-term pref-
erence for sequential recommendation [Rendle et al., 2010;
He and McAuley, 2016]. However, the interaction of short-
and long-term preference remains linear and items are as-
signed with the same weights in earlier work, which cannot
reflect the characteristics of item impacts on next item pre-
diction and, hence, limit the model performance. Similar to
modeling user long-term preference, we also turn to attention
networks, assigning weights to long-term representations and
embeddings of items in the short-term item set, to capture the
high-level representation of user u. Formally,

h2j = φ(W2xj + b2), (4)

βj =
exp(u>h2j)∑

p∈Su
t ∪{0} exp(u>h2p)

, (5)

where W2 ∈ RK×K and b2 ∈ RK×1 are model parame-
ters, and xj represents the embedding of item j ∈ Su

t when
j > 0 and xj = ulong

t−1 when j = 0. Similarly, the user em-
bedding is applied as the context vector to achieve the goal
of personality (i.e., assigning different weights of same items
to different users). After obtaining the normalized attention
scores, the hybrid user representation is calculated as follows:

uhybrid
t = β0u

long
t−1 +

∑
j∈Su

t

βjvj , (6)

where β0 is the weight of long-term user preference.
To conclude, uhybrid

t considers not only the dynamic prop-
erties in long- and short-term preferences, but also differenti-
ate contributions of items for predicting the next item. More-
over, two hierarchical attention networks can capture the non-
linear interaction between users and items. Note that [Wang
et al., 2015] can also achieve the goal of nonlinearity by us-
ing max pooling to aggregate final representations. However,
it loses much information in the meanwhile. We will experi-
mentally demonstrate that our model can achieve better per-
formance than [Wang et al., 2015].

3.3 Model Inference
After computing user hybrid representation uhybrid

t , we em-
ploy the traditional latent factor model to compute his prefer-
ence score of item j as follows:

Rujt = uhybrid
t vj . (7)

However, user transaction records are a type of implicit data.
It is difficult to directly optimize the preference score Rujt

because of the data sparsity problem and the ambiguity of
unobserved data [Pan et al., 2008].

The goal of our model is to provide a ranked list of items
given the long- and short-term item sets of a user at time
t. Therefore, we are more interested in the ranking order
of items rather than the real preference scores. Following
BPR optimization criterion [Rendle et al., 2009], we propose
a pair-wise ranking objective function for our model. We as-
sume that users prefer the next purchased items than other un-
observed items, and define a ranking order �u,Lu

t−1,S
u
t

over

Algorithm 1: SHAN Algorithm
Input: long-term item set L, short-term item set S,

learning rate η, regularization λ, number of
dimensions K

Output: model parameters Θ
1 Draw Θuv from Normal Distribution N(0, 0.01);

2 Draw Θa from Uniform Distribution [−
√

3
K ,

√
3
K ];

repeat
3 shuffle the set of observations {(u, Lu

t−1, S
u
t , j)}

4 for each observation (u, Lu
t−1, S

u
t , j) do

5 Randomly draw an unobserved item k from
V\Lu

t−1

6 compute uhybrid according to Equation (1) - (6)
7 compute Rujt, Rukt according to Equation (7)
8 update Θ with gradient descent

9 until convergence
10 return Θ

items j and k as follows:

j �u,Lu
t−1,S

u
t
k ⇔ Rujt > Rukt, (8)

where j is the purchased next items by user u at time step
t, and k is an unobserved item generated by bootstrap sam-
pling. For each observation (u, Lu

t−1, S
u
t , j), we generate a

set of pairwise preference orders D = {(u, Lu
t−1, S

u
t , j, k)}.

Then we train our model by maximizing a posterior (MAP)
as follows:

arg min
Θ

∑
(u,Lu

t−1,S
u
t ,j,k)∈D

− lnσ(Rujt −Rukt)

+ λuv||Θuv||2 + λa||Θa||2,
(9)

where Θ = {U ,V ,W1,W2, b1, b2} is the set of model pa-
rameters, σ is the logistic function, Θuv = {U ,V } is the
set of embeddings of users and items, Θa = {W1,W2} is
the set of weights in attention networks, and λ = {λuv, λa}
is the regularization parameters. The detailed learning algo-
rithm is presented in Algorithm 1.

4 Experiments
In this section, we conduct experiments to answer the fol-
lowing questions: 1) what’s the performance of our model as
compared to other state-of-the-art methods? 2) what’s the in-
fluence of long- and short-term preferences in our model? 3)
how do the parameters affect model performance, such as the
regularization parameters and the number of dimensions?

4.1 Experimental Setup
Datasets. We perform experiments on two real-world
datasets, Tmall [Hu et al., 2017] and Gowalla [Cho et al.,
2011], to demonstrate the effectiveness of our model. Tmall
dataset accumulates user behavior logs in the largest on-
line shopping site in China (i.e, Tmall.com), while Gowalla
dataset records the time and point-of-interest information of
check-ins from users in the location-based social networking
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Figure 2: Performance Comparison of Methods at Tmall and Gowalla Dataset.

Table 1: Statistics of datasets

Dataset Tmall Gowalla
#user 20,648 15,171
#item 25,129 13,193

avg. session length 2.73 2.97
#train session 71,892 129,225
#test session 3,534 3,635

site, Gowalla. We focus on the data generated in the last seven
months on both datasets. Items which have been observed by
less than 20 users during this period are removed. After that,
user records in one day are treated as a session (i.e., a transac-
tion) to represent the short-term preference, and all singleton
sessions (i.e., contain only one item) are removed. Similar to
[Hu et al., 2017], we randomly select 20% of sessions in the
last month for testing, and the rest are used for training. We
also randomly hold out one item in each session as the next
item to be predicted. After preprocessing, basic statistics of
both datasets are summarized in Table 1.
Metrics. To evaluate the performance of each method for
sequential recommendation problem, we employ two widely
used metrics Recall@N and AUC. The first metric evalu-
ates the fraction of ground truth items that have been rightly
ranked over top-N items in all testing sessions, while the sec-
ond metric evaluates how highly ground truth items have been
ranked over all items. Note that larger metric values indicate
better performances.
Baselines. We compare our model with the following base-
line algorithms, including traditional classic next item rec-
ommendation method and one hierarchical representation
method: (1) TOP. The top rank items based on popularity in
training data are taken as recommendations for each session
in test data. (2) BPR. BPR is a state-of-the-art framework
for implicit user feedback data through pairwise learning to
rank, and we choose matrix factorization as internal predictor.
[Rendle et al., 2009]. (3) FPMC. This method models user
preference through matrix factorization and sequential infor-
mation through first-order Markov chain simultaneously, and
then combine them by linear way for next basket recommen-
dation [Rendle et al., 2010]. (4) FOSSIL. This method in-
tegrates factored item similarity with Markov chain to model
user’s long- and short-term preference. Note that we set ηu
and η as single scalar since the length of each session is vari-
able [He and McAuley, 2016]. (5) HRM. This method gen-
erates a user hierarchical representation to capture sequential

information and general taste. We use max pooling as the ag-
gregation operation because this reaches the best result [Wang
et al., 2015]. (6) SHAN. This is our proposed model, which
employs two attention networks to mine long- and short-term
preferences. We also show the performance of our simpli-
fied version, i.e., SAN, which ignores the hierarchical con-
struction and computes the weights of items from long- and
short-term sets through a single attention network. For fair
comparison, all model-based methods optimize a pair-wise
ranking objective function based on the BPR criterion.

4.2 Comparison of Performance
Figure 2 shows performances of all methods under the met-
ric of recall from Top-5 to Top-100 and AUC in Tmall and
Gowalla datasets. From the figure, we can observe that:

1. SHAN consistently outperforms all other methods un-
der all measurements on Tmall Dataset with a large
margin. Specifically, SHAN improves 33.6% and 9.8%
at Recall@20 compared with the second best method
(i.e., HRM) on Tmall and Gowalla datasets, respectively.
This indicates that our model captures more high-level
complicated nonlinear information for long- and short-
term representations through attention network, while
HRM may lose much information through hierarchical
max pooling operation. In addition, the performance of
SHAN is better than SAN, possibly because the num-
ber of items in long-term set is much more than that in
short-term set. Therefore, it is hard for a single attention
network to assign appropriate weights to fewer but more
important items belong to short-term set.

2. HRM outperforms FPMC in most cases under the two
measures generally. More specifically, the relative per-
formance improvement by HRM is 6.7% and 4.5% in
terms of Recall@50 on Tmall and Gowalla datasets, re-
spectively. It demonstrates that interactions among mul-
tiple factors can be learned through max pooling op-
eration [Wang et al., 2015]. Furthermore, introducing
nonlinear interaction will promote model capability de-
spite through simple max pooling. Finally, our model
achieves better performance than HRM, which indicates
that attention network is more powerful than max pool-
ing at modeling complex interactions.

3. All hybrid models (i.e., FPMC, FOSSIL, HRM and
SHAN) outperform BPR on both datasets under dif-
ferent metrics in most cases. Taking AUC as an ex-



ample, the relative performance improvements contin-
uously keep at a very high level. This demonstrates that
sequential information is very important for our task,
where BPR ignores it. Moreover, our model gets the
best performance in these hybrid models.

4. Surprisingly, TOP method surpasses BPR when N in-
creases from 50 in terms of recall and even performs
better than FPMC under AUC. This phenomenon can be
explained that users may tend to buy popular items in on-
line shopping. Therefore, TOP method can reach better
performance when N is large enough. On the contrary,
because user check-in behavior is more personalized at
Gowalla dataset, TOP method achieves much worse per-
formance than other methods. Finally, our model can
outperform all the baselines in terms of different Ns.

Table 2: Influence of components at AUC

Dataset Method AUC Recall@20

Tmall
SHAN-L 0.701 0.026
SHAN-S 0.763 0.156
SHAN 0.801 0.143

Gowalla
SHAN-L 0.947 0.232
SHAN-S 0.982 0.407
SHAN 0.987 0.439

4.3 Influence of Components
To evaluate the contribution of each components for forming
final user hybrid representation, we conduct experiments to
analyze each component in Table 2. SHAN-L means only
user’s general taste is modeled, while SHAN-S only considers
user’s short-term preference.

SHAN-L achieves better performance compared with BPR
which also only models long-term preference. For example,
the Recall@20 values of BPR are 0.019 and 0.204 at Tmall
and Gowalla datasets, respectively. This indicates that model-
ing general taste through the dynamic way is better than using
a fixed embedding vector. SHAN-S outperforms SHAN-L in
a large margin, which demonstrates that short-term sequential
information is more important on predicting next item task.
Surprisingly, SHAN-S outperforms HRM on both dataset.
The AUC values of HRM are 0.734 and 0.966 at Tmall and
Gowalla datasets, respectively. The reason may be that the
basic user embedding vector on SHAN-S, fusing user basic
preference, is learned for computing each weight of items
in short-term set. Therefore, SHAN-S also considers user’s
static general taste and sequential information to generate hy-
brid representation. The result also indicates one-layer atten-
tion network is better than two-layer max pooling operation.
SHAN-S performs a few better than SHAN at Recall@20 on
Tmall dataset. This indicates that user click behaviors in pre-
vious session do not have much impacts for the next clicked
item in current session. Finally, SHAN performs better than
two single component models in most cases. It demonstrates
that adding dynamic user’s general taste to SHAN-S is help-
ful to predict next items. Because SHAN-S just combines
user basic fixed preference and sequential behavior.

Table 3: Influence of different regularization at Recall@20

Dataset
λuv

λa 0 1 10 50

Tmall
0.01 0.082 0.124 0.143 0.142

0.001 0.074 0.120 0.137 0.140
0.0001 0.071 0.116 0.127 0.132

Gowalla
0.01 0.261 0.334 0.339 0.343

0.001 0.356 0.434 0.418 0.437
0.0001 0.362 0.432 0.429 0.439
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Figure 3: the impact of dimension size

4.4 Influence of Hyper-parameters
In this subsection, we study the influence of regularization
and embedding size in our model. Due to space limitation,
we just show the results under the metric of Recall@20.

In our model, we utilize user and item embedding regular-
ization λuv and attention network regularization λa to avoid
overfitting problem. Table 3 shows the influence of different
regularization values at Recall@20. As shown in this table,
the performance will be greatly improved when λa > 0. This
also indicates that attention network is helpful for our task.
We further investigate the impact of dimension sizeK, which
is relevant to not only user and item embedding sizes, but also
MLP parameters in attention network. For simplicity, user
and item embedding sizes are the same. We can observe that
high dimensions can embed better for user and item, and will
be more helpful to build high-level factor interaction through
attention network. This phenomenon is similar to the tradi-
tional latent factor model. In the experiments, we set the size
to 100 for the trade-off between computation cost and recom-
mendation quality for both datasets.

5 Conclusion and Future Work
In this paper, we proposed a hierarchical attention network
for recommending next item problem. Specifically, we first
embedded users and items into low-rank dimension spaces,
and then employed a two-layer attention network to model
user’s dynamic long-term taste and sequential behavior. Our
model considered not only dynamic properties in user’s long-
and short-term preferences, but also high-level complex in-
teractions between user and item factors, item and item fac-
tors. From the experiments, we observed that our model
outperformed the state-of-the-art methods on two real-world
datasets in terms of Recall and AUC.
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