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Even in the absence of sensory stimulation, the neocortex shows

complex spontaneous activity patterns, often consisting of alter-

nating ‘‘DOWN’’ states of generalized neural silence and ‘‘UP’’

states of massive, persistent network activity. To investigate how

this spontaneous activity propagates through neuronal assemblies

in vivo, we simultaneously recorded populations of 50–200 cortical

neurons in layer V of anesthetized and awake rats. Each neuron

displayed a virtually unique spike pattern during UP states, with

diversity seen amongst both putative pyramidal cells and inter-

neurons, reflecting a complex but stereotypically organized se-

quential spread of activation through local cortical networks. Spike

timing was most precise during the first �100 ms after UP state

onset, and decayed as UP states progressed. A subset of UP states

propagated as traveling waves, but waves passing a given point in

either direction initiated similar local sequences, suggesting local

networks as the substrate of sequential firing patterns. A search

for repeating motifs indicated that their occurrence and structure

was predictable from neurons’ individual latencies to UP state

onset. We suggest that these stereotyped patterns arise from the

interplay of intrinsic cellular conductances and local circuit properties.

neuronal assembly � repeating sequences � slow oscillations � syntire

chains � microcircuits

The neocortex contains a rich variety of neural classes that are
connected together in a complex, but stereotyped manner

(1–3). Only a fraction of cortical synapses carry ascending
information from the thalamus; the majority arises from other
cortical cells. It has been suggested that this recurrent connec-
tivity allows the cortex to process information through the
sequential activation of neuronal assemblies (4). Consistent with
this picture, cortical activity exhibits coordinated dynamics
beyond that predicted from common modulation by sensory
input (5–7). Even in the absence of sensory stimulation (e.g.,
during sleep) the cortex shows complex spontaneous activity
patterns, which have been suggested to reflect an ‘‘off-line’’
mode of information processing (7–12).

During sleep and quiet wakefulness, cortical spontaneous
activity is dominated by the ‘‘slow oscillation,’’ consisting of
alternating ‘‘DOWN’’ states of generalized neural silence and
‘‘UP’’ states of massive, persistent network activity (13). The
dynamics of spontaneous UP states show striking similarities to
those of sensory-evoked activity (14), suggesting that spontane-
ous patterns may be a useful experimental model for the flow of
activity through cortical circuits. The way spontaneous activity
propagates through cortical populations is unclear: whereas in
vivo optical imaging results suggest a random and unstructured
process (15), in vitro models suggest a more complex picture
involving local sequential organization and/or traveling waves
(16–21).

Here, we study the spatiotemporal structure of spontaneous
activity in vivo by recording populations of 50–200 cells in rat
neocortex by using multisite silicon microelectrodes. We find
that transitions from DOWN to UP states are accompanied by
a stable, sequential firing pattern with majority of neurons
(�90%) exhibiting individually unique temporal profiles. Spike
times occur with up to millisecond precision at the start of a

sequence; as the sequence progresses, timing accuracy decays in
a scalar manner similar to that seen in behavioral timing tasks
(22). A subset of UP states propagate as traveling waves, but the
activity sequence in a local population is consistent regardless of
direction of wave propagation, suggesting a stereotyped mode of
information flow in a local cortical population.

Results

Sequential Activation of Neurons at UP State Onset. To investigate
the structure of cortical spontaneous activity in vivo, we recorded
from the somatosensory cortex of anesthetized and unanesthe-
tized rats by using 64-site silicon electrodes. The electrodes,
consisting of eight eight-site recording shanks spaced 200 �m
apart, allowed for the isolation and localization of �50–200
single units. Fig. 1a shows a representative example of popula-
tion activity under urethane anesthesia, recorded with the
electrode configuration illustrated in Fig. 1b. An �1 Hz alter-
nation between UP and DOWN states is visible. Fig. 1c presents
a rastergram of a subset of the recorded neurons, triggered by
UP state onset. Neurons exhibited diverse temporal profiles. To
quantify this diversity, we computed each neuron’s latency,
defined as mean spike time within 200 ms of UP state onset [Fig.
1d; see supporting information (SI) Materials and Methods].
Neurons displayed a continuous distribution of latencies, reveal-
ing that UP state onsets initiate a sequential spread of activity
across the population (Fig. 1e); this diversity also was observed
amongst neurons recorded from a single location (maximum
latency differences at a single shank were 87 � 14% of total
latency spread over all shanks; data pooled from all 15 rats). To
verify that these diverse latencies did not result from averaging
of random fluctuations, each data set was divided in two, and the
latency computed for each half of the data. The latencies
measured in each half were tightly correlated (Fig. 1f; R � 0.84,
P � 0.001 for 180 cells pooled from six rats; P � 0.01 for each
rat individually).

To investigate whether sequential activity was a general
phenomenon, and not specific to urethane anesthesia, we re-
corded both ketamine-xylazine anesthetized (n � 3), and un-
anesthetized head-fixed rats (n � 5). Under ketamine-xylazine,
clear UP and DOWN states were observed, and UP state-
triggered activity showed similar sequential structure as under
urethane anesthesia (Fig. 2 a and b; correlation of latencies for
the first and second half of data: R � 0.85; P � 0.001 for pooled
150 cells �2 Hz; P � 0.01 for each rat individually). In
unanesthetized animals, UP and DOWN states usually are
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observed during slow wave sleep and periods of drowsiness, but
not awake alertness (9, 23). We therefore restricted our analysis
to periods where clear DOWN states could be observed. Con-
sistent sequential activation of neurons again was seen (Fig. 2 c
and d; R � 0.56; P � 0.001 for 263 pooled cells �2 Hz; P � 0.01
for four of five rats). Latencies were on average 53 ms shorter
(P � 0.001; Kolmogorov–Smirnov test) in unanesthetized rats,
indicating an accelerated sequence of activity as compared with
the anesthetized case.

To what extent does the observed temporal diversity reflect
the properties of different cell classes? In extracellular record-
ings, spike width can be used to distinguish putative fast-spike
interneurons and pyramidal cells (ref. 24; see SI Fig. 6). The
temporal relationship of putative pyramidal and interneuronal
populations varied with anesthetic condition. Under urethane
anesthesia, no significant difference was observed (mean � SD:
latencypyram � 110 � 17 ms, latencyintern � 109 � 22 ms; Fig. 1f ).
In unanesthetized animals, the distribution of both classes again
largely overlapped with a weak but significant difference (laten-
cypyram � 53 � 8 ms, latencyintern � 57 � 9 ms; Fig. 2d). Under
ketamine-xylazine, however, interneuron latencies markedly
were shorter (latencypyram � 102 � 19 ms, latencyintern � 81 �
13 ms; Fig. 2b). We therefore conclude that (i) sequential activity
does not simply reflect the preferred latencies of individual cell
classes, and (ii) whereas UP-state activity has a sequential
structure in all conditions investigated, the speed of activity f low
and the role of different cell classes varies by condition.

Traveling Waves Initiate Consistent Local Activity Sequences Inde-
pendent of Wave Direction. In cortical slices (19) and surface
recordings (23, 25–27), spontaneous activity has been reported

to take the form of traveling waves. In our data, traveling waves
were observed and could spread in either direction across the
recording sites (Fig. 3 a and b). We therefore wondered whether
the sequences we observed reflected consistent wave propaga-

Fig. 2. Sequential activity is not anesthetic-dependent. (a and c) UP state

triggered PETH sorted by latency for ketamine-xylazine and unanesthetized

animals, respectively (cf. Fig. 1e). (b and d) Consistency of neural latencies

across the two halves of the experiment for ketamine-anesthetized and

-unanesthetized rats, respectively. Green dots represent putative interneu-

rons. Note that unanesthetized latencies are approximately half those ob-

served under urethane or ketamine.

Fig. 1. Sequential activity at UP state onset. (a) Spontaneous activity of

neurons in S1 of a urethane anesthetized rat. DOWN states of complete silence

alternate with UP states of generalized activity (underlined area is expanded

in Fig. 3a). Neurons are arranged vertically by physical location of recording

shank. (b) Schematic of silicon microelectrode used in these studies. (c) Raster

plots for 10 example neurons triggered by UP state onset for 100 UP states,

showing a diversity of temporal profiles. (d) Neural latency is defined as the

center of mass of the PETH. (e) Pseudocolor plot showing normalized activity

of a simultaneously recorded population triggered by UP state onset, verti-

cally arranged by latency. The dots indicate at which shank neurons were

recorded. ( f) Neural latencies were stable, as illustrated by comparison of

latencies calculated separately for the first and the second halves of data set

(�30 min). Black and green dots represent putative pyramidal cells and

interneurons, respectively.

Fig. 3. Interaction of traveling waves and local sequences. (a) Example of a

traveling wave spreading from shank 8 to shank 1 under urethane anesthesia

(expansion of underlined area in Fig. 1a). Neurons arranged vertically by

recording shank location. Dashed line indicates propagation front fit by linear

regression (see Materials and Methods). (b) Another traveling wave, propa-

gating in the opposite direction, recorded during the same experiment. (c)

Distribution of propagation front slopes. Red curve denotes distribution of

slopes after shuffling shank order. (d Upper) PETHs computed separately for

traveling waves moving to left (blue) and right (red), for two example neu-

rons, aligned to global UP state onset defined by first spike time on any

recording shank. (d Lower) PETHs realigned to shank-specific UP state onset

times computed from propagation front slope, demonstrating increased ste-

reotypy after realignment. (e) Scatter plot showing each neuron’s latency for

traveling waves moving to the left and right, computed from realigned PETHs.

The strong correlation indicates that regardless of wave direction, neurons at

a local site follow the same activation sequence.
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tion. Because neural latencies were not correlated with either
shank position (R2 � 0.1, P � 0.1, for 13 of 15 rats) or vertical
location on the multisite electrodes (R2 � 0.1, P � 0.1 for all
rats), we concluded that the sequences do not merely reflect
wave propagation.

Wave velocity was estimated for each UP state by linear
regression of mean latency for each shank against shank location.
The distribution of estimated velocities had a maximum at zero,
indicating that activity most often began on all recording sites
simultaneously (Fig. 3c). Nevertheless, the wide-tailed velocity
distribution, compared with that obtained after shuffling elec-
trode locations, confirmed that traveling waves occur in a
significant number of cases (Kolmogorov–Smirnov test; P � 0.01
for 9 of 10 anesthetized and 3 of 5 unanesthetized rats; note this
analysis underestimates traveling wave occurrence, because it
cannot detect waves propagating perpendicular to the recording
shanks).

The time at which any given neuron fires on a given UP state
therefore reflects an interaction of global wave propagation and
local factors. We hypothesized that a similar activity sequence is
initiated in a local populations of neurons by the arrival of a
traveling wave, regardless of wave direction. To test this hypoth-
esis, we realigned each cell’s spike train to the time of UP state
onset at the cell’s recording location (Fig. 3d, see Materials and
Methods). The hypothesis predicts that this correction should
increase the stereotypy of observed sequences, which was found
to be the case [Euclidian distance between single UP state
peri-event time histograms (PETHs) and mean PETH was
significantly reduced; P � 0.01 for all rats]. To further investigate
whether local sequences depended on the direction of wave
propagation, we extracted from the data the 30% of UP states
with the largest propagation slope for each direction. Neural
latencies after realignment to local UP state onset were highly
correlated regardless of traveling wave direction (Fig. 3e; ure-
thane: R � 0.78; P � 0.001; n � 180 cells; ketamine: R � 0.88;
P � 0.001; n � 150 cells; unanesthetized: R � 0.51; P � 0.001;
n � 263 cells). We conclude that at each location, the same
stereotyped activity sequence is initiated by UP state onset, with
little dependence on wave direction.

Fine-Scale Structure of Firing Patterns. We next asked whether
latency alone could account for the diversity of temporal pat-
terns after UP state onsets. Fig. 4a shows UP state triggered
PETHs for three representative neurons, computed from the
first and second halves of the data set. The close similarity
between PETH shapes computed from the first and second half
of the data indicates that neuronal activity profiles during UP
states are more complex and unique than latency-shifted ver-
sions of the same pattern. This observation was confirmed by
using a ‘‘PETH uniqueness’’ measure (see Materials and Meth-
ods), which revealed that on average a neuron’s PETH has
consistent features which differentiate it from �90% of other
neurons (Fig. 4b; urethane, 89%; ketamine, 96%; unanesthe-
tized, 83%; chance level � 50%). This uniqueness persisted after
shifting PETHs to compensate for mean latencies (Fig. 4b; boxes
with thin lines). Applying principal component analysis to the set
of PETH shapes did not reveal clusters, suggesting a continuous
distribution of PETHs across the population (see SI Fig. 7). We
conclude that each neuron exhibits a basically unique temporal
firing pattern after UP state onset.

Scalar Timing of Firing Patterns. Many biological timing systems
exhibit a ‘‘scalar’’ property in which accuracy decreases propor-
tionally to the interval being timed (22). To investigate whether
this property held for the spike sequences accompanying UP
states, we estimated the onset time and half-width of each PETH
by fitting a gamma function (Fig. 4c; see Materials and Methods).
PETH width was correlated with peak latency for all cell classes,

in anesthetic (Rureth � 0.76; Rket � 0.67) and drug-free conditions
(Raw � 0.61). Importantly, no cells were observed to exhibit short
half-width and late onset, indicating that cells responding to the
UP state with a precisely timed burst or spike, did so only
immediately after UP state onset. This analysis, however, does
not rule out precisely timed spikes late in the UP state, if they
are part of a temporally extended spike pattern (as seen when
neurons are stimulated with extended temporally structured
stimuli; refs. 28 and 29). To investigate this possibility, we
adapted the method of Schreiber et al. (30) to measure the
reliability of spike times across UP states. For each neuron, spike
trains were smoothed with a variable width Gaussian, and the
mean correlation between spike trains from all pairs of UP states
(�Rcorr�) was computed in a 50-ms sliding window (Fig. 4d; see
Materials and Methods). This analysis confirmed that the reli-
ability of the UP state-evoked response decayed with time after
UP state onset. Further analyses indicate that the asymptotic
value of this measure is that expected from a homogeneous
Poisson process (see SI Fig. 8).

Precisely Repeating Spike Triplets. We thus have seen that neurons
display diverse but consistent temporal relationships to UP state
onsets, indicating that a stereotyped activity sequence accom-
panies the arrival of an UP state in a local population. Precisely
repeated spike templates have been reported in a number of
cortical systems (16–18, 21, 31, 32), although the interpretation
of these results has been controversial (33, 34). We hypothesized

Fig. 4. Uniqueness and precision of temporal profiles. (a) Normalized UP

state triggered PETHs for three representative neurons estimated during the

first (solid lines) and second halves (dashed lines) of a urethane experiment.

Each neuron has a unique PETH shape that is consistent across the two halves

of the experiment. (b) The difference between each neuron’s PETH and the

overall population was quantified with a ‘‘PETH uniqueness measure’’ (see

Materials and Methods). PETHs are �90% unique for anesthetic and drug-free

conditions. The distributions of this measure for the original data (thick lines)

and after time-shifting by each neuron’s mean latency (thin lines) were similar,

indicating that uniqueness reflects PETH shapes, not just latency shifts. (c)

Precision of neuronal firing decays as UP state progresses. PETH half-width w

and peak position p were estimated from a gamma function fit (Inset); the

graph shows the half-width and peak position for all neurons. Black or green

symbols identify putative pyramidal cells or interneurons, respectively; symbol

shape identifies anesthetic condition. Note that neurons with late onset

latencies do not exhibit narrow half-width. (d) Spike timing reliability measure

(Rcorr; see Results and SI Fig. 8) decays as a function of time after UP state onset.

Line width indicates the size of smoothing kernel.
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that the individual relationships of neurons to the onset of UP
states could account for precisely repeating spike patterns seen
at the population level. Confirmation of this hypothesis would
provide both convincing evidence for the precise repetition of
spike patterns and a simple explanation for it.

For computational tractability we restricted our search to
spike triplets occurring across three distinct cells (35) (Fig. 5a).
For each cell trio, one cell was designated the trigger for
calculation of the joint distribution of spike times of the other
two (35). Often, a clear mode was seen in these plots, suggesting
that a particular sequence occurred preferentially (e.g., Fig. 5b).
The location of the mode could be predicted from the neurons’
individual latencies to UP state onset (Fig. 5c; P � 0.001 for each
rat individually). Repeating triplets [defined as those whose
interspike intervals were within �10 ms of the mode, indicated
by the black square in Fig. 5b] occurred preferentially shortly
after UP state onset (Fig. 5d). To gauge the statistical signifi-
cance of these triplets, we used shuffling methods to compare the
number of triplets observed to those predicted from two sepa-
rate null hypotheses. A time-shuffling method was used to
investigate the prediction of an independent Poisson hypothesis,
corresponding to completely unstructured activity (blue line in
Fig. 5d; see SI Materials and Methods). With reference to this
null, significant numbers of repeating triplets occurred through-
out the UP state; however, this significance simply could reflect
the elevated firing rate during the UP state periods. We there-
fore investigated a second ‘‘common excitability’’ model, in
which the rate functions of all cells were assumed variable but
proportional in fixed ratio (red line in Fig. 5d, see SI Materials
and Methods). Using this second null hypothesis, significantly
repeating triplets were seen only in the first �100 ms after UP
state onset, the period during which neurons exhibit precise and
unique temporal relationships to UP state onset. We therefore
conclude that the timing and structure of repeating triplets in our

data set is predicted by individual neurons’ relationships to UP
state onsets.

Discussion

We have found that (i) in both unanesthetized and anesthetized
conditions, UP states are associated with a progressive, stereo-
typically organized spread of activation through local cortical
networks; (ii) The time scale of this spread is �100 ms, with spike
timing precision decaying as the UP state progresses; (iii) cortical
spontaneous activity may take the form of a traveling wave, but
waves passing in either direction initiate similar local sequences;
and (iv) the sequential patterns reflect diverse individual neu-
ronal relationships to UP state onset, with diversity seen within
both putative pyramidal cells and putative interneurons.

Our findings are in broad agreement with results in cortical
slices (16, 19, 36) but contrast with a recent in vivo calcium
imaging study of urethane anesthetized rats (15), which found
activity within UP states to be unstructured. This discrepancy
may reflect a difference between the cortical areas (motor vs.
somatosensory) or layers (II/III vs. V) recorded; however,
another possible explanation involves differences between re-
cording methodologies. We found that sequential structure was
expressed only in the first �100 ms after UP state onset and was
most readily detected among neurons with the highest firing
rates (�2 Hz). The lower temporal resolution of two-photon
imaging methods and the lower firing rates of layer II/III neurons
under urethane anesthesia (�0.1 Hz) therefore might account
for a lack of detected structure after UP state onset.

Spikes occurring immediately after UP state onset could be
timed with millisecond precision; the accuracy of spike timing
decayed thereafter. Such ‘‘scalar timing’’ is a robust property of
many biological timing systems (22, 37). In contrast, previous
research in cortical systems in vivo and in vitro has detected
activity sequences that may continue to exhibit millisecond
timing up to seconds after the sequence has begun (18, 32). This
apparent discrepancy may reflect the statistical methods used to
detect these sequences. If a search is conducted for repeating
patterns of millisecond precision, these are the only sequences
that can be found. If more sequences are found than predicted
by a given null hypothesis, this is a valid reason to reject the null
hypothesis but does not indicate that the particular type of
sequences searched for are biologically meaningful. Here, we
have taken an alternative approach: by recording from a large
population of cells, we show that local populations of neurons
fire at diverse latencies after UP state onsets. By performing a
search of the entire data set for repeating triplets, we find that
the structure and timing of these triplets can be predicted from
individual neurons’ latencies to UP state onset. This suggests
that UP state onsets are the principal sources of repeating spike
patterns in this data. In keeping with this view, analyses in
behaving animals have shown that repeating spike sequences
often may be attributed to stereotyped neuronal latencies to
punctuate events such as motion onsets (33, 34).

Traveling waves and local sequential activity were observed in
unanesthetized animals and under two different anesthetic
conditions. Nevertheless, some differences were observed be-
tween states. Sequences observed under anesthesia lasted almost
twice as long as those in unanesthetized animals. Ketamine-
xylazine anesthesia also led to a reduced mean latency of
putative interneurons compared with pyramidal cells. These
observations may result from both local effects of anesthetics on
cortical circuits and systemic phenomena. For example, ascend-
ing neuromodulatory inputs, which are likely to be affected by
anesthesia, have been shown to affect the strength of thalamo-
cortical and corticocortical connections as well as the intrinsic
properties of thalamic and cortical neurons (38–40).

We observed a wide diversity between simultaneously re-
corded neurons, with each neuron having a virtually unique

Fig. 5. The structure of precisely repeating triplets is predicted by individual

neural latencies. (a) For every trio of neurons, a spike triplet is described by two

interspike intervals (t2 � t1 and t3 � t1). (b) Count matrix for a representative

triplet of neurons, indicating the probability of different interspike interval

combinations. Black square denotes triplets occurring within � 10 ms of mode.

(c) Triplet structure reflects individual neural latencies. Each triplet is repre-

sented by two points: (x1 � t2 � t1, y1 � latency2 � latency1) and (x2 � t3 � t1,

y2 � latency3 � latency1). The strong correlation indicates that the structure of

the triplets is predicted by the neurons’ mean latencies to UP state onset. (d)

Occurrence of precisely repeating triplets peaks shortly after the start of UP

states. Blue and red curves denote shuffled data for independent Poisson and

common excitability models, respectively (dashed lines indicate SD).
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temporal pattern of activity that it consistently exhibited at UP
state onsets. We suggest that the diversity of cellular responses
at UP state onset arises from the interplay of intrinsic cellular
properties and network dynamics. Cortical neurons vary in their
responses to in vitro current injection, which may result from
differences in morphology as well as ion channel expression (41).
When injected with step currents, layer 5 pyramidal cells show
stereotypical temporal patterns at step onset, which differ be-
tween cells; after a few hundred milliseconds, however, most
cells fire repetitive spike trains (42). Thus, even if each neuron
experienced an identical step of input current during the UP
state, diverse spike patterns and sequential activity still would
follow UP state onset. It is likely, however, that the input current
profiles experienced by cortical cells are also diverse. Cortical
pyramidal cells are heterogeneous in their excitatory and inhib-
itory inputs (1, 43–46), and neighboring neurons can receive
input from quite different presynaptic populations (47). Intra-
cellular recordings in vivo have shown that although the broad
structure of membrane potential oscillations can be remarkably
correlated between neurons (48), individual neurons depolarize
with consistent latency after UP state onset (49). In cortical
slices, complex intracellular waveforms evoked by focal stimu-
lation suggest that neurons experience diverse but reliable
patterns of polysynaptic input up to 300 ms after the initial
stimulus (36). We thus propose that the transition to UP state in
a cortical column initiates a complex dynamical pattern that is
sculpted by patterns of recurrent connections and cellular dy-
namics. Computational models have suggested that spike timing-
dependent synaptic plasticity may lead to connection patterns
that reinforce intrinsic dynamics and conduction delays, leading
to stable sequential activity of the type we observe (50).

What role might sequential activity play in information pro-
cessing? The first possibility we must consider is that it has no
function, that is, if it were possible to scramble the temporal
dynamics, this would have no effect on the operation of the brain.
We consider this to be unlikely: Given that neuronal integration
times are on the order of tens of milliseconds (51), sequentially
structured activity spread over hundreds of milliseconds will
have a different impact on downstream neurons than uncoor-
dinated activity. A second interpretation, the ‘‘synfire chain’’
hypothesis, posits that precisely timed activity stabilizes propa-
gation of spike patterns in the face of variable conduction delays
(18, 52, 53). Our data are not fully consistent with this inter-
pretation: Millisecond-level precision is only observed immedi-
ately after UP state onset, after which timing precision progres-
sively deteriorates. We suggest another possibility in which
sequential activation of a cortical network allows for serial
execution of multiple steps in an information processing task (7).
Neurons firing earliest in the sequence would reflect an initial
processing of incoming information; neurons firing at later times
would have access to the results of computations made by earlier
firing ones and, thus, be capable of more sophisticated analyses.
In several sensory systems, short-latency responses correlate
with simple stimulus features, whereas later responses evolve to
represent more complex features (54–56). We hypothesize the
same dynamical processes that give rise to sequential patterns
under anesthesia may underlie the generation of these patterns
in awake animals.

Materials and Methods

Surgery and Recording. Detailed descriptions of surgery and
recording procedures have been published in ref. 24. Briefly, six
rats (Sprague–Dawley; 400–900 g) were anesthetized with ure-
thane (1.5 g/kg), and another three with a mixture (4 ml/kg) of
ketamine (25 mg/ml) and xylazine (1.3 mg/ml), injected i.p. Rats
were placed in a stereotaxic frame, and a window in the scalp was
prepared over the somatosensory cortex. Five rats were recorded
unanesthetized with their head restrained: one week before the

experiment, a headpost was implanted on the head of the animal
under ketamine-xylazine. The animal was trained to remain
motionless in the restraining apparatus for increasing periods.
On the day of the surgery, the animal was anesthetized with
isoflurane, the skull opened and the dura resected; after a 1-h
recovery period, recording began.

Extracellular signals were recorded with silicon probes (Neu-
roNexus Technologies, Ann Arbor, MI) consisting of eight
shanks (Fig. 1b; see SI Materials and Methods). The location of
the recording sites was determined to be layer V by histological
reconstruction of the electrode tracks, electrode depth, and
firing patterns (24).

Units were isolated by a semiautomatic algorithm (available at
http://klustakwik.sourceforge.net) followed by manual clustering
(57) (http://klusters.sourceforge.net). Multiunit activity, clusters
with low separation quality (57, 58) (isolation distance �20), or
firing rates �2 Hz were excluded from analysis. The mean
number of recorded cells per experiment was Nureth � 59 (range
27–93), Nket � 126 (range 98–169), and Nawake � 137 (range
41–179); the mean number of cells used for analysis: Nureth � 30
(range 14–41), Nket � 50 (range 25–70), and Nawake � 52 (range
25–83).

UP states were identified from the spiking activity of all
recorded cells. UP state onset was defined as the time of the first
spike marking a transition from a period of global silence (30 ms
with at most one spike from any cell) to a period of activity (60
ms with at least 15 spikes from any cells; see SI Materials and
Methods). The mean number of analyzed UP states per exper-
iment (�SD) was Nureth � 611 � 133, Nket � 531 � 41, and Nawake

� 244 � 102.

Correction for Traveling Wave Slope. To determine the speed of
propagation of UP state onset across recording shanks, we
calculated for each shank the mean time of the first five spikes
of any cell after UP state onset and fitted a least squares line to
these times as a function of shank location (varying the number
of spikes used did not alter our findings). To correct for traveling
waves, spikes times at each shank were shifted by an amount
calculated from the fitted line for each UP state separately, and
PETHs and latencies were recomputed.

PETH Uniqueness. To investigate the uniqueness of PETH shapes,
we divided each data set in two and computed normalized
PETHs for all cells in each half. For each pair of neurons i and j,
we computed the Euclidean distance dij between the PETHs
of neuron i in the first half and neuron j in the second half. The
PETH uniqueness measure of neuron i was defined to be
the percentage of all other neurons j for which dii � dij. The
uniqueness measure was computed from the original PETHs and
from transformed data in which PETHs were shifted in time to
equalize their onset latencies (Fig. 4b, boxes with thick and thin
lines, respectively).

Gamma Fit and Spike Timing Reliability. To estimate the temporal
precision of neural firing, PETHs were fitted with a function
based on the gamma probability density function:

y(t) � � c

ba�(a)
(x � d)a�1e

x � d

b x � d

0 x � d
�, [1]

where �(a) is the standard gamma (factorial) function. The
parameters a, b, c, and d were optimized to minimize the
Euclidian distance between y(t) and the observed PETH by using
the simplex method; optimization was repeated with multiple
initial parameter values, and the best fit chosen if different
solutions were obtained. After fitting, both the peak position p
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and half-width w of gamma function fit were computed numer-
ically (Fig. 4c Inset).

Spike timing reliability (Rcorr) was assessed for each neuron
separately by using the measure of Schreiber et al. (30):

Rcorr �
2

N�N � 1	
�
i�1

N

�
j�i
1

N
S� i�S� j

�S� i��S� j�
, [2]

where N is the number of UP states, and S� i denotes the binned
(3.2 ms) and smoothed (Gaussian kernel of width 5, 10, 15, and
20 ms) spike train during ith UP state. Reliability was computed
for 50-ms time windows starting at 0, 25, 50, . . . , 200 ms after
UP state onset.
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