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We study sequential interdiction when the interdictor has incomplete initial information about the network,

and the evader has complete knowledge of the network, including its structure and arc costs. In each time

period, the interdictor blocks at most k arcs from the network observed up to that period, after which the

evader travels along a shortest path between two (fixed) nodes in the interdicted network. By observing the

evader’s actions, the interdictor learns about the network structure and arc costs, and adjusts its actions so

as to maximize the cumulative cost incurred by the evader. A salient feature of our work is that the feedback

in each period is deterministic and adversarial. In addition to studying the regret minimization problem,

we also discuss time-stability of a policy, which is the number of time periods until the interdictor’s actions

match those of an oracle interdictor with prior knowledge of the network. We propose a class of simple

interdiction policies that have a finite regret and detect when the instantaneous regret reaches zero in real

time. More importantly, we establish that this class of policies belongs to the set of efficient policies.

Key words : Network interdiction, shortest path, k-most vital arcs, learning, incomplete information

1. Introduction

In network interdiction, an interdictor or leader selects a series of interdiction measures that change

the structure of a network with the objective of disrupting or stopping an evader’s (follower’s)

movement through the network. The problem, initially studied in the context of military applica-

tions, has received considerable attention during the past decades, considering various objectives

for the interdictor, from minimizing the maximum flow between given nodes as in Wollmer (1964),

McMasters and Mustin (1970), Ghare et al. (1971), Corley and Chang (1974), Ratliff et al. (1975),

Wood (1993), to maximizing the shortest path in the interdicted network, see, for instance, Fulk-

erson and Harding (1977), Corley and Sha (1982), Malik et al. (1989), Israeli and Wood (2002), to

minimizing the maximum probability of successful evasion as in, e.g., Washburn and Wood (1995),

Morton et al. (2007) and Pan and Morton (2008). Stochastic variations of these problems have also

been considered by Cormican et al. (1998), Hemmecke et al. (2003), Janjarassuk and Linderoth

(2008), as well as multicommodity versions, by Lim and Smith (2007). See also Smith and Lim

(2008) for a survey on several types of interdiction and fortification models.
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In addition to these classical settings, recent work in the area focuses on critical node/edge

deletion problems, where the objective is to remove a set of nodes/edges in order to maximally

degrade some connectivity measure of the remaining network. See, for instance, Shen et al. (2012),

Granata et al. (2013), Veremyev, Boginski and Pasiliao (2014), Veremyev, Prokopyev and Pasiliao

(2014), a survey in Walteros and Pardalos (2012) and the references given therein.

While most studies assume complete knowledge of the network structure and costs, in many

applications areas, like in military settings, the interdictor operates (at least initially) with limited

information about the conditions on the ground. The same holds true for applications in drug

and nuclear material smuggling, which have been casted as interdiction problems, see, e.g., Wood

(1993) and Morton et al. (2007). In this paper, we envision network interdiction as a sequential

process, where the interdictor initially has partial knowledge about the structure and costs of the

network, and may adapt the interdiction actions as new information is collected from observing

the evader’s reaction to previous actions. More specifically, we focus our attention on a specific

setting, where the interdictor knows that (the evader’s) arc costs are deterministic and belong to a

given set. In each time period, the interdictor blocks at most k arcs from the network (only for the

duration of the period), and the evader then travels along a shortest 1−n path of the interdicted

network, where nodes 1 and n are assumed to be the same in all time periods, arbitrary and fixed.

Subsequently, the interdictor observes each arc on said path and its cost, and, hence, learns about

the structure and costs of the network, and adjusts its actions so as to maximize the cumulative

cost incurred by the evader.

Our modeling approach is motivated by the dynamics (between the interdictor and the evader)

arising, for instance, when monitoring and patrolling the flow of drugs, illegal materials and illegal

immigration. Gift (2010), for example, considers an interdictor (e.g., a U.S. law-enforcement or

military task force) that has to periodically re-allocate its resources such as ships, planes, helicopters

and land units, over different geographical zones of known routes to capture drug smugglers. The

smugglers, on the other hand, for any given allocation, learn the route with highest probability of

success by trial and error. The problem is modeled as a bi-level program, where the lower level

corresponds to the best evader solution to a given allocation, and in the higher level the interdictor

aims to minimize the long-run success probability of the evader.

The aforementioned dynamics also arise in Morton et al. (2007) and Brown et al. (2006), which

consider the problem of detecting illegal material or immigrants entering through a border (their

base models assume that the probabilities of successful evasion are known upfront); the interdictor

allocates surveillance resources modifying the probability of detection throughout a network, and

the evader, who observes such an allocation, chooses a path of minimum detection probability.

The problem is formulated as a bi-level program where the interdictor minimizes the probability
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of evasion, and solved using mixed integer-programming techniques. In a similar setting, Malaviya

et al. (2012) study urban drug-traffic monitoring, where a police force sequentially allocates officers

to monitor criminals and their trade links so as to minimize the flow of illegal drugs within a

time horizon. Considering deterministic data and common (shared) information, the authors study

the effect of different interdiction actions on drug flow, and learning of the network is modeled

by including additional constraints, such as allowing a criminal to be arrested only if it has been

monitored for certain time epochs and/or if lower ranked criminals have denounce him. (The

problem is formulated as a bi-level program and solved using mixed-integer programming.)

Sequential attacker-defender and defender-attacker problems have been analyzed using game

theory. Assuming perfect information, Hausken and Zhuang (2011) study how the government

should balance defensive investments over time. Zhuang et al. (2010) study to what extent

a defender with private information must be deceptive or secretive towards an attacker who

updates its beliefs about the defender’s “toughness” whenever a confrontation takes place. In a

similar setting, albeit single-period, Xu and Zhuang (2014) study the attacker’s trade-off between

investing resources in either attacking or learning the defender’s vulnerability. Non-sequential

adversarial decision models where the attacker is uncertain about the defender’s actions have been

considered as well, see, e.g., McLay et al. (2012), and the references given therein.

The attacker-defender models above do not capture the particular model-learning component

that arises in our setting. In this sense, sequential decision-making problems that involve both

generic model uncertainty and learning are usually casted as multi-armed bandits (Robbins (1952)).

However, the typical bandit formulation focuses on stochastic feedback, as in Lai and Robbins

(1985), Auer et al. (2002), or models of adversarial nature, such as Auer et al. (2003), consider a

trivial mapping between decisions and feedback. We also refer to the work by Modaresi et al. (2012)

and Cesa-Bianchi and Lugosi (2012) for bandit settings with combinatorial structure. A salient

feature of our model, which distinguishes it from previous work, is that the feedback collected is not

directly selected by the decision-maker, but can be used to infer the cost structure of the setting.

Our model makes several assumptions. Consistent with the literature discussed above (see, e.g.,

Israeli and Wood (2002)), we assume that the interdictor’s objective is to maximize the cumulative

cost incurred by the evader, thus implying that both agents perceive costs equally (a notable

exception is Bayrak and Bailey (2008)). This might accommodate settings, for example, where

costs represent travel times, and the interdictor adjusts time estimates after observing the evader

go through a particular route. Note that we implicitly assume that the evader does not react

strategically to the interdictor’s actions, i.e., he/she always chooses a shortest 1− n path. We

assume that all costs are deterministic and that arc costs are observed by the interdictor once these
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are used by the evader. These assumptions aim at isolating a first-order effect of model uncertainty:

the cost of recovering the optimal interdiction action.1

In this paper we analyze the performance of a simple interdiction policy that in each period

interdicts a set of k-most vital arcs2 (see Malik et al. (1989)) of the observed network, and separate

the analysis for the cases when: (i) the costs of all initially observed arcs are known; and (ii) the

costs of some initially observed arcs are unknown, but are in a known range. In this regard, the

proposed policies are greedy, and pessimistic in that they assume a worst-case realization of the

costs in setting (ii). The k-most vital arcs problem is NP-hard, as shown in Ball et al. (1989), but

effective solution approaches are available in practice, see, e.g., Israeli and Wood (2002). Following

similar work in sequential decision-making under uncertainty (see, e.g., Cesa-Bianchi and Lugosi

(2006)), we measure policy performance in terms of the regret, which is the cumulative loss in cost

incurred by a policy relative to that achieved by an oracle interdictor with prior knowledge of the

network’s structure and arc costs, and on the time stability of a policy, which is the number of

periods before the interdiction actions match those taken by said oracle.

The contribution of the paper is two-fold. First, we show that the proposed class of policies is

efficient (we define the concept of efficiency in the next section). In doing so, we identify attractive

features of these policies: their regrets admit a finite horizon-independent upper bound; and they

detect in real time when their actions match those taken by the oracle policy (thus, indicating

that both regret and time stability not longer grow with time). In addition, we show that the

pessimistic nature of the proposed policies in the case of uncertain costs on observed arcs is key

to attain a finite regret. Second, we propose a semi-oracle performance benchmark that contrasts

cumulative cost against that induced by an oracle with advance knowledge of the cost vector, but

that must not signal that such knowledge is available. We argue that this measure provides a better

fit to the setting, relative to the cumulative regret, which is arguably impractical when feedback is

deterministic. In addition, we perform numerical experiments to assess efficiency of the proposed

policies.

The remainder of this paper is organized as follows. Next, we introduce some necessary notation.

Section 2 provides a detailed and more formal description of the problem as well as a definition of

efficiency of an interdiction policy. In Section 3 we propose a simple class of interdiction policies

and establish their efficiency. Section 4 develops fundamental lower bounds for policy performance,

1 Consider that under stochastic feedback, repeated implementation of an action should lead to reliable cost estimates,
thus our model can be viewed as a certainty equivalent version of a model with stochastic feedback where actions are
changed at a maximum frequency.

2 A set of k-most vital arcs in graph G consists of (at most) k arcs whose removal from G results in the greatest
increase in the length of the shortest path between two specified nodes.
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and Section 5 presents our numerical experiments. Finally, Section 6 presents our conclusions and

highlights possible directions for future research.

Notation. Consider a directed graph (network) G := (N,A,C), where N and A denote nodes

and arcs, respectively, and C := (ca)a∈A
is a nonnegative cost vector, where ca denotes the cost or

length of arc a ∈A. Let n= |N |. For A′ ⊆A, we define the graph G[A′] := (N,A′,C), where it is

understood that only the information in C about arcs in A′ is available. We denote by S(G) the

set of all shortest 1−n paths in G, where nodes 1 and n are arbitrary, fixed and given, i.e.,

S(G) := argmin

{
∑

a∈P

ca : P is an 1−n path in G

}
,

and let z(G) denote the cost of a path in S(G). Finally, for any path P in G, let ℓ(P ) denote the

cost of the path, i.e., ℓ(P ) :=
∑

a∈P
ca.

2. Problem Formulation

Consider an interdictor that initially observes a subnetwork G[A0] of G = (N,A,C), and knows

that the cost vector C lies in the set

C0 :=
{(

c′1, · · · , c
′
|N×N |

)
∈R|N×N |

+ : c′a = ca for a∈ Ã0 and ℓa ≤ c′a ≤ ua for a∈ Â0

}
,

for given sets Ã0 ⊆ A0 and Â0 ⊆ A0, where 0 ≤ ℓa < ua < ∞ for all a ∈ Â0 and A0 ⊆ A (with

Ã0∩ Â0 = ∅). That is, the interdictor is aware of arcs in A0, she/he knows the costs of those in Ã0,

and has some prior information about the costs (specifically, lower and upper bounds) of arcs in

Â0. We refer to C0 as the initial information available to the interdictor, as it contains her/his initial

knowledge about the structure and costs of the network (we assume that the set of nodesN is known

to the interdictor upfront including the evader’s source and destination nodes 1 and n, respectively).

In each time period t∈ T := {0,1, . . . , T}, the following sequence of events takes place:

(1) The interdictor blocks a set of arcs It ⊆ At only for the duration of period t, with |It| ≤ k,

where At denotes the set of arcs the interdictor is aware of at the beginning of period t, and

the constant k denotes the maximum number of arcs that can be removed in any time period.

(2) The evader traverses through path Pt ∈ S (G[A \ It]), incurring a cost of z (G[A \ It]) and

revealing the arcs in Pt as well as their costs to the interdictor, so that At+1 :=At ∪Pt and

Ct+1 := {C ′ ∈ Ct : c
′
a = ca for a∈ Pt} ,

where Ct denotes the set of cost vectors that are consistent with the information available to

the interdictor at the beginning of period t∈ T .

In the above, and throughout the paper, we made the following assumptions:
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A1. Each time period t∈ T the interdictor observes path Pt and cost ca of each arc a∈ Pt used

by the evader.

A2. The evader acts myopically, always selecting a shortest 1−n path in the interdicted network.

Also, the evader observes the interdictor’s actions before choosing a path.

A3. If there is more than one possible choice for Pt, then the evader chooses a path following a

well-defined deterministic rule. Furthermore, this rule is consistent, in the sense that if Pt is chosen

from a collection of paths P, then it is also chosen from any collection P̃ ⊆ P containing Pt.

A4. I0 = ∅ and It 6= ∅ for all t ≥ 1; furthermore, A0 = Ã0 ∪ Â0, and G is not “trivially” k-

separable.3

Assumption A1 can be viewed as an instance of perfect (or transparent) feedback, which is com-

mon in the learning theory literature, see, e.g., Cesa-Bianchi and Lugosi (2006) and requires some

degree of monitoring of the evaders actions, thus its validity ultimately depends on the particulars of

an application. In this regard, one can interpret this assumption in the context of a repeated interac-

tion between the evader and the interdictor in an stochastic environment, as mentioned in the previ-

ous section: for example, consider the application to drug smuggling or ilegal immigration detection,

where evaders repeatedly choose a path of minimum detection probability (which can be formulated

as shortest-path interdiction): there, repeated interaction would account for successful as well as

failed smuggling/trespassing attempts, thus providing the interdictor with some information regard-

ing the success probability of the aforementioned path. While this assumption simplifies our theo-

retical analysis, it is somewhat limiting as it also implies that our model cannot be applied directly

to some practical settings where there are limited monitoring capabilities, e.g., when the interdictor

observes only the total length of the path used by the evader, or a subset of the arcs used. Nonethe-

less, relaxing this assumption is an interesting topic of future research (see our additional discussion

in Section 6). For example, one could potentially adapt the concept of the barycentric spanners used

by Awerbuch and Kleinberg (2004) for such generalizations (referred to as the opaque feedback case).

With regard to the first part of A2, this assumption imposes a rather simple behavior on

the evader. However, one can show that the proposed policies are robust (with respect to their

convergence) in settings with strategic evaders. Regarding the second part of A2, the assumption

is that the evader has some degree of monitoring of the interdictor actions. As outlined previously,

it is possible to interpret this assumption in the context of repeated interactions in an stochastic

setting, in which such monitoring might arise naturally from a process of learning by trial and

error on the evader’s side. Please see Section 6 for further discussion.

3 We refer to a directed network G as “trivially” k-separable if any set of k arcs in G forms an 1-n cut.
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Assumption A3 ensures that the evader’s decisions are consistent with his/her past decisions.

Intuitively, one can think that the evader ranks all paths in the network based on their costs (resolv-

ing ties according to any criteria, or even randomly) in advance. In each time period the evader

selects the highest-rank unblocked (shortest) path from such a list. Generally speaking, this assump-

tion prevents the evader from using randomized algorithms during the evasion process.

Assumption A4 is technical and made without loss of generality. Its first part implies that the

evader acts first and always interdicts at least one arc. The second part simply states that the

interdictor knows valid lower and upper bounds on the cost of any arc he/she is initially aware of

(note that this assumption is not limiting as such lower and upper bounds can be set at zero and

at an arbitrarily large value, respectively). Finally, the non-k-separability condition implies that

the problem does not admit a trivial solution.

Considering A1 andA4, for t∈ T \{T}, we define recursively Ãt+1 := Ãt∪Pt, and Ât+1 := Ât\Pt,

hence At = Ãt ∪ Ât for all t∈ T .

An interdiction policy is a deterministic sequence of set functions π := (πt, t ∈ T ), such that

for each t≥ 1, Iπt = πt(F
π
t ) represents the set of arcs blocked in period t, and Iπt ⊆At, where Fπ

t

summarizes the initial information and history of the interdiction process up to time t− 1. That

is,

Fπ
t :=

(
C0, I

π
0 , P0, I

π
1 , P1, · · · , I

π
t−1, Pt−1

)
,

where Iπ0 = ∅ by Assumption A4. As Pt, Ât, Ãt, and At depend on Iπs for all s < t, we add a π

superscript to these sets to denote dependence in policy π, when necessary.

Let Π denote the set of all feasible interdiction policies. Given G and C0, from assumption

A3, applying policy π ∈Π results in a unique sequence {(Iπt , P
π
t ) : t∈ T } of blocking and evasion

decisions. We define the cumulative regret incurred by policy π by time t as

Rπ
t (G,C0) :=

∑

s≤t

(z∗(G)− z (G[A \ Iπs ])) ,

where z∗(G) denotes the optimal cost in the k-most vital arcs problem on G, i.e.

z∗(G) :=max{z (G[A \ I]) : I ⊆A s.t. |I| ≤ k} .

The regret represents the cumulative loss in cost incurred by a policy, relative to that of an

oracle interdictor with prior knowledge of G. For a given graph G, regret minimization is equiv-

alent to cumulative cost maximization. We say that (z∗(G)− z (G[A \ Iπt ])) is the instantaneous

regret incurred by policy π at time t ∈ T . Note that when G is k-separable, then z∗(G) = +∞,

and z (G[A \ Iπt ]) = +∞ when Iπt is an 1-n cut. Thus, in such cases, we take the convention that

(z∗(G)− z (G[A \ Iπt ])) = 0.
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Figure 1 Networks used in Remark 1.

Alternatively, one might instead focus on recovering the solution to the underlying k-most vital

arcs problem as soon as possible, which is not necessarily aligned with the goal of regret minimiza-

tion. Hence, we define the time-stability of policy π ∈Π as

τπ (G,C0) :=min{t∈ T : z (G[A \ Iπs ]) = z∗(G) for all s≥ t} ,

where we assume the convention that min{∅} = T + 1. (Table 1 summarizes the notation in the

paper.)

Table 1 Brief summary of the key notation used in the paper.

G Underlying directed graph ℓ(P ) Cost of 1−n path P
G[A′] Subgraph including only the arcs in A′ T Time horizon
S(G) Set of all 1−n shortest paths in G Pt Path chosen by the evader in period t
z(G) Cost of a shortest 1−n path in G It Set of arcs removed during period t
z∗(G) Optimal cost of the k-most vital arcs (la, ua) Lower and upper bounds (known to

problem on G evader) on cost of arc a∈A

Ãt Arcs with known cost in period t Πµ Efficient policies with respect to µ

Ât Arcs with known cost interval in period t Fπ
t History up to time t under policy π

Ct Set of cost vectors consistent with k Maximum number of arcs that can be
information in period t interdicted in a time period

xπ First period evader incurs a cost predicted by π τπ
t Time-stability of policy π by time t

G(C0) Graphs compatible with initial information C0 Rπ
t Regret of policy π by time t
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Ideally, we would like to find a policy π′ ∈Π that performs better than any other policy for any

graph G that is consistent with the initial information in C0. That is, given C0, we aim to find π′

such that Rπ′

T (G,C0)≤Rπ
T (G,C0) and τπ′

(G,C0)≤ τπ (G,C0), for all π ∈Π and G∈G(C0), where

G(C0) := {G : G= (N,A,C), A⊆N ×N, C ∈ C0} .

As shown in Remark 1 below, this is not always possible.

Remark 1. Consider networks G = (N,A,C) and G′ = (N,A′,C ′) depicted in Figures 1(a)

and 1(b), respectively. Set k = 2, T = 2, and assume that A0 = A′
0 = ∅ (thus, C0 = C′

0 = R|N×N |
+ ).

Because I0 = ∅ and I1 6= ∅ (by assumption A4), then P0 = 1−7, I1 = {(1,7)} and P1 = 1−3−6−7

for both networks under all policies. Define π1 so that Iπ
1

2 = {(1,7), (3,6)}, and π2 so that

Iπ
2

2 = {(1,7), (6,7)}. Figures 1(c) and 1(d) depict the networks observed by the interdictor at times

t = 1 and t = 2 for both G and G
′
. Observe that z∗(G) = z∗(G′) = 7, and thus for policy π1 we

have that on (G,C0) the total regret is Rπ1

T (G,C0) =(7-1)+(7-3)+(7-7)=10, while on (G′,C′
0) the

total regret is Rπ1

T (G′,C′
0) =(7-1)+(7-3)+(7-4)=13. Similarly, for policy π2, Rπ2

T (G,C0) = 13 and

Rπ2

T (G′,C′
0) = 10. Moreover, one can check that, for any policy π ∈Π, Rπ1

T (G,C0) = 10≤Rπ
T (G,C0)

and Rπ2

T (G′,C′
0) = 10 ≤ Rπ

T (G
′,C′

0). In particular, Rπ1

T (G,C0) < Rπ2

T (G,C0) and Rπ2

T (G′,C′
0) <

Rπ1

T (G′,C′
0). Similar arguments can also be applied to time-stability.

In light of the discussion above, consider the properties that one would expect efficient policies

to have. Generally speaking, for any policy π, let µπ
T (G,C0) be a measure of performance (e.g.,

cumulative regret, time-stability) that depends on T , G and C0. We say that a subset of feasible

policies Π∗
µ ⊆Π is efficient with respect to µ if the following conditions hold:

C1: Any policy π ∈ Π∗
µ eventually finds and maintains a solution to the underlying k-most vital

arcs problem for all T above some finite instance-dependent threshold.

C2: Π∗
µ is a homogeneous set in the sense that for any policy in Π∗

µ there is no other policy in

Π∗
µ that is better, or worse, across all instances. Formally, for any policy π ∈ Π∗

µ there exist

another policy π′ ∈ Π∗
µ, C0 and networks G,G

′
∈G(C0) such that µπ

T (G,C0)< µπ′

T (G,C0) and

µπ
T (G

′
,C0)>µπ′

T (G
′
,C0).

C3: Π∗
µ is not dominated by another class of policies. That is, for any C0 and π′ ∈ Π \Π∗

µ, there

exist π ∈Π∗
µ, G∈G(C0) and T such that µπ

T (G,C0)<µπ′

T (G,C0) .

In the next section we show that such class of policies exists for the case when µ is either

cumulative regret Rπ
T (G,C0) or time-stability τπ(G,C0). Moreover, we show that Π∗

R ∩Π∗
τ 6= ∅.
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3. Efficient Interdiction Policies

Guided by the discussion in the previous section, in this section we analyze a class of policies

that are efficient with respect to regret and time-stability. First, in Section 3.1 we analyze the

somewhat simpler case of Â0 = ∅, i.e., there is no uncertainty with respect to the costs of arcs

known to the interdictor at time t = 0. The setting reveals the greedy nature of the proposed

policies: in each period they remove a set of k-most vital arcs from the observed network. Later,

in Section 3.2 we analyze settings where Â0 6= ∅, i.e., the case with possible cost uncertainty of the

initially known arcs. The setting now reveals the pessimistic nature of the proposed policies: when

faced with uncertain costs on observed arcs, they operate as in the case where Â0 = ∅ by replacing

said costs by their upper bounds.

We complement the study of these policies with numerical experiments in Section 5. We show

that the theoretical efficiency of these policies also translates into good regret and time-stability

performance across different instances when compared to other benchmark policies.

3.1. Efficient Policies When Â0 = ∅

Assume that Â0 = ∅, which implies that At = Ãt for all t ∈ T . For any policy π ∈ Π, C0 and

G∈G(C0), define

xπ(G,C0) :=min{t∈ T : z(G[Aπ
t \ I

π
t ]) = z(G[A \ Iπt ])}, (1)

the first time period in which the evader uses a path whose length is expected by the interdic-

tor (who follows policy π). Additionally, observe that, by the end of period t, the interdictor is

aware of whether or not any time period t corresponds to xπ.

Define Γ as the class of policies that at any time period t prior to xπ interdict a set of k-most

vital arcs of G[Aπ
t ], and then keep removing the same set of k-most vital arcs (used at time xπ)

until T . That is, γ ∈ Γ⊂Π if and only if

Iγt ∈ argmax{z(G[Aγ
t \ I]) : I ⊆Aγ

t , |I| ≤ k} for t≤ xγ , Iγt = Iγxγ for t > xγ . (2)

As we discuss later (see Lemma 1), regardless of any new information provided by path P γ
t for

t > xγ , Iγxγ remains a set of k-most vital arcs of G[Aγ
t ] for t > xγ . Hence, the policies in Γ always

interdict a set of k-most vital arcs of the observed network. Furthermore, by the definition of an

interdiction policy given in Section 2, Iγt is a deterministic function. Thus, whenever a policy γ ∈ Γ

faces a tie at some time period (i.e., there are multiple sets of k-most vital arcs in the observed

network), it is broken in a deterministic fashion. This observation is similar in spirit to assumption

A3 describing the evader’s behavior, in the sense that it prevents the use of randomized decisions.
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Figure 2 Networks used in Remark 2.

Remark 2. One might expect that if the interdictor uses policies in Γ, then the lengths of the

shortest paths used by the evader, i.e., {z(G[A \ Iγt ]) : t∈ T }, define a non-decreasing sequence

in t. However, it turns out not to be the case in general. For example, let k = 2, and assume

that G = (N,A,C) is as depicted in Figure 2(a), while G[Aγ
0 ] is given in Figure 2(b). Observe

that P γ
0 = 1 − 3 − 5 − 7 (this is a shortest path in G = G[A \ Iγ0 ], recall that Iγ0 = ∅), and that

Iγ1 = {(1,3), (1,4)} (this is a 2-most vital arc solution for G[Aγ
1 ]). Next, P γ

1 = 1− 2− 5− 7 is a

unique shortest path in G[A \ Iγ1 ]. Suppose now that Iγ2 = {(1,4), (5,7)} (this is a 2-most vital

arc solution in G[Aγ
2 ]), which implies that P γ

2 = 1− 3− 6− 7 (this is a unique shortest path in

G[A\Iγ2 ]). Therefore, we have that z(G[A\Iγ0 ]) = 3, z(G[A\Iγ1 ]) = 8, and z(G[A\Iγ2 ]) = 5, yielding

the desired counterexample.

In general, removing the same subset of arcs from a network with fewer arcs results in longer

shortest paths, i.e. if L ⊆ A′ ⊆ A, then z(G[A′ \ L]) ≥ z(G[A \ L]) (because (A′ \ L) ⊆ (A \ L)).

However, it is possible that such an action results in the same shortest path lengths in both

networks. This observation motivates the following definition.

Definition 1. Given G = (N,A,C), L and A′ such that L ⊆ A′ ⊆ A, the network G[A′] is

called L-spare (with respect to G) if z(G[A′ \ L]) = z(G[A \ L]). Moreover, if L is also a set of

k-most vital arcs of G[A′], then the pair (G[A′],L) is called k-complete (with respect to G), and

L is referred to as a k-set of G[A′].

Observe that if, for a given policy π ∈Π, time t is the first period in which G[Aπ
t ] is Iπt -spare,

then t= xπ. The importance of the notion of k-completeness is illustrated by the following result.

Lemma 1. Given G = (N,A,C), let L and A′ be such that L ⊆ A′ ⊆ A and (G[A′],L) is k-

complete. Then L is a set of k-most vital arcs of G[U ] for all U such that A′ ⊆U ⊆A.
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Figure 3 Networks used in Remark 3.

Proof. See Appendix B.

The practical importance of Lemma 1 lies in the fact that if one is to discover a k-complete

solution of a partially observed graph, then one has indeed found a k-most vital arcs solution for

the full network. This observation will play a role in showing the efficiency of the proposed policies.

Remark 3. Note that when (G[A′],L) is k-complete it is not necessarily the case that every set

of k-most vital arcs of G[A′] is a k-set of G[A′] (see Definition 1). That is, if (G[A′],L) is k-complete

there might exist a set of k-most vital arcs L̃ of G[A′] such that G[A′] is not L̃-spare, i.e., such

that z(G[A′ \ L̃])> z(G[A \ L̃]). For example, consider k= 2 and G= (N,A,C) in Figure 3(a), and

assume that G[A′] is as shown in Figure 3(b). Set L= {(1,2), (1,4)} and observe that (G[A′],L) is

2-complete. On the other hand, L̃= {(6,8), (7,8)} is a set of 2-most vital arcs of G[A′], but L̃ is not

a 2-set as G[A′] is not L̃-spare. Indeed, 1−4−8 is a shortest path in G[A\ L̃] and z(G[A\ L̃]) = 4,

while 1− 5− 8 is a shortest path in G[A′ \ L̃] and z(G[A′ \ L̃]) = 11.

The next two lemmas establish that the class Γ defined by (2) satisfies properties C1 and C2 (both

with respect to cumulative regret and with respect to time-stability).

Lemma 2. Let γ ∈ Γ. Then for any C0 and G∈G(C0):

1. τγ(G,C0)≤ xγ(G,C0);

2. if T > |A| then τγ(G,C0)≤ |A|.
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Figure 4 Networks used in Remark 4.

Proof. See Appendix B.

Loosely speaking, the results above follow from noting that: (i) if k-completeness is satisfied,

then one has found a k-most vital arcs solution, per Lemma 1; and (ii) while k-completeness is not

met, new arcs are discovered in each period.

Remark 4. In general, for π ∈Π the fact that G[Aπ
t ] is I

π
t -spare does not necessarily guarantee

that z(G[A \ Iπt ]) = z∗(G). To see this, consider the following example. Set k = 2, and consider

G and G[Aπ
t ] in Figures 4(a) and 4(b), respectively. Suppose that Iπt = {(1,2), (1,5)} (so that

P π
t = 1−3−7). Note that G[Aπ

t ] is I
π
t -spare as z(G[Aπ

t \ I
π
t ]) = z(G[A\ Iπt ]) = 4, but z(G[A\ Iπt ])<

z∗(G) = 6. The reason for this is that Iπt is not a set of 2-most vital arcs of G[Aπ
t ]. This observation

further highlights the necessity of interdicting a set of k-most vital arcs in order to achieve an

instantaneous regret of zero.

Lemma 3. If Â0 = ∅, then Γ is a homogenous set both with respect to cumulative regret and with

respect to time-stability.

Proof. Let k ≥ 2, |N | ≥ k+2 and C0 be given by Figure 5(c),4 where for simplicity we only show

k + 2 nodes. Consider networks G and G
′
depicted in Figures 5(a) and 5(b), respectively, and

observe that G,G
′
∈G(C0). Clearly, P

π
0 = {(1, n)}.

Let Fπ
1 = (C0,∅, P

π
0 ). Observe that for the considered networks the set Fπ

1 is the same for all poli-

cies and the dependence on π can be dropped. Therefore, the set of policies Γ can be partitioned as

Γ= Γ1 ∪Γ2, where Γ1 ∩Γ2 = ∅, Γ1 =
{
γ : (3, n)∈ Iγ1 = π1(F1)

}
and Γ2 =

{
γ : (1,3)∈ Iγ1 = π1(F1)

}
.

4 for k= 1 the same arguments apply after removing arc (1, n) from C0, G and G
′

.
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Figure 5 Networks used in the proof of Lemma 3.

Note that for any γ ∈ Γ1, τγ(G,C0) = 1 and τγ(G′,C0) = 2, while for any γ ∈ Γ2, τ
γ(G,C0) = 2 and

τγ(G
′
,C0) = 1. Likewise, if γ ∈ Γ1 then Rγ

1(G,C0) = 0 and Rγ
1(G

′
,C0) = +∞, and if γ ∈ Γ2, then

Rγ
1(G,C0) =+∞ and Rγ

1(G
′
,C0) = 0. These observations provide the result.

We have proven that there exist sets of initial information C0 for which there is no policy in Γ

that is better (or worse) than all other policies in Γ across all G ∈G(C0). A natural question at

this point is if this result can be extended for any given C0. The answer is negative for both regret

and time-stability as illustrated by Remark 5.
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(b) Network G

Figure 6 Networks used in Remark 5.

Remark 5. Consider C0 and G∈G(C0) as given in Figure 6. Let T = 2. At time t= 1 there are

two sets of 2-most vital arcs: Iγ1 = {(3,4), (1,4)} and Iγ
′

1 = {(1,3), (1,4)}. Observe that P γ
1 = 1−3−

2− 4 with cost ℓ(P γ
1 ) = 6, while P γ′

1 = 1− 2− 3− 4 with cost ℓ(P γ′

1 ) = 4. Moreover, xγ(G,C0) = 1

(thus, τγ(G,C0) = 1) and Rγ
2(G,C0) = 5. On the other hand, τγ′

(G,C0) = 2, and Rγ′

2 (G,C0) = 7.

Consider any other G′ ∈G(C0) different from G. Note that adding arcs (3,1), (2,1), (4,2) and/or

(4,3) to G does not affect P γ
1 and P γ′

1 . Therefore, the only possible modification is to change the

cost of (2,3). However, independent of this cost, z(G′[A \ Iγ
′

1 ])≤ 6. Thus, for any other G′ ∈G(C0)
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it follows that τγ′
(G′,C0)≥ τγ(G′,C0) and Rγ′

2 (G′,C0)≥Rγ
2(G

′,C0). Accordingly, we conclude that

γ ∈ Γ is better than (or at least as good as) any other policy in Γ for all G∈G(C0).

In view of the discussion above, it seems reasonable to define, for any given initial information

C0, a subset of policies Γ∗ ⊆ Γ that contains all the policies that best resolve ties. Formally, for any

set C0 we define

Γ∗(C0) =
{
γ ∈ Γ: Rγ

T (G,C0)≤Rγ′

T (G,C0), ∀G∈G(C0), ∀γ′ ∈ Γ
}
. (3)

Observe that depending on C0 the set Γ∗(C0) might be equal to Γ. Setting C∗ = {C0 : Γ
∗(C0) 6=Γ},

define Γ∗ as the set of policies that interdict using any k-most vital arc set of the observed network

if C0 6∈C∗, and that use the element of Γ∗(C0) if C0 ∈C∗.

We note, however, that the set Γ∗ is devoid of interest from a practical perspective. This follows

as for any t ∈ T breaking a tie in advance requires the interdictor to consider, at least, all the

potential replies P γ
t over (N,N ×N) that are consistent with Fγ

t . Clearly, this is a task that is

computationally prohibitive in general.

Next, we establish the main result of this section:

Theorem 1. If Â0 = ∅, then Γ⊆Π∗
τ ∩Π∗

R.

Proof. From Lemmas 2 and 3, Γ satisfies C1 and C2 (both with respect to cumulative regret and

with respect to time-stability). We show next that Γ also satisfies C3.

Specifically, fix π ∈ Π \ Γ and C0, and select T and G ∈ G(C0) such that at some t0 ∈ T the

set Iπt0 is not a set of k-most vital arcs of G[Aπ
t0
]. Let t0 denote the earliest among such periods.

Define Ḡ :=G[Aπ
t0
], i.e., the arc set of Ḡ is given by Ā :=Aπ

t0
, and note that Ḡ ∈G(C0). Also, let

(Iπt , P
π
t )t∈T and (Īπt , P̄

π
t )t∈T be the unique sequences of blocking and evasion decisions generated

by π for graphs G and Ḡ, respectively. By the consistency assumption, namely, A3, it must hold

that P π
t = P̄ π

t and Iπt = Īπt for 0≤ t≤ t0 − 1. Thus, G[Aπ
t ] = Ḡ[Āπ

t ] for all 0≤ t≤ t0. Moreover, as

the interdictor acts first, then Iπt0 = Īπt0. Finally, set T̄ = t0 and define T̄ = {0,1, . . . , T̄}.

By our construction there exists γ ∈ Γ such that Īγt = Iπt for 0 ≤ t ≤ t0 − 1, which also implies

that Āγ
t = Āπ

t for 0≤ t≤ t0. Also, π is such that set Iπt0 (which coincides with Īπt0) is not a set of

k-most vital arcs of Ḡ. Therefore:

z(Ḡ[Āπ
t0 \ Ī

π
t0
)) = z(Ḡ[Ā \ Īπt0))< z∗(Ḡ). (4)

Note that, because γ ∈ Γ, one has that Īγt0 is a set of k-most vital arcs of Ḡ[Āγ
t0
]. Therefore, one has

that z(Ḡ[Āγ
t0
\ Īγt0 ]) = z∗(Ḡ). Moreover, xγ(Ḡ,C0)≤ t0 and, by Lemma 2, τγ(Ḡ,C0)≤ t0. In addition,
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from equation (4), we have that τπ(Ḡ,C0)> t0. Thus, τ
γ(Ḡ,C0)< τπ(Ḡ,C0). Therefore, C3 holds

for Γ with respect to time-stability. Finally, as the regret incurred for both π and γ from t = 0

to t= t0 − 1 is the same, the previous observations also imply that Rγ

T̄
(Ḡ,C0)<Rπ

T̄
(Ḡ,C0) and Γ

satisfies C3 with respect to cumulative regret.

Remark 6. We note that in addition of having Γ⊆Π∗
τ ∩Π∗

R, an implicit important feature of

policies in Γ is that they provide the interdictor with a certificate of optimality, i.e., whenever

t= xγ (which by Lemma 2 happens at a time period bounded from above by |A|) the interdictor

has the certificate that Iγt is a set of k-most vital arcs of G.

Theorem 1 states that, despite its relative simplicity, the class of policies Γ defined by (2) is

efficient with respect to regret and time-stability (i.e., it satisfies conditions C1-C3). In particular,

such policies eventually attain an instantaneous regret of zero for sufficiently large values of T .

However, as demonstrated next, the speed of convergence of policies in Γ may not be fast, and the

bound implied in Lemma 3 may actually be tight.

Proposition 1. There exists C0, G∈G(C0) and ζ > 0 such that if T ≥ |A|, then τγ(G,C0)≥ ζ|A|.

Moreover, the value of Rγ
T (G,C0) can be made arbitrarily large.

Proof. Consider G in Figure 7. There, we have that |A|= 2(k+1)u, for some positive integer u.
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Figure 7 Network G used for the proof of Proposition 1, qku = (u− 1)(k+2)+1.

Suppose that M > 1 and A0 = ∅. Without loss of generality assume that P γ
0 = 1-(k+2)-(k+3)-

(2k + 4)-· · · -(qku + k + 1)-n (note that (1,2) /∈ P γ
0 )), so that Aγ

1 = P γ
0 . Suppose that we select

Iγ1 = {(qku+k+1, n)} (which is a set of k-most vital arcs) and that P γ
1 = 1-(k+2)-(k+3)-(2k+4)-

· · · -(qku + k)-n, so that Aγ
2 = P γ

0 ∪ {(qku, qku + k), (qku + k,n)}. Next, we select Iγ2 = {(qku + k +

1, n), (qku+k,n)}, a set of k-most vital arcs, and P γ
3 is a new shortest path. Proceeding in this way,
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by the kth period one has that Aγ
k = P γ

0 ∪{(qku, qku+k), (qku+k,n), · · · , (qku, qku+2), (qku+2, n)},

so we select Iγk = {(qku+k+1, n), (qku+k,n), · · · , (qku+2, n)}, which is a set of k-most vital because

it is an 1-n cut with k arcs in Aγ
k.

Note that at this point, P γ
k includes arc (qku+1, n), and, thus, Aγ

k+1 =Aγ
k ∪{(qku, qku+1), (qku+

1, n)}. While Iγk ∪ {(qku + 1, n)} is an 1-n cut, it is no longer a feasible interdiction as this set

contains k+ 1 arcs. However, we can select Iγk+1 = Iγk ∪ {(qku − 1, qku)} \ {(qku + k+ 1, n)}, which

is an 1-n cut with k arcs, and thus, a set of k-most vital arcs. After removing those arcs, P γ
k+1

is of the form 1-(k + 2)-(k + 3)-(2k + 4)-· · · -(qku − 2)-qku-(qku + k + 1)-n, so that Aγ
k+2 = Aγ

k+1 ∪

{(qk(u−1), qku − 2), (qku − 2, qku)}. Then, we can select Iγk+2 = Iγk+1 ∪ {(qku − 2, qku)} \ {(qku + k,n)},

which is a set k-most vital arcs. Proceeding in this fashion, each period (except the first one) we

recover the costs of two arcs. The cost of the arc (1,2) is recovered at period ku. This implies that

τγ(G,C0) = ku and hence, if ζ ≤ k/(2k+2), then τγ(G,C0)≥ ζ|A|. While the latter fact depends on

the selection of {(It, Pt) : t < uk}, one can see that, for any such selection, one can simply assign the

cost M to the arc discovered last. Thus, the result holds true, independent of our selection. Finally,

we observe that Rγ
T (G,C0) can be made arbitrarily large by choosing the proper value of M .

Recall from Lemma 2 that τγ(G,C0)≤ |A| for any C0 and G∈G(C0). This result, in conjunction

with Proposition 1, implies, loosely speaking, that τγ(G,C0) is a Θ(|A|) function.5

3.2. Efficient Policies When Â0 6= ∅

In this section we assume that, in addition to Ã0, the interdictor is aware of another subset of

arcs Â0 ⊆ A0 (Ã0 ∩ Â0 = ∅) for which only partial cost information is available. Specifically, the

interdictor knows that ca ∈ [la, ua] for some la and ua, with la <ua, known upfront, for all a∈ Â0.

Fix C0 and π ∈Π, and let (Iπt , P
π
t )t∈T denote the unique sequence of blocking and evasion actions

associated with (G,C0) and π. Define a sequence of networks
{
Gπ

t := (N,Aπ
t , Ĉ

π
t ) : t∈ T

}
, where

for t∈ T , Ĉπ
t := {ĉa, a∈Aπ

t } is given by

ĉa :=

{
ca if a∈ Ãπ

t ,

ua if a∈ Âπ
t .

(5)

In other words, for network Gπ
t , the costs of arcs in Ãπ

t are at their known values, while the costs

of arcs in Âπ
t are at their upper bounds (this information is part of C0). Note that, in general,

Gπ
t 6=G[Aπ

t ]. Similar to Section 3.1, for any policy π ∈Π, C0 and G∈G(C0), define x̂π(G,C0) as

x̂π(G,C0) :=min{t∈ T : z(Gπ
t [A

π
t \ I

π
t ]) = z(G[A \ Iπt ])}. (6)

5 The definition of the Θ notation is given, for instance, in Ahuja et al. (1993).
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Also, as in the previous section, define Λ as the class of policies that at time t interdict a set of

k-most vital arcs of Gπ
t . That is, λ∈Λ if and only if

Iλt ∈ argmax
{
z(Gλ

t [A
λ
t \ I]) : I ⊆Aλ

t , |I| ≤ k
}

for t≤ x̂λ, Iλt = Iλ
x̂λ

for t > x̂λ. (7)

Note that x̂π(G,C0) and Iλt are obtained by replacing the terms G[Aπ
t \ Iπt ] and G[Aγ

t \ I] by

Gπ
t [A

π
t \ I

π
t ] and Gλ

t [A
λ
t \ I] in equations (1) and (2), respectively. Simply speaking, according to

the policies in Λ the interdictor should act conservatively by assuming that the costs of arcs in Âλ
t

are at their upper bounds, and then apply the same approach as in Section 3.1. Next, we show

that Λ preserves the attractive features (namely, properties C1-C3) of the policies described in

Section 3.1. For this, we need the following technical lemma, whose proof is given in Appendix B.

Lemma 4. Suppose that t ∈ T is such that z(Gλ
t [A

λ
t \ Iλt ]) = z(G[A \ Iλt ]), then (G[Aλ

t ], I
λ
t ) is

k-complete (with respect to G). Moreover, Iλt is a set of k-most vital arcs of G[U ] for all U such

that Aλ
t ⊆U ⊆A.

The next results, namely, Lemmas 5 and 6 and Theorem 2 generalize the results of Lemmas 2

and 3, and Theorem 1, respectively, for Â 6= ∅ and the class of policies Λ. The proofs of the lemmas

are similar to those of their counterparts in the previous section: see the details in Appendix B.

Lemma 5. Let λ∈Λ. Then for any C0 and G∈G(C0):

1. τλ(G,C0)≤ x̂λ(G,C0);

2. if T ≥ |A|, then τλ(G,C0)≤ |A|.

Lemma 6. Λ is a homogeneous set both with respect to cumulative regret and with respect to

time-stability.

Theorem 2. Λ⊆Π∗
τ ∩Π∗

R.

Proof. From Lemmas 5 and 6, Λ satisfies conditions C1 and C2 (both with respect to cumulative

regret and with respect to time-stability). To show that Λ also satisfies condition C3, we use the

same construction as in the proof of Theorem 1. However, there is a subtle difference (explained in

detail below, see equation (8) and the related discussion) due to existence of uncertain arc costs.

Fix π ∈Π \Λ and C0. As in the proof of Theorem 1, select T such that at some t0 ∈ T the set

Iπt0 is not a set of k-most vital arcs of Gπ
t0[A

π
t0
], and let t0 be the earliest time period among such

periods. Define Ḡ :=Gπ
t0[A

π
t0
], i.e., the arc set of Ḡ is given by Ā :=Aπ

t0
, and its costs by Ĉπ

t0
. (Note

that Ḡ ∈ G(C0).) Also, let (Iπt , P
π
t )t∈T and (Īπt , P̄

π
t )t∈T be the unique sequences of blocking and

evasions decisions generated by π for graphs G and Ḡ, respectively. Next, we need to show that

Iπt = Īπt and P π
t = P̄ π

t for 0≤ t≤ t0 − 1. (8)
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Figure 8 Network used in Remark 7.

However, unlike in the proof of Theorem 1, the costs of arcs in Âπ
t0
for G do not necessarily coincide

with those for Ḡ. We prove next (by contradiction) that (8) holds.

Let t′ be the latest time period such that 0 ≤ t′ ≤ t0 − 1 and (8) holds only for 0 ≤ t ≤ t′ − 1.

Because the interdictor acts first, it follows that Īπt′ = Iπt′ . Then it must be the case that P π
t′ 6= P̄ π

t′ .

As t′ ≤ t0−1, P π
t′ does not contain arcs from Âπ

t0
. Therefore, P π

t′ is also a shortest path in Ḡ[Ā\ Īπt′ ]

(recall that in Ḡ we increase only the costs of arcs in Âπ
t0
). However, by Assumption A3, this

implies that P π
t′ = P̄ π

t′ , and we arrive at a contradiction. Thus, (8) holds. The remainder of the

proof is similar to the proof of Theorem 1.

Remark 7. Suppose that instead of a conservative approach, we set the costs of arcs in Ât to

some other values (i.e., not upper bounds) when defining Ĉt. As we illustrate next, this leads to

policies that do not necessarily converge, thus, violating C1. Consider the network depicted in

Figure 8, and assume that the interdictor is aware of all the costs except for c13 = 16. However,

its lower and upper bounds are known to the interdictor and given by ℓ13 = 4 and u13 = 18,

respectively. Set k= 2 and consider the policies that assign either (i) the lower bound, or (ii) the

average of the upper and lower bounds to arcs with unknown costs. Observe that such policies

assign the cost of 16 and 23 to path 1− 3− 5, respectively. Thus, the interdictor would always

remove one arc of this path and another one of path 1− 2− 5. Note that the instantaneous regret

associated with such interdiction is 4 and that if the interdiction decision does not change, the

real cost of arc (1,3) would never be revealed, implying that condition C1 is not satisfied when

the actual cost of (1,3) is c13 > 12. Furthermore, one can see that the example extends to any

value used by the interdictor, other than the upper bound.

One can show that Remarks 2, 4, and 5 also hold in this setting (via similar counterexamples);

likewise policies in Λ also provide a certificate of optimality for the interdictor, as in Remark 6. In

addition, Proposition 1 can also be extended to the case of Â0 6= ∅, as we show next.
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Proposition 2. There exists C0, G∈G(C0) and ζ > 0 such that if T ≥ |A|, then τλ(G,C0)≥ ζ|A|.

Moreover, the value of Rλ
T (G,C0) can be made arbitrarily large.

Proof. See Appendix B.

4. Lower Bounds for Policy Performance

To measure policy performance, the classical theory in sequential prediction often postulates a

probabilistic model of uncertainty and computes, for example, the expected cost incurred by a

policy, thus allowing one to search for an efficient policy based on this well-defined criterion.

Assuming that such probabilistic model is initially unknown, the learning literature focuses instead,

for the most part, on the concept of regret, namely, the cumulative loss in cost relative to that

of an oracle (i.e., an oracle interdictor in our setting) with advanced knowledge of the underlying

probabilistic model, see Cesa-Bianchi and Lugosi (2006). In our problem such information consists

of the structure and arc costs of the network.

In most situations the assumption of existence of such an oracle is impractical, as feasible policies

do not posses such advanced information. Nonetheless, an oracle-based benchmark can be used

for normalization (i.e., preventing optimal performance to grow with the time horizon), and also

for bounding the opportunity cost of missing information. While the first use also applies to our

problem, the second one can be improved upon. Indeed, the oracle policy in our setting would

block a set of k-most vital arcs of G in each period, i.e.,

Ioraclet ∈ argmax{z (G[A \ I]) : I ⊆A s.t. |I| ≤ k} , t∈ T .

However, this might imply using information that is not available to any feasible policy because,

in general, A0 6= A. Thus, in our setting the bound on the opportunity cost of information is

trivial (note, for example, that τ oracle(G,C0) = 0) and not particularly meaningful. Fortunately, it

is possible to tighten such a bound by asking the oracle not to signal the availability of advanced

information through its actions. That is, we impose that Ioraclet ⊆At for all t∈ T . We refer to such

interdictor as a semi-oracle interdictor.

Simply speaking, the semi-oracle is an interdictor that although knowing all the arcs and costs

in the network, at any given time period can only remove arcs that have been observed so far,

i.e., those used in earlier time periods by the evader, or that lie within A0. Note that because

the semi-oracle interdictor knows G, it is capable of anticipate the evader’s actions and feedback

for any sequence of blocking decisions, and, thus is also capable of evaluating with certainty the

cost incurred by the evader across all time periods if said sequence is blocked, and as a result his
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actions are not necessarily adapted to the history of the process (see Remark 8). Moreover, one

can show that the semi-oracle will in fact use the best non-adapted policy. Note that, while the

existence of such an semi-oracle is still impractical, its actions for a given instance will be matched

by some feasible adapted policies, and thus it serves as a more reasonable benchmark, relative to a

traditional oracle. While the semi-oracle actions are more complex than those of an oracle, one is

still able to formulate the decision problem faced by the semi-oracle interdictor, and to reconstruct

its actions.

Next, we formulate such a problem as a mixed integer program (MIP), first, for the case of

cumulative regret (Section 4.1), and then for time-stability (Section 4.2). In the remainder of the

section we assume that Â0 = ∅. Also, to simplify the exposition and shorten the notation we refer

to the semi-oracle interdictor as an oracle interdictor, or simply, an oracle. Similarly, the resulting

policies are referred to as oracle-based instead of semi-oracle-based.

4.1. Lower Bound for Regret

Given C0, G∈G(C0) and T , suppose the oracle interdictor knows G at time t= 0, aims at maximiz-

ing the evader’s cumulative cost over T , but is restricted to selecting It ⊆At for 0≤ t≤ T . That

is, the interdictor solves the following bilevel (max-min) optimization problem:

LB(G,C0, T ) : max
∑

t∈T

ℓ(Pt) (9a)

s.t. Pt ∈ argmin

{
∑

a∈P

ca : P is a path in G[A \ It]

}
∀t∈ T , (9b)

I0 = ∅, It ⊆At, |It| ≤ k, At =At−1 ∪Pt ∀t∈ T \ {0}. (9c)

Note that in order to produce a valid lower bound, the bilevel problem (9) is optimistic in the sense

that the interdictor has some degree of control over the decisions made by the evader. Specifically,

if (9b) has multiple optimal solutions (i.e., multiple shortest paths), then the evader delegates the

decision to the oracle interdictor (otherwise, it is potentially possible to improve upon the interdic-

tor’s actions). While this modeling assumption is common in the bilevel optimization literature (see,

e.g., Beheshti et al. (2014), Colson et al. (2007) and references therein), in our setting it is necessary

to obtain valid lower bounds for the performance (with respect to regret) of any policy in Π.

In order to solve (9) we observe that the evader’s (lower-level) problem (9b) is the shortest path

problem, which admits a compact linear programming (LP) formulation, see Ahuja et al. (1993).

Consequently, the initial bilevel problem (9) can be reformulated as a single-level mixed integer

program by exploiting the LP duality. We should note that this is a standard approach in the

bilevel optimization literature (Colson et al. 2007), which can be applied as long as the lower-level

optimization problem can be replaced by its necessary and sufficient optimality conditions.
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For any arc (i, j) ∈ A and period t ∈ T , define rtij = 1 if arc (i, j) is blocked at time t, and

rtij = 0 otherwise. Similarly, define ptij = 1 if the evader travels along arc (i, j) at time t, and ptij = 0,

otherwise. For t ∈ T , define {yt
i}i∈N as the variables in the dual of the LP formulation of (9b).

Then we have the following alternative formulation of (9):

LB(G,C0, T ) : max
T∑

t=0

(yt
1 − yt

n)

s.t. yt
i − yt

j ≤ cij +M rtij ∀t∈ T , ∀(i, j)∈A, (10a)

∑

j:(i,j)∈A

ptij −
∑

j:(j,i)∈A

ptji =





−1 i= 1

1 i= n

0 otherwise

∀t∈ T , (10b)

∑

(i,j)∈A

cij ptij = yt
1 − yt

n ∀t∈ T , (10c)

rtij ≤
t−1∑

s=0

psij ∀t∈ T \ {0} , ∀(i, j)∈A \A0, (10d)

ptij ≤ 1− rtij ∀(i, j)∈A, ∀t∈ T , (10e)
∑

(i,j)∈A

rtij ≤ k ∀t∈ T , (10f)

r0ij = 0 ∀(i, j)∈A, (10g)

rtij, p
t
ij ∈ {0,1} ∀(i, j)∈A, ∀t∈ T , (10h)

where M is a sufficiently large constant parameter. Constraints (10a) and (10b) correspond to the

dual and primal constraints of the LP formulation of the shortest path problem in the interdicted

network, respectively. Note that the right-hand side of (10c) is the length of the shortest path in

G[A \ It]. Thus, if suffices to consider M = (n− 1) ·max{ca | a ∈ A} (we do so in our numerical

experiments). Constraints (10c) enforce strong duality at all times, so that
{
ptij : (i, j)∈A

}
corre-

sponds to a shortest path in the interdicted network at time t. Constraints (10d) ensure that the

blocking decision at time t includes only the arcs that have been observed prior to time t, and

constraints (10e) prevent the evader from using blocked arcs. Finally, constraints (10f) impose that

at most k arcs are interdicted in any period.

Let (r∗, p∗, y∗) denote an optimal solution to (10). We have that

I∗t (G,C0, T ) :=
{
(i, j)∈A : r∗tij = 1

}
and P ∗

t (G,C0, T ) :=
{
(i, j)∈A : p∗tij = 1

}
, t∈ T

is a feasible sequence of blocking and evasion decisions, which we refer to as the oracle-based policy.

Note that the oracle-based policy does not belong to Π, as it is not adapted to the history of the

process, see Remark 8. However, its performance serves as a lower-bound for regret of any policy

because each policy in Π can be mapped to a feasible solution to (10). Therefore:

∑

t≤T

(z∗(G)− z(G[A \ I∗t (G,C0, T )]))≤Rπ
T (G,C0), π ∈Π, (11)
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for any C0, G∈G(C0) and T .

Remark 8. Recall that for any π ∈ Π there is a unique set Iπt associated with each sequence

Fπ
t . The oracle-based policy, however, might choose different sets I∗t for the same sequence F∗

t

because its actions are allowed to depend on G. For instance, consider the networks G= (N,A,C)

and G
′
= (N,A

′
,C

′
) depicted in Figure 1(a) and (b), respectively, set k = 2, and assume that

A0 = {(1,7)}. For both G and G
′
the oracle-based policy yields I∗1 = {(1,7)}, which implies that

F∗
2 = (C0,∅, P0, (1,7), P1), where P0 = 1− 7, and P1 = 1− 3− 6− 7. One can check that the oracle

policy satisfies that I∗2 = {(1,7), (3,6)} for (G,C0), while I∗2 = {(1,7), (6,7)} for (G
′
,C0). Hence, the

oracle policy determines two different interdiction actions at time t= 2 for the same F∗
2 .

The oracle problem LB can be shown to be NP-hard using the reduction from the k-most vital

arcs problem (Ball et al. 1989). Nevertheless, MIP formulation (10) can be effectively tackled by

state-of-the-art solvers for small values of T and k (see Section 5). However, for larger values of T

and k, a significant portion of the solver’s running-time is invested into finding a feasible solution to

LB. With this in mind, and considering that the total solution time typically depends on the quality

of such solutions, we develop Algorithm 1, which constructs an initial feasible solution of (10).

The algorithm begins by finding a set of k-most vital arcs in G, and then solves a sequence of

at most k shortest path problems. Thus, its practical complexity is that of the k-most vital arcs

problem, for which there exist effective solution algorithms (Israeli and Wood 2002). The intuition

behind the algorithm is based on the following observation. Suppose I∗ is a set of k-most vital

arcs of G. Then, starting from the set I1 =A0 ∩ I∗, the evader’s response each time period must

reveal at least one arc in I∗ \ It. Thus, one can reconstruct I∗ in at most k time periods simply

by solving a shortest path in each period, and adding the newly revealed elements of I∗ into the

blocking action.

The pseudo-code of the approach is provided in Algorithm 1, where MostVitalArcs(G,k) returns

a set of k most vital arcs in G and the length of the optimal solution, and ShortestPath(G) returns

the primal and dual solution to the LP formulation of the shortest path problem, as well as the

optimal path length. Also, 1{·} denotes the indicator function.

Feeding the initial feasible solution given by Algorithm 1 to the MIP solver decreases the overall

solution time of LB (see results in Section 5). However, for sufficiently large values of T any MIP-

oriented solution approach is not effective.6 Note, however, that Algorithm 1 provides an approach

for finding a feasible solution of LB, which identifies a set of k-most vital arcs within k time periods,

6 Increasing T by ∆t increases the number of variables and constraints of LB by a factor of Θ(∆t × |A|), which
translates into an exponential increase in the worst-case time performance for any MIP solver based on branch-and-
bound ideas.
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Algorithm 1 Finding a feasible solution for LB(G,C0, T )

Require: G= (N,A,C), A0, k, and T

[I∗, z∗] =MostVitalArcs(G,k)

I0 = ∅, [p0, y0, z0] =ShortestPath(G \ I0), t= 0

while z∗ > zt and t≤ T do

t= t+1

It = It−1 ∪
({

(i, j)∈ I∗ : pt−1
ij = 1

})

[pt, yt, zt] =ShortestPath(G \ It)

end while

Set rsij := 1{(i, j)∈ Is} ∀s≤ t, and rs = rt, ps = pt, ys = yt ∀s > t.

return {(rt, pt, yt) : t∈ T }

and then, these k-most vital arcs are successively repeated until time T . This suggests that it might

be possible to solve LB for a relatively short horizon and extend the solution to a larger horizon.

(Note that this is not always possible, as there exist networks such that the optimal solution of

LB does not involve discovering a set of k-most vital arcs sufficiently early, or even at all.)

Algorithm 2 incorporates the ideas above. There, T0 corresponds to the time period in which

a k-most vital arc solution is first discovered in Algorithm 1. The algorithm iterates from time

T ′ = T0 to time T ′ = T , solving LB(G,C0, T
′) at each time. If the solution of LB(G,C0, T

′) involves

discovering a set of k-most vital arcs, then it is optimal to extend such set up to time T . Otherwise,

the algorithm sets T ′ = T ′ +1, and LB(G,C0, T
′) is solved again.

(Note: efficiency of the algorithm is improved by providing an initial feasible solution of (10)

to the MIP solver each time it is called. Such solutions can easily be constructed initially from

Algorithm 1, and later from the solution of (10) in the previous iteration.)

Proposition 3. Algorithm 2 correctly solves LB(G,C0, T ).

Proof. See Appendix B.

4.2. Lower Bound for Time-Stability

We extend the ideas in the previous section to the case of time-stability. In particular, for C0,

G∈G(C0) and T , the oracle interdictor solves the following MIP:

TS(G,C0, T ) : min
T∑

t=0

wt

s.t. z∗(1−wt)≤ yt
1 − yt

n ∀t∈ T , (12a)

wt ∈ {0,1} ∀t∈ T , (12b)
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Algorithm 2 Solving LB(G,C0, T )

Require: G= (N,A,C), A0, k, T

Use Algorithm 1 to find z∗ and T0

if T0 ≥ T then

Solve LB(G,C0, T ) via formulation (10)

else

Set T ′ = T0

Solve LB(G,C0, T
′) via formulation (10) and denote by

{
(r̃t, p̃t, ỹt) : ∀t≤ T ′

}
its solution

while z∗ > yT ′

1 − yT ′

n and T ′ <T do

Set T ′ = T ′ +1

Solve LB(G,C0, T
′) via formulation (10) and denote by

{
(r̃t, p̃t, ỹt) : t≤ T ′

}
its solution

end while

Set (rt, pt, yt) = (r̃t, p̃t, ỹt) for all t≤ T ′, and (rt, pt, yt) = (r̃T
′
, p̃T

′
, ỹT ′

) for all t > T ′

end if

return {(rt, pt, yt) : t∈ T }

and constraints (10a) to (10h).

In this formulation, wt indicates whether the blocking decision in period t, t ∈ T , is a set of k-

most vital arcs for G or not. Note that constraints (12a) force wt = 1 when the evader’s path

length at period t is lower than z∗ (otherwise, wt = 0 due to the objective function) for t∈ T . Let

(r∗, p∗, y∗,w∗) denote an optimal solution to (12). As in the previous section, denote by

I∗t (G,C0, T ) :=
{
(i, j)∈A : r∗tij = 1

}
and P ∗

t (G,C0, T ) :=
{
(i, j)∈A : p∗tij = 1

}
, t∈ T

the oracle-based policy (for time-stability). (Note that this policy is not necessarily in Π; recall

Remark 8, which can be extended for the case of time-stability). Also, as in the previous section,

we have that time-stability of the oracle based policy is a lower bound for time-stability of policies

in Π. That is, for any C0, G∈G(C0) and T :
∑

t∈T

w∗t ≤ τπ(G,C0), π ∈Π. (13)

Solving (12) entails the same difficulties that are faced when solving LB. In this regard, Algo-

rithm 1 also provides a feasible solution to the formulation above, provided one sets wt = 1 for all

t < T0, and wt = 0, otherwise. Note, however, that unlike in the case of regret minimization, T0

provides an upper bound to the time-stability of the oracle-based policy. Thus, it is sufficient to

solve TS(G,C0, T0) to generate an optimal solution for TS(G,C0, T ), where T ≥ T0. The solution

procedure is summarized in Algorithm 3. Its correctness follows from the fact that T0 is an upper

bound for time-stability of the oracle-based policy.
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Algorithm 3 Solving TS(G,C0, T )

Require: G= (N,A,C), A0, k, T

Use Algorithm 1 to find z∗ and T0

if T0 ≥ T then

Solve TS(G,C0, T ) via formulation (12)

else

Solve TS(G,C0, T0) via formulation (12) and denote by {(r̃t, p̃t, ỹt, w̃t) : t≤ T0} its solution

Set (rt, pt, yt,wt) = (r̃t, p̃t, ỹt, w̃t) for t≤ T0, and (rt, pt, yt,wt) = (r̃T0 , p̃T0 , ỹT0 ,0) for t > T0

end if

return {(rt, pt, yt,wt) : t∈ T }

5. Computational Study

In this section, we study the practical performance of the proposed policies and algorithms.

First, in Section 5.1 we describe our test instances, three additional benchmark policies and the

implementation details. Then in Section 5.2 we briefly analyze the performance of Algorithms 1

and 2 for computation of the oracle-based policies. In Section 5.3 we compare the performance of

the proposed policies (namely, Γ and Λ) against benchmark policies. We also conduct sensitivity

analysis of policies with respect to the amount and the quality of information initially available to

the interdictor in Sections 5.4 and 5.5, respectively.

5.1. Test Instances, Benchmark Policies and Implementation Details

Network Structure and Arc Costs. We test our policies using the class of uniform random

graphs (uniform graphs) of Erdös and Rényi (1959). The cost structure of each graph instance

is generated as follows. First, for each arc a ∈ A, the bounds la and ua are drawn randomly (in

sequence) from uniform distributions U(0,500) and U(la,500), respectively. Then cost ca is set to

la+(ua− la)xa, where xa is drawn from a Beta(α,β) distribution. As policy performance might be

sensitive to the relative location of ca in [la, ua], we consider left-skewed, symmetric and right-skewed

cost distributions by setting (α,β) to (2,10), (10,10) and (10,2), respectively.

Benchmark Policies. We consider three additional benchmark policies:

(i) The lower bound policy πL interdicts a set of k-most vital arcs in the observed network,

assuming that the cost of a ∈ Ât is ca = la. That is, the policy operates as a policy in Λ, but uses

the lower bound la instead of ua in equation (5).

(ii) The mean bound policy πM interdicts a set of k-most vital arcs in the observed network,

assuming that the cost of a∈ Ât is ca = (la +ua)/2.

(iii) The random bound policy πR interdicts a set of k-most vital arcs in the observed network,

assuming that the cost of a∈ Ât is either ca = la or ca = ua with equal probability.
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Initial Information.We design instances, where a fraction pa ∈ [0,1] of the arcs from A is included

into A0, and a fraction pc ∈ [0,1] of A0 is included into Ã0. Specifically, for a given pair (pa, pc),

starting from A0 = ∅, arcs are selected randomly (uniformly) without replacement from A and added

to A0, until |A0|= ⌊|A| × pa⌋. Then, starting from Ã0 = ∅, arcs are selected randomly (uniformly)

without replacement from A0 and added to Ã0, until |Ã0| = ⌊|A0| × pc⌋. We construct these sets

in a nested fashion, i.e., the set A0 generated for pa is a subset of that generated for p′a > pa. The

same applies for Ã0.

Implementation Details. The algorithms are coded in Matlab R2012b and all the experiments

are performed on a Windows PC with 3.7GHz CPU and 32GB RAM. We solve (10) and (12)

using CPLEX 12.4. For finding a k-most vital arc solution we use the basic covering decomposition

algorithm from Israeli and Wood (2002).

5.2. Computation of the Oracle-based Policy

In this section we demonstrate performance of Algorithms 1 and 2 by comparing three different

approaches for solving LB. In the first approach, referred to as “MIP,” we feed formulation (10)

directly to a state-of-the-art MIP solver. In the second, which we denote as “MIP i.s.,” we use

Algorithm 1 to generate an initial feasible solution to LB, which is then fed to the MIP solver

together with (10). In the third, which we refer to as “Alg.,” we use Algorithm 2.

We test efficiency of these three solution procedures using 10 randomly generated uniform graphs,

each considering n = 40, p = 0.5, pa = pc = 0 and T = 15. Costs are drawn from the symmetric

distribution. Table 2 summarizes the running-time (in seconds) of each solution approach, where

k ∈ {2,4,6,8}. We set a time limit of an hour for all methods.

Table 2 Running times (in seconds) to solve LB. The entry “-” implies that an optimal solution was not found

within one hour.

k=2 k=4 k=6 k=8
Alg. MIP i.s. MIP Alg. MIP i.s. MIP Alg. MIP i.s. MIP Alg. MIP i.s. MIP
1.5 17.9 29.9 5.4 59.0 124.5 35.9 707.4 - - - -
0.6 4.8 40.1 2.2 22.1 63.3 4.7 169.4 205.6 - - -
1.5 9.6 33.3 3.1 122.1 641.1 22.5 1658.8 - 534.9 - -
1.4 215.5 - 14.7 1799.5 2626.7 15.1 - - 93.1 - -
1.2 6.4 21.0 3.1 19.3 57.0 8.9 285.9 697.0 29.2 729.7 711.8
1.3 6.4 90.1 5.1 48.8 74.3 15.1 447.2 447.8 41.4 - -
1.1 5.5 24.3 8.2 476.2 1742.1 36.7 - - - - -
1.0 4.5 20.7 1.8 12.9 95.7 3.1 115.4 591.3 130.6 - 2244.6
1.4 9.4 72.3 16.1 685.4 1425.1 33.5 - - 190.4 - -
1.3 35.3 2842.9 9.5 1104.3 - 9.4 1166.1 - 18.5 - -

We observe that, in general, the solution time of Algorithm 2 is between one or two orders of mag-

nitude less than that of the MIP solver. Also, we note that while providing an initial feasible solution
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to the solver improves its performance, Algorithm 2 is still significantly faster than the other meth-

ods. This suggests that the practical efficiency of Algorithm 2 can be mostly attributed to the idea

of extending the solution of LB with a shorter time horizon (recall our discussion in Section 4.1).

5.3. Comparison to Benchmark Policies

In this section we compare the performance of λ ∈ Λ and γ ∈ Γ against the benchmark policies.

For each pair (pa, pc), where pa, pc ∈ {0,1/3,2/3,1}, we generate 20 random networks along with

subsets A0 and Ã0, and for each of them we generate three different cost vectors corresponding to

each cost distribution. We also set n= 40, p= 0.5, k= 6 and T = 21.

First, we consider the settings from Section 3.1, where Â0 = ∅ (i.e., pc = 1). (Note that in this

case, classes Γ, Λ, πL, πM and πR are equivalent.) Tables 3 and 4 summarize the regret and time-

stability for each setting, respectively. There, γ denotes a policy in Γ, and each entry represents

the average performance among all 20 instances and the mean absolute deviation (MAD), in

parenthesis. To quantify the value of the initial information (in particular, the size of A0), we include

the performance of the oracle-based policy for the corresponding performance metrics (regret and

time-stability), πoracle.

Table 3 Average cumulative regret (×102) and MAD (in parenthesis) for k= 6.

Left-Skewed Symmetric Right-Skewed
pa γ πoracle γ πoracle γ πoracle

0 5.83 (2.12) 2.27 (0.64) 6.55 (2.57) 3.72 (1.20) 9.42 (3.32) 4.70 (1.46)
1/3 4.28 (1.19) 1.19 (0.49) 5.41 (1.94) 1.95 (0.82) 8.10 (2.72) 2.39 (1.03)
2/3 1.78 (1.03) 0.31 (0.34) 2.29 (1.04) 0.29 (0.32) 3.47 (1.49) 0.87 (0.76)

Table 4 Average time-stability and MAD (in parenthesis) for k= 6.

Left-Skewed Symmetric Right-Skewed
pa γ πoracle γ πoracle γ πoracle

0 12.55 (2.55) 4.95 (0.57) 9.60 (1.86) 5.40 (0.60) 10.50 (1.10) 5.05 (0.48)
1/3 9.75 (2.05) 3.15 (0.70) 8.30 (1.66) 3.65 (0.86) 8.95 (1.76) 3.70 (0.94)
2/3 5.15 (1.87) 1.80 (0.56) 4.30 (1.53) 1.65 (0.52) 5.10 (1.22) 2.2 (0.86)

We observe that the performance of policy γ ∈ Γ is roughly between 2 to 4 times that of the

oracle-based policy. Given that πoracle has complete information about the network structure and

arc costs, the difference in the performance of the policies is reasonably modest. (For example, in the

experiments discussed below λ∈Λ performs orders of magnitude better than the other benchmark

policies, namely, πL, πM and πR, in a number of test instances.) As one would expect, as the value

of pa increases (i.e., the size of the initially known arc subset A0 increases), the performance of

both policies improves. Also, it is worth noting that the performance of the oracle policy differs



Borrero, Prokopyev, and Sauré: Sequential Shortest Path Interdiction with Incomplete Information

29

significantly from zero, the value it would obtain if it was possible to signal availability of complete

initial information.

Table 5 depicts the running-time statistics for computation of πoracle (under the regret perfor-

mance metric, thus, using Algorithm 2), which correspond to the results reported in Table 3.

Similarly, in Table 6 we report the running-time statistics for computation of πoracle (under the time-

stability performance metric, thus, using Algorithm 3), which correspond to the results reported in

Table 4. (The running time for computation of γ is not reported as for all instances it is less than

5 and 1 seconds for the regret and time-stability metrics, respectively.) It can be observed that, in

general, the left-skewed case is significantly more time consuming. Furthermore, it is interesting to

note that computing the oracle-based policy is more challenging for the regret performance metric

than for time-stability.

Table 5 Average running times (in seconds) and MAD (in parenthesis) for computing πoracle using Algorithm 2.

pa Left Skewed Symmetric Right Skewed
0 177.81 (255.77) 99.87 (153.27) 27.05 (21.24)
1/3 447.02 (756.74) 59.46 (32.97) 66.93 (30.91)
2/3 639.82 (1175.40) 22.88 (13.41) 48.92 (36.51)

Table 6 Average running times (in seconds) and MAD (in parenthesis) for computing πoracle using Algorithm 3.

pa Left Skewed Symmetric Right Skewed
0 41.86 (50.50) 13.53 (9.77) 12.16 (7.52)
1/3 25.95 (19.60) 29.57 (17.02) 32.32 (17.69)
2/3 10.69 (5.71) 10.32 (5.32) 18.52 (10.84)

Next, we consider instances with Â0 6= ∅ and pc ∈ {0,1/3,2/3}. Tables 7 and 8 summarize the

regret and time-stability for each setting, respectively. There, γ and λ denote policies in Γ and Λ,

respectively. As before, each entry represents the average performance among all 20 instances and

MAD, in parenthesis. Note that because policies in Γ are defined for settings where Â0 = ∅, these

policies discard any information in Â0.

Observe that, in general, policies λ and πM yield the best results with respect to regret and

time-stability, while the performance of πL and πR is significantly worse. For left-skewed and

symmetric structures policy πM is generally the best one, while performance of λ is not far behind

and very close to πM . For the right-skewed cost structure λ is the best policy, getting a significant

difference for regret with respect to all other policies (including πM). The difference is highly

amplified when considering time-stability, as the other policies, except γ, get very close to the

worst possible value (τ ≈ 22). Moreover, for many instances policies πM , πL and πR fail to identify

a set of k-most vital arcs. Recall that unless one assumes that arc costs are at their upper bounds,

there is no guarantee that a policy achieves zero instantaneous regret (see Remark 7).
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Table 7 Average regret (×102) and MAD (in parenthesis) for k= 6. Among the entries denoting

regret, the entry in bold is the best value, and the other entries indicate the difference with respect to

the best value.
Left-Skewed Symmetric Right-Skewed

(pa, pc) λ πL πM πR γ λ πL πM πR γ λ πL πM πR γ

( 1

3
,0) 0.54 0.93 5.17 0.87 0.67 0.32 7.70 5.58 2.98 0.97 8.52 17.26 3.03 6.98 0.90

(1.42) (3.54) (1.49) (1.93) (2.12) (2.04) (4.80) (1.88) (2.54) (2.57) (3.10) (9.85) (4.40) (3.49) (3.32)

( 1

3
, 1
3
) 0.27 0.26 5.16 0.27 0.35 0.52 3.96 5.53 1.61 1.37 8.37 6.97 1.61 3.43 1.15

(1.51) (2.39) (1.46) (1.79) (1.81) (2.11) (4.12) (1.95) (2.05) (2.29) (2.95) (5.93) (3.92) (4.20) (3.62)

( 1

3
, 2

3
) 0.72 4.28 0.48 0.62 1.01 0.13 1.76 5.62 0.93 0.44 8.58 3.37 0.81 2.29 0.63

(1.44) (1.09) (1.29) (1.53) (1.82) (1.71) (2.17) (1.94) (1.74) (1.96) (3.14) (5.13) (3.81) (3.78) (3.72)

( 2

3
,0) 0.62 5.51 4.68 1.49 1.16 1.63 23.18 3.05 11.05 3.50 4.71 35.69 6.58 23.53 4.71

(1.59) (5.05) (1.70) (2.06) (2.12) (1.47) (9.64) (1.35) (5.12) (2.57) (1.49) (14.14) (5.93) (5.44) (3.32)

( 2

3
, 1
3
) 0.61 3.44 3.63 0.90 1.51 1.22 15.13 2.99 7.77 3.49 4.16 28.47 4.73 15.76 4.74

(1.57) (3.63) (1.44) (1.75) (1.77) (1.63) (5.00) (1.46) (3.25) (2.21) (1.73) (9.88) (5.57) (5.21) (3.21)

( 2

3
, 2
3
) 0.53 1.82 2.82 0.90 0.87 0.59 9.09 2.52 3.69 1.82 3.84 16.24 1.49 8.74 3.05

(1.45) (2.77) (1.33) (2.09) (1.51) (1.31) (5.87) (1.16) (2.83) (2.04) (1.76) (8.20) (2.80) (4.68) (3.04)
(1,0) 1.32 10.20 3.27 3.99 2.57 1.87 28.72 1.30 17.21 5.24 0.89 46.13 10.08 33.05 8.53

(1.27) (5.37) (1.03) (2.65) (2.12) (1.14) (8.87) (1.48) (5.20) (2.57) (0.46) (15.06) (7.11) (7.15) (3.32)

(1, 1
3
) 1.35 6.15 2.38 2.65 2.37 1.35 21.22 1.04 12.77 4.66 0.45 32.11 9.87 25.58 7.08

(1.38) (4.37) (0.98) (2.32) (1.59) (1.03) (9.07) (1.38) (4.55) (2.14) (0.29) (12.83) (5.74) (5.87) (2.52)

(1, 2
3
) 0.46 4.03 1.05 1.29 0.52 0.45 15.17 0.47 7.90 1.97 0.25 25.46 5.88 14.87 3.11

(0.58) (3.72) (0.55) (1.00) (0.76) (0.61) (5.31) (0.63) (3.60) (1.28) (0.26) (10.09) (5.16) (5.80) (1.69)

Table 8 Average time-stability and MAD (in parenthesis) for k= 6. Among entries denoting

time-stability, the entry in bold is the best value, and the other entries indicate the difference with

respect to the best value. The entries in italic and “−” mean that the policy did not attain

time-stability for some instances.
Left-Skewed Symmetric Right-Skewed

(pa, pc) λ πL πM πR γ λ πL πM πR γ λ πL πM πR γ

( 1

3
,0) 1.1 3.35 11.9 3.25 0.65 0.5 12.1 9.05 9.1 0.55 9.75 12.25 7.8 12.25 0.75

(1.60) (6.83) (1.73) (3.68) (2.55) (1.31) (-) (2.27) (4.04) (1.86) (1.85) (-) (6.23) (-) (1.10)

( 1

3
, 1
3
) 0.55 2.4 11.7 1.9 0.5 0.8 9.35 8.95 6.3 1.3 9.35 12.65 5.8 10.1 1.3

(1.95) (6.41) (2.10) (3.34) (1.96) (1.65) (5.55) (2.64) (5.48) (1.65) (1.86) (-) (6.85) (3.58) (1.78)

( 1

3
, 2
3
) 1.05 10.5 0.5 1.3 1.35 0.3 6.05 9.05 4.55 0.5 9.4 10.35 4.4 9.25 0.85

(2.05) (3.40) (1.80) (2.04) (2.28) (1.49) (6.90) (2.37) (4.68) (1.96) (1.78) (3.83) (6.58) (5.03) (2.08)

( 2

3
,0) 0.8 9.55 11.4 6.8 1.15 2.35 15.25 6.75 15.25 2.85 7.3 14.7 12.75 14.7 3.2

(1.72) (2.00) (2.20) (4.36) (2.55) (1.23) (-) (2.58) (-) (1.86) (1.29) (-) (-) (-) (1.10)

( 2

3
, 1
3
) 1.05 10.9 9.2 7 2.5 1.05 14.9 7.1 14.2 2.7 6.6 15.4 11.65 15.4 3.25

(2.23) (3.42) (1.90) (5.06) (1.76) (1.20) (-) (3.44) (-) (1.72) (1.26) (-) (6.00) (-) (1.94)

( 2

3
, 2
3
) 0.55 9.8 7.7 4 0.9 1.15 16 5 11.65 2.3 5.75 15.35 6.65 15.8 2.15

(1.75) (6.75) (1.77) (5.84) (1.92) (1.60) (-) (1.50) (6.76) (1.66) (1.45) (-) (8.64) (-) (1.51)
(1,0) 2.1 12.8 9.2 11.1 3.35 7.8 14.2 1.2 13.6 1.8 4.4 17.6 15.5 17.6 6.1

(1.39) (-) (1.70) (-) (2.55) (1.26) (-) (9.10) (-) (1.86) (1.30) (-) (3.78) (-) (1.10)

(1, 1
3
) 1.85 14.7 7.3 11.15 3.35 6.3 15.7 1.4 15.7 2.4 3 17.95 15.85 19 6.05

(1.35) (-) (1.60) (4.27) (1.75) (1.47) (-) (8.58) (-) (1.97) (1.10) (-) (5.36) (-) (1.27)

(1, 2
3
) 0.95 17.25 3.7 11.85 0.75 3.45 18.55 1.2 17.4 1.15 1.8 20.2 14.95 20.2 2.9

(1.52) (-) (1.44) (5.90) (1.64) (1.23) (-) (5.21) (1.97) (1.12) (0.72) (-) (7.88) (-) (1.33)

Our experimental observations corroborate our theoretical results: it is crucial for the interdictor

to have a pessimistic attitude regarding the unobserved costs, i.e., it is better to overestimate the

real costs of the arcs whose real costs are unknown rather than underestimate them. The results

also suggest that policy λ is robust in the sense that it has a consistently good performance across

all cost settings, although not always yields the best result. We also note that policy γ has the

same type of robust behavior, although it is typically outperformed by λ, which signals that it is

valuable to exploit the cost bounds information.
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5.4. Policy Performance: Sensitivity with Respect to |Ã0|

In this section we study the performance of policies in Λ as a function of the number of arcs for

which the real cost is initially known (i.e., the amount of initial information). We also consider

policy πM as a benchmark, due to its consistent performance in the experiments in Section 5.3.

We set pa = 1/2 and consider pc ∈ {i/10: 1≤ i≤ 10}. As before, for every pair (pa, pc) we generate

20 networks with different cost structures (right-skewed, symmetric and left-skewed). Also, we set

n= 40, p= 0.7 (giving us an average of 1089.8 arcs), k = 8 and T = 28. Figures 9 and 10 depict

the results for the right-skewed and symmetric cost structure, respectively. The results for the

left-skewed case are in Figure 12 in Appendix C.
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Figure 9 Behavior of the average time-stability, average total regret, time-stability MAD and total regret MAD

as pc increases. The cost distribution is right-skewed and pa = 1/2.

For the right-skewed case it is observed that λ is roughly constant at low values across all

measures, indicating good and consistent performance. On the other hand, performance of πM

improves as there is more initial information of the network available, but is significantly worse
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Figure 10 Behavior of the average time-stability, average total regret, time-stability MAD and total regret MAD

as pc increases. The cost distribution is symmetric and pa = 1/2.

than the one from λ. Also, note that time-stability MAD for πM has a parabolic behavior, which

points out that for low (high) amounts of initial information the time-stability of πM is consistently

high (low), while high variability is observed for intermediate values of initial information.

For the symmetric distribution, both λ and πM average regret and time-stability decrease as

more information is available (λ regret has a subtle increase at one point due to the occurrence of

an instance in which it performed significantly bad). In this setting πM outperforms λ in terms of

regret, however their difference is not so great when compared to the right-skewed case (observe

the scale of the y-axis). Regarding time-stability, it is seen that πM is slightly better than λ for

low amounts of initial information while the opposite is observed for large amounts. On the other

hand both λ and πM regret MAD don’t show any particular pattern (however it can be considered

relatively constant after noting its scale is significantly smaller than the one in the right skewed

case), while λ time-stability MAD is constant at low values and that of πM tends to decrease.
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These observations confirm our previous conclusions regarding the robustness property of policy

λ. They also suggest that different from πM , performance of λ is highly consistent with respect to

changes in the amount of initial information. Moreover, it is observed that the sensitivity of λ to

the amount of initial information can depend on the location of the true cost between the lower

and upper bounds: if it close to the upper bound (right-skewed), the performance tends to be fairly

unsensitive, while for the other cases it tends to decrease as more information is initially available.

It is important to note that, unlike for policies in Λ, the regret of the benchmark policies πL, πM

and πR may not converge in some instances (recall our Remark 7), thus in the long run (i.e., for

sufficiently large values of T , e.g., T ≥ |A|) the proposed policies might outperform the benchmark

policies with certainty. However, such a feature does not rule out that: (i) the benchmark policies

may converge for many instances and (ii) the regret of the benchmark policies may be smaller than

the regret attained by the convergent policies, particularly in the case of finite horizons, as it can

be observed for some instances in Tables 7 and 8 as well as in Figures 10 and 12.

5.5. Policy Performance: Sensitivity with Respect to Quality of Bounds in Â0

We conclude our numerical experiments by studying the performance of the policies in Λ and πM

as the quality of the initial information deteriorates, i.e., as ua− la increases for all a∈ Â0. To this

end, in this set of experiments we generate a cost vector by drawing ca uniformly from U(500,1000)

for each a ∈ A. We consider three sets of cost bounds: (ca − xa, ca + ya), (ca − 5xa, ca + 5ya) and

(ca − 25xa, ca +25ya), where xa and ya are drawn uniformly from [1,20] for all a ∈A. We refer to

these three intervals as “I. #1,” “I. #2,” and “I. #3,” respectively.

As in the previous experiments, for each pair (pa, pc) we generate 20 random networks along

with subsets A0 and Ã0, and for each of them we generate the cost vector (ca)a∈A and xa, ya for

all a ∈ Â0. We consider n= 50 nodes, p= 0.5 (the mean number of arcs is 1216.35.), k = 15 and

T = 53. Table 9 summarizes the obtained results.

We observe that both λ and πM are sensitive to changes in the quality of the information: as the

intervals widen, performance deteriorates. Note that this effect is significantly more pronounced if

the interdictor has more initial information available, i.e., for larger values of pa and pc. Policy πM

tends to be better than λ in regret for narrow cost intervals, i.e., in the cases with good information

quality. However, λ is better (in particular, with respect to MAD values) as the intervals widen and

the values of pa increase. Similarly, πM and λ are roughly similar for time-stability for narrow cost

intervals, but λ is significantly better as these intervals widen and pa increases. These results point

out again at the robust behavior of the policies in Λ, i.e., they have a good performance across all

instances, although they are not always the best.

In order to further validate the aforementioned conclusions, we design a similar experiment with

more quality levels. Specifically, we pick pa = 2/3, pc ∈ {0,1/3,2/3} and generate the cost vector
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Table 9 Average regret (×103) and time-stability, and MAD (in parenthesis) for k= 15. The entries in bold

denote the best value.
Mean regret Mean time-stability

Policy λ Policy πM Policy λ Policy πM

(pa, pc) I. #1 I. #2 I. #3 I. #1 I. #2 I. #3 I. #1 I. #2 I. #3 I. #1 I. #2 I. #3
(0,0) 49.95 49.95 49.95 49.95 49.95 49.95 20.65 20.65 20.65 20.65 20.65 20.65

(8.83) (8.83) (8.83) (8.83) (8.83) (8.83) (3.15) (3.15) (3.15) (3.15) (3.15) (3.15)

( 1

3
,0) 44.52 45.31 48.24 44.61 44.61 47.37 19.40 20.15 22.00 19.00 20.45 31.90

(9.07) (9.93) (9.36) (9.07) (9.23) (11.13) (3.08) (3.27) (3.40) (2.90) (4.83) (16.88)

( 1

3
, 1
3
) 44.39 44.80 46.69 44.71 44.46 47.39 19.20 19.80 20.70 20.40 20.40 31.75

(8.96) (9.46) (9.67) (9.16) (9.26) (11.64) (3.26) (3.18) (3.24) (4.52) (4.86) (17.00)

( 1

3
, 2
3
) 44.58 44.42 44.69 44.84 44.70 45.01 19.20 19.40 19.30 19.25 19.05 22.30

(9.19) (8.88) (9.00) (9.25) (9.10) (9.82) (3.26) (2.88) (3.29) (3.20) (2.86) (7.68)

( 1

3
,1) 44.74 44.74 44.74 44.74 44.74 44.74 19.15 19.15 19.15 19.15 19.15 19.15

(9.14) (9.14) (9.14) (9.14) (9.14) (9.14) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20)

( 2

3
,0) 25.99 27.94 39.32 25.49 25.79 38.34 12.55 15.30 20.00 13.40 13.40 38.60

(8.23) (8.60) (7.55) (8.25) (8.22) (16.29) (2.85) (3.13) (3.00) (4.76) (4.70) (18.72)

( 2

3
, 1
3
) 25.74 26.58 34.02 25.42 26.97 37.29 12.15 13.30 16.80 13.30 17.60 36.30

(8.65) (7.99) (8.35) (8.19) (9.53) (13.69) (2.95) (2.84) (2.60) (4.62) (10.76) (20.04)

( 2

3
, 2
3
) 25.67 26.14 30.25 25.35 25.38 29.04 11.75 12.25 14.15 11.15 13.20 25.60

(8.11) (8.78) (8.63) (8.34) (8.51) (9.58) (2.50) (2.65) (2.62) (2.45) (4.60) (19.18)

( 2

3
,1) 25.31 25.31 25.31 25.31 25.31 25.31 11.00 11.00 11.00 11.00 11.00 11.00

(8.36) (8.36) (8.36) (8.36) (8.36) (8.36) (2.30) (2.30) (2.30) (2.30) (2.30) (2.30)
(1,0) 0.20 3.78 25.61 0.19 1.58 32.84 3.15 7.60 17.05 6.35 12.10 43.35

(0.17) (1.59) (3.69) (0.33) (2.25) (21.15) (1.47) (2.04) (2.07) (9.33) (16.36) (15.44)

(1, 1
3
) 0.07 1.91 17.90 0.21 2.34 23.60 2.25 5.15 12.65 9.00 19.45 38.05

(0.06) (1.00) (3.53) (0.35) (3.17) (19.03) (1.10) (1.90) (2.22) (13.20) (23.49) (20.93)

(1, 2
3
) 0.05 0.93 8.66 0.08 0.63 8.33 1.75 3.60 7.05 6.35 11.65 22.40

(0.05) (0.63) (3.44) (0.14) (0.97) (10.91) (0.68) (1.44) (1.85) (9.33) (16.54) (24.48)

by drawing ca from U(100,200). We consider 10 sets of costs bounds (ca −mxa, ca +mya), where

m is referred to as the interval-width multiplier. We change the value of m from 1 to 10, while xa

and ya are drawn uniformly from [1,10].

For each pair (pa, pc) we generate 30 different networks along with A0, Ã0, the cost vector (ca)a∈A

and xa, ya for all a ∈ Â0. We set n= 40, p= 0.8 (the mean number of arcs of 1248.73), k= 10 and

T = 36. Figure 11 depicts the results for the case pc = 1/3. Additional results for other values of pa

and pc are available in Appendix C.

The results in Figure 11 illustrate in greater detail the performance of λ and πM as the quality

of cost information worsens. In particular, one observes that, with respect to the total regret, the

performance of both policies degrades at a similar rate. This conclusion is not true, however, when

considering the total regret MAD as it tends to increase for πM , while remaining relatively constant

for λ. With respect to the time-stability metric, it is observed that although the performance of λ

deteriorates, it does so at a much slower rate than πM , and that its time-stability MAD remains

virtually constant as the intervals widens. These results reinforce the conclusions of our previous

experiments regarding robustness of the proposed policies. Moreover, they show that λ can be

considered somewhat insensitive to the quality of the initial information, while the performance of

πM can significantly degrade if the quality of the initial information is not sufficiently good.

6. Concluding Remarks

In this paper we study sequential interdiction of a directed network when the interdictor has

incomplete initial information about the network. By observing the evader’s actions (who travels

along shortest paths in each time period), the interdictor learns about the structure and costs of
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Figure 11 Behavior of the average time-stability, average total regret, time-stability MAD and total regret MAD

as the cost intervals widen for the case of pa = 2/3 and pc = 1/3. Given the interval-width multiplier m,

the lower and upper bounds of the arc costs in Â0 are la = ca −mxa and ua = ca +mya, respectively.

the network and adjusts its actions so as to maximize the cumulative cost incurred by the evader.

We formally define the concept of efficient interdiction policies and propose a class of simple

interdiction policies that are efficient both with respect to regret and time-stability.

Our theoretical results are supported by numerical experiments which suggest that the proposed

policies are robust, in the sense that they provide consistently good results across various levels

of the initial information. Aligned with intuition, our interdiction policies yield better results as

the quality of the information improves. One important conclusion of our work is that it is crucial

for the interdictor to have a pessimistic attitude regarding unobserved arc costs, i.e., it is better

to overestimate the real costs of the arcs whose real costs are unknown rather than underestimate

them. Otherwise, as we demonstrate both theoretically and computationally, the interdictor is not

guaranteed to converge to an optimal k-most vital arc solution, i.e., an interdiction solution with

an instantaneous regret of zero.
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Finally, we propose a semi-oracle benchmark policy that serves as a lower bound on the perfor-

mance of any feasible interdiction policy. We formulate such policy as a mixed integer program

and describe an algorithmic approach for its computation.

Our work considers myopic evaders (recall assumption A2), who always traverse along shortest

paths of the interdicted network. Consider now a strategic evader who does not necessarily travel

via shortest paths in each time period, but rather desires to minimize the total costs of moving

through the network over time horizon T , i.e.,
∑

t∈T ℓ(Pt), and suppose that Â0 = ∅ and that

the interdictor uses policies in Γ (similar arguments apply for the more general case). The same

type of analysis applies to analyze setting in which the evader does not observe the actions of the

interdictor upfront, and needs to learn them in real time.

Using an approach similar to the one used in the proof of Lemma 2, it can be shown that if the

evader desires to incur a cost less than z(G[Aγ
t \I

γ
t ]) at time period t, then at least one new arc must

be revealed to the interdictor in P γ
t . Thus, we conclude that Lemma 2 holds for any reasonable

decision-making process of the evader, i.e., the evader cannot avoid the convergence of policies in Γ.

Therefore, our initial assumption that the evader moves through shortest paths in G[A \ Iγt ]

turns out to be not too restrictive (at least for the property C1 to hold for the proposed policies).

Moreover, for many instances, this myopic approach might yield the best performance. However, in

general there may be a trade-off for the evader between using shortest paths and using alternative

paths that, although are not the shortest ones, might improve the performance over the whole time

horizon. While the evader’s decision-making problem can be casted as sequential mixed-integer

bilevel program, as such, it might be intractable in practice. Nevertheless, it presents an interesting

avenue for future research.

There are several other research directions that remain open at this point. An immediate one

relates to whether our results can be extended or serve as the basis for studying settings, where we

relax assumptions A1 and A3. In particular, relaxing the former one results in decision-making

problems with alternative feedbacks, where, for example, only a noisy signal of the evader cost is

revealed in each time period, or only some components of the evader action are revealed.

Note that if the source and destination nodes are not known initially to the interdictor, then

they would be inferred immediately from the evader’s actions due to our assumptions of the perfect

feedback. Thus, our model also accommodates the setting where the interdictor is not initially

aware of such information. Similarly, our model would directly extend to settings, where source

and destination nodes are chosen from a given set. In this regard, an interesting extension would be

cases, where the source and destination nodes are chosen randomly in each time period according

to some distribution. In particular, we believe that our methods are not trivially extendable to
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problems, where the source and destination nodes location distribution is initially unknown (observe

that the interdictor would not be able to state the objective function upfront under this scenario).

We should also note that our methods can be extended to the setting, where each blocking action

does not fully eliminate an arc but rather increases its cost. In such a case, the interdictor might have

a budget that must be allocated across arcs. Consequently, in each time period our policies would

solve an instance of the Maximizing the Shortest Path (MXSP) problem in Israeli and Wood (2002).

Finally, with regard to more general interdiction models in the literature, it is possible to device

computational procedures similar to the one proposed in the paper. In the interdiction literature,

such setups might include evaders that aim to maximize the flow of illegal materials (or desire

to minimize their transportation costs) in the network with capacity constraints on its arcs.

Ultimately, the suitability of our approach would rest on the nature of each specific interdiction

model (e.g., whether it admits a tractable solution approach in the case of complete information),

and, more importantly, the type of the feedback obtained by the interdictor. Generalizing our

approach for generic bilevel interdiction models is outside the scope of this paper, and constitutes

an interesting line for future research.
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Borrero, Prokopyev, and Sauré: Sequential Shortest Path Interdiction with Incomplete Information

41

Appendix A: Basic properties of k-most vital arcs

Let G= (N,A,C) be a directed network. Recall that a set of k-most vital arcs of G is a subset L⊆A that

satisfies

L∈ argmax
{L⊆A : |L|≤k}

z(G[A \L]).

Proposition 4. Given G= (N,A,C), let Y ⊆X ⊆A. If LX and LY are sets of k-most vital arcs of G[X]

and G[Y ], respectively, then z(G[X \LX ])≤ z(G[Y \LY ]).

Proof. Let U = Y ∩LX . Then by the definition of LX and LY :

z(G[Y \LY ])≥ z(G[Y \U ]) = z(G[Y \LX ])≥ z(G[X \LX ]), (14)

which concludes the proof.

Proposition 5. Let G= (N,A,C) and G′ = (N,A,C ′) be networks such that ca ≤ c′a for all a∈A. If LA

and L′
A are sets of k-most vital arcs of G and G′, respectively, then

z(G[A \LA])≤ z(G′[A \L′
A]). (15)

Proof. Since ca ≤ c′a for all a∈A, then z(G[A \LA])≤ z(G′[A \LA]). Then by the definition of L′
A, it must

hold that z(G′[A \LA])≤ z(G′[A \L′
A]), which concludes the proof.

Appendix B: Additional proofs

In this appendix we provide proofs for some of the lemmas and for Propositions 2 and 3.

Lemma 1. Given G= (N,A,C), let L and A′ be such that L⊆A′ ⊆A and (G[A′],L) is k-complete. Then

L is a set of k-most vital arcs of G[U ] for all U such that A′ ⊆U ⊆A.

Proof. Since G[A′] is L-spare, we have that

z(G[A′ \L]) = z(G[A \L]). (16)

Let LU be a set of k-most vital arcs of G[U ], where A′ ⊆U ⊆A. Then

z(G[A \L])≤ z(G[U \L])≤ z(G[U \LU ])≤ z(G[A′ \L]). (17)

The first inequality is due to the fact that (U \ L) ⊆ (A \ L), the second from the definition of LU , and

the last one from Proposition 4 (in Appendix A) and the fact that L is a set of k-most vital arcs of G[A′].

Therefore, from equations (16) and (17) we have that z(G[U \L]) = z(G[U \LU ]), which implies that L is a

set of k-most vital arcs of G[U ].

Lemma 2. Let γ ∈ Γ. Then for any C0 and G∈G(C0):

1. τγ(G,C0)≤ xγ(G,C0);
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2. if T > |A| then τγ(G,C0)≤ |A|.

Proof. To simplify the notation, let x≡ xγ . Note that by the definition of x, G[Aγ
x] is a Iγ

x -spare network. As

Iγ
x is also a set of k-most vital arcs of G[Aγ

x], it follows that (G[Aγ
x], I

γ
x ) is k-complete and z(G[Aγ

x \I
γ
x ]) = z∗(G)

by Lemma 1. Moreover, by the definition of Γ, we have that Iγ
t = Iγ

x for t > x. Hence, z(G[Aγ
t \ I

γ
t ]) = z∗(G)

for all t > x and the first claim of the proposition follows.

To prove the second claim, we consider two possible cases. Specifically, one has that G[Aγ
t ] is either Iγ

t -

spare for some t≤ |A| or not. In the former case, the arguments above imply that τγ(G,C0)≤ |A| and the

result follows. In the latter case, because ℓ(P γ
t ) = z(G[A \ Iγ

t ]) for all t, by equation (17) we have that

z(G[Aγ
t \ I

γ
t ])> z(G[A \ Iγ

t ]) t≤ |A| . (18)

The above implies that P γ
t *Aγ

t for all t≤ |A|. Indeed, suppose that this is not the case. Since P γ
t ∩ Iγ

t = ∅

and Iγ
t is a set of k-most vital arcs of G[Aγ

t ], then P γ
t ⊆Aγ

t implies that ℓ(P γ
t )≥ z(G[Aγ

t \ I
γ
t ]). Thus, from

equation (18) we have that

ℓ(P γ
t )> z(G[A \ Iγ

t ]), (19)

which contradicts the fact that P γ
t is a shortest path in G[A\Iγ

t ]. We conclude that Aγ
t ⊂Aγ

t+1, which implies

the required result.

Lemma 4. Suppose that t ∈ T is such that z(Gλ
t [A

λ
t \ Iλ

t ]) = z(G[A \ Iλ
t ]), then (G[Aλ

t ], I
λ
t ) is k-complete

(with respect to G). Moreover, Iλ
t is a set of k-most vital arcs of G[U ] for all U such that Aλ

t ⊆U ⊆A.

Proof. Let LA and L be sets of k-most vital arcs of G and G[Aλ
t ], respectively. We have that

z(G[A \ Iλ
t ])≤ z(G[A \LA])

(a)

≤ z(G[Aλ
t \L])

(b)

≤ z(Gλ
t [A

λ
t \ I

λ
t ]), (20)

where (a) and (b) follow from Propositions 4 and 5, respectively (see Appendix A). This, and the condition

that z(G[A \ Iλ
t ]) = z(Gλ

t [A
λ
t \ I

λ
t ]) implies that

z(G[A \ Iλ
t ]) = z(G[A \LA]) = z(G[Aλ

t \L]) = z(Gλ
t [A

λ
t \ I

λ
t ]). (21)

On the other hand, because Aλ
t ⊆A the following inequalities hold

z(G[A \ Iλ
t ])≤ z(G[Aλ

t \ I
λ
t ])≤ z(G[Aλ

t \L]), (22)

thus, implying that z(G[A\ Iλ
t ]) = z(G[Aλ

t \ I
λ
t ]) = z(G[Aλ

t \L]). Hence, G[Aλ
t ] is I

λ
t -spare. Moreover, because

L is a set of k-most vital arcs of G[Aλ
t ], the fact that z(G[Aλ

t \ I
λ
t ]) = z(G[Aλ

t \L]) implies that Iλ
t is also a

set of k-most vital arcs of G[Aλ
t ], and the first statement of the proposition follows. The second statement

follows directly from Lemma 1.

Lemma 5. Let λ∈Λ. Then for any C0 and G∈G(C0):

1. τλ(G,C0)≤ x̂λ(G,C0);
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2. if T ≥ |A|, then τλ(G,C0)≤ |A|.

Proof. To simplify the notation let x= x̂λ. Because z(Gλ
x[A

λ
x \ I

λ
x ]) = z(G[A\ Iλ

x ]), Lemma 4 implies that Iλ
x

is a set of k-most vital arcs of G. Thus, z(G[A \ Iλ
x ]) = z∗(G). Moreover, from the definition of Λ,we have

that Iλ
t = Iλ

x for all t > x, and the first claim of the proposition follows. The proof of the second statement

follows from the arguments in proof of the second statement in Lemma 2, with (20) playing the role of (17).

Lemma 6. Λ is a homogeneous set both with respect to cumulative regret and with respect to time-stability.

Proof. We slightly modify the proof of Lemma 3. Consider again C0, G and G
′

as given by Figure 5. However,

assume that the cost of arc (1, n) in C0 is not known exactly, but is known to be within range [1,M ], where

M ≥ 2, i.e., (1, n) /∈ Ã0, but (1, n) ∈ Â0. At the first time period the evader travels along the arc (1, n) and

its cost becomes known to the interdictor. The result then follows by mimicking the proof of Lemma 3.

Proposition 2. There exists C0, G∈G(C0) and ζ > 0 such that if T ≥ |A|, then τλ(G,C0)≥ ζ|A|. Moreover,

the value of Rλ
T (G,C0) can be made arbitrarily large.

Proof. Consider the same network as in Proposition 1, but with Ãλ
0 = ∅, and Âλ

0 = A. Let cij = 1 for all

(i, j) ∈ A, except for (1,2) with c12 = M ≥ 2, and assume that ℓij = 1 and uij = M + 1 for all (i, j) ∈ A.

Proceeding in a similar fashion as in Proposition 1, arc (1,2) is revealed after ζ|A| time periods, where

ζ ≤ k/(2k+2).

Proposition 3. Algorithm 2 correctly solves LB(G,C0, T ).

Proof. Note that only the case when T0 < T is relevant. Upon convergence one has that either T ′ = T or

T ′ <T . In the first case, LB(G,C0, T ) is solved using formulation (10) and the result follows. For the second

case suppose that {(rt, pt, yt) : t∈ T } is not optimal, and consider a solution {(r̄t, p̄t, ȳt) : t∈ T } feasible for

LB(G,C0, T ) such that
T∑

t=0

ȳt
1 − ȳt

n >

T∑

t=0

yt
1 − yt

n. (23)

Because T ′ <T it is necessarily the case that z∗ = yt
s − yt

t for all t≥ T ′. Therefore, (23) implies that

T ′∑

t=0

ȳt
1 − ȳt

n >

T ′∑

t=0

yt
1 − yt

n.

However, {(r̄t, p̄t, ȳt) : t≤ T ′} is feasible for LB(G,C0, T
′). Thus, the equation above contradicts the fact that

{(rt, pt, yt) : t≤ T ′} is an optimal solution of LB(G,C0, T
′). This proves the result.



Borrero, Prokopyev, and Sauré: Sequential Shortest Path Interdiction with Incomplete Information

44

Appendix C: Additional graphs

We provide additional results for the computational experiments described in Section 5. Figure 12 corresponds

to the discussion in Section 5.4 for the left-skewed distributed costs. Figures 13 and 14 are the complementary

figures for the second experiment in Section 5.5, setting pc = 0 and pc = 2/3 respectively.
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Figure 12 Behavior of the average time-stability, average total regret, time-stability MAD and total regret MAD

as pc increases. The cost distribution is left-skewed and pa = 1/2.
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Figure 13 Behavior of the average time-stability, average total regret, time-stability MAD and total regret MAD

as the cost intervals widen for the case of pa = 2/3 and pc = 0. Given the interval-width multiplier m,

the lower and upper bounds of the arc cost in Â0 are la = ca −mxa and ua = ca +mya, respectively.
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Figure 14 Behavior of the average time-stability, average total regret, time-stability MAD and total regret MAD

as the cost intervals widen for the case of pa = 2/3 and pc = 2/3. Given the interval-width multiplier m,

the lower and upper bounds of the arc costs in Â0 are la = ca −mxa and ua = ca +mya, respectively.


