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Abstract

We present a mathematical framework for analyzing the synthesis
of interacting finite state systems. Thelogic S1Sis used to derive
simple, rigorous, and constructive solutions to problemsin sequen-
tial synthesis. We obtain exact and approximate sets of permissible
FSM network behavior, and addressthe issue of FSM realizability.
Thisapproach is also applied to synthesizing systemswith fairness
and timed systems.

1 Introduction

The advent of modern VLSI CAD tools has radically changed the
processof designing digital systems. Thefirst CAD toolsautomated
the final stages of design, such as placement and routing. As
the low level steps became better understood, the focus shifted
to the higher stages. In particular logic synthesis, the science of
optimizing designs (for various measures such as area, speed, or
power) specified at the gate level, has shifted to the forefront of
CAD research. Another arearapidly gaining importance is design
verification, the study of systematic methods for formally proving
the correctness of designs.

Logic synthesis algorithms originally targeted the optimization
of PLA implementations; this was followed by research in synthe-
sizing more general multi-level logic implementations. Currently,
the central thrust in logic synthesisis sequential synthesis, i.e. the
automatic optimization of the entire system. This can be at the
logic level (i.e. theinput is a netlist of gates and latches) or the
state transition graph level. Designs invariably consist of a set of
interacting components. Natural questions related to such systems
are what is the optimal choice of a component, and automatically
deriving a component so as to satisfy given properties.

Previous work in the VLS| design automation community re-
lated to optimizing interacting state machines has tended to be ad
hoc and incomplete. The constructionsand proofs offered are often
extremely cumbersome. Relevant papersinclude [1, 2, 3, 4, 5, 6].
One attempt at formal synthesis framework based on trace and au-
tomatatheory isgivenin [7]. However, the central theorem relating
flexibility in a sub-circuit to the specification and the environment
isincorrect; we give the correct formulation. Thereis alarge body
of theoretical work related to the existence of efficient decision pro-
ceduresfor deciding logics of programs[8, 9, 10, 11]. [9, 10] take
logical specifications and construct programs satisfying them. [8]
usesagametheoretic formulation to show that the set of movesfor a
controller isanw-regular set. [11] givesan elegant characterization
of realizability.

Typically, the synthesis process has two stages: first, the set of
all possibleimplementationsis characterized (which is the topic of
this paper), and then one is chosen according to some optimality
criteria. Using the sequential calculus S1S as our basic tool we
show in section 3.1 that the set of all implementations can alwaysbe
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captured by a singlefinite-state automaton, which can be generated
automatically. However, in practise such an automaton may be
prohibitively large to construct. One approach to alleviate this
problem is to define easier to handle automata which capture only
a subset of possible implementations. We pursue this approach in
section 3.2.

The rest of this paper is structured as follows: §2 reviews the
basic definitions and salient results. In §3 we apply these resultsto
synthesizing and optimizing finite state machine networks; specif-
ically, we derive sources of flexibility that can be exploited by
synthesis. We also address the issue of hardware realizability. In
§4 we describe extensions of our approach to synthesizing systems
which incorporate fairness constraints and timed systems.

The analysis in this paper is of a theoretical nature. In par-
ticular, the complexity of the exact procedures described can be
exponential, or even doubly exponential. From a theoretical point
of view, the complexity is inherent; this simply reinforces the need
for approximations and heuristics.

2 De€finitions and Basic Results

This section reviews germane definitions and results. In particular,
the relationship between finite state machines, languages, and S1S
logicis established. For reasonsthat will become apparent later, we
will consider both automata on both finite and infnite sequences.
An excellent survey of thematerial coveredinthis sectionisin[12].

2.1 Finite State Automata and Machines

GivenalfinitesetZ, theset 2* istheset of all finite sequencesover 3.
A x-languageover X isasubsetof 2*. Given X € X*, | X | denotes
thelength of X. The set * is the set of all infinite sequencesover
Zie dlmapsf:w — Z wherew = {0,1,2,...} isthe set of
natural numbers. An w-languageover X is a subset of .
Notation: Lower case variables will take values from alphabets;
upper case variables will be sequence valued.

Definition 1 A finite state automaton (FA) is a 5-tuple
(Z, 5,50, T, A) where X is a finite set called the alphabet, S is
afinite set of states, sp € .S istheinitial state, 7" C S x 2 x S'is
the transition relation, and A C S isthe set of accepting states.

The automaton is said to be deterministic (variously a DFA) if
(Vs.Vz)[| {t : (s,2,¢) € T}|< 1]; otherwise it is said to be
non-deterministic (variously an NFA).

Astring X € Z* isaccepted by the FA if there exists a sequence
of stateso = ooo1...0, SUChthat n = | X |, 00 = s0, on € A,
and (Vi) [(04, Xi, 0441) € T]. Thelanguage of the automaton is
the set of strings accepted by it; thislanguageis said to be x-regular
if it is the language accepted by some automaton.

Definition 2 A Bichi automaton (BA) isa5-tuple (Z, S, so, T, B)
where X is afinite set called the alphabet, S is afinite set of states,
s0 € S istheinitial state, 7' C S x Z x S isthetransitionrelation,
and B C S are the accepting states.



The automaton is said to be deterministic if (Vs.Vaz)[| {¢ :
(s,z,t) € T} < 1]; otherwiseit is said to be non-deterministic.

A string x € X isaccepted by the BA if there exists aseguence
of states ogo1 . . . suchthat oo = so, and (V1) (o4, xi, 0541) € T7,
andinf(o) N B # ¢, wherein f(o) istheinfinitary set of o, i.e.
the set of states that occur infinitely often in o. The language of
the automaton is the set of strings accepted by it; a language is
said to be w-regular if it is the language accepted by some Biichi
automaton.

Definition 3 A finite state machine M isa5-tuple (.S, so, I, 0, T)
where S isafiniteset of states, sg € S istheinitial state, / isafinite
set of inputs, O is afinite set of outputs,and 7 C S x I x O x S
isthe transition relation.

By definition, M is deterministicif

(Vs.Vivo)[ [{t: (s,4,0,t) € T} < 1]
M iscomplete if
(¥s.Vi.30.3t)[(s,4,0,t) € T]

M is an implementation if, in addition to being complete, it
satisfies

(Vs.Vi)[ [{(t,0) : (s,5,0,t) € T}| < 1]

M isMooreif, in addition to being animplementation, it satisifes
Vs .Vi.Vo1.Vo2.Vt1.Vio

[[(s, 1,01, tl) eTIA |:(S7 1, 02, tz) eT]— (01 = 02)]

elseit issaid to be Mealy.

Given an input sequence: = (122 - - - 1, ), and output sequence
o = (0102--0,), acorresponding run is a sequence of states
o = (Sosl cee Sn) such that (Vk) |:(Sk7 Z'k_|.17 Ok+1, Sk+1) (S T]
The notion of arun readily generalizesto infinite sequences.

Our definition of deterministic finite state machine has been
referredto as* pseudo non-deterministic” (PNDFSM) inthe past [6].
The term deterministic was reserved for what we refer to as an
implementation. A related notion is that of incompletely specified
finite state machines (ISFSM), where given any state s and input ¢,
either (31o.31t) [(s,1, 0,t) € T] or (Vo.Vt)[(s,1,0,t) € T].

Definition 4 The x-language identified with an FSM M =
(S,r, 1,0,T), denoted by £ and referred to as the behavior
of M, isthe set of sequences (i,0) € (I x O)* such that there
existsarunin M correspondingto (¢, o).

Clearly the behavior £ is a x-regular language ([13, 12]) on
the alphabet / x O. The automaton .4 defining the language is
simply the FSM itself — the states of .A™ are the states S, initial
statesof A arethestatesr, thetransition relation of the automaton
is {(s, (4,0),t) : (s,4,0,t) € T}, and al states are accepting.
Note that the behavior of a deterministic machine is defined by a
deterministic finite automaton.

Definition 5 Given a language L C (X5 x Xo)*, afinite state
machine M on input 2, output X is said to be compatible with
Lif £M ¢ L; M issaid to bearealization of L if it is compatible
with . andisanimplementation. A languageissaidto berealizable
if there exists areadlization of it; similarly an FSM is realizable if
itslanguageis realizable.

Definition 6 A finite state machine with Biichi fairness is a tu-
ple (M, C) where M is an FSM, and C' is a subset of the states
of M. Given F' = (M, C), an FSM with fairness F' is said to be
deterministic (complete) if M is deterministic (complete).

The notion of a corresponding run over infinite input/output se-
guencesis defined analogously to that for ordinary FSM’s; arun o
isfair if theinfinitary set of statesisan element of C'. Similarly the
language of afinite state machine with fairness is defined to be the
language of the corresponding Biichi automaton.

Composition of finite state machines is defined in the usual
way [6]. In composing interacting FSM’s, (sometimes referred
to as a network of FSM’s) some inputs of each machine may be
the outputs of each machine, whereas someinputs may be external;
also, not all outputs need be external. The entire systemsis itself
afinite state machine on the product state space, referred to as the
product machine [6]; transitions take place synchronously, i.e. in
“lock-step”. When the component machinesare Mealy and derived
from hardware, composition can lead to combinational cycles, and
the product may have undesired oscillatory behaviors [14]. These
problems can be circumvented by using Moore machines; we will
come back to this phenomenonin section 3.3.

2.2 The Sequential Calculus S1S

Thelogic S1Sisaformalism for analyzing sequencesover finite al-
phabets. It wasstudiedin detail by Biichi in[15]; in particular it was
shown to be decidable. S1S provides an extremely powerful mech-
anism for analyzing and manipulating sequential systems— the full
expressiveness of logic (conjunction, negation, and quantification)
isavailable.

Definition 7 Thelogic S1S (second order theory of one successor)
isasecondorder logic[12]. Formulae arederived from the alphabet
{0,5,=,<,€,A, 7,3, x1,x2,..., X1, Xo,...}. Lower casevari-
ables x1, z2, . .. arefirst order variables ranging over elements of
the domain, and upper case variables X1, X», . .. are second order
variables ranging over subsets of the domain. The well formed
formulae of the logic S1S are given by the following syntax:

o Terms are constructed from the constant O and first order
variables by repeated applications of the successor function
S. Examplesof terms—0, SS0, SSSSx3.

o Atomic formulae are of theform ¢y = ¢z, t1 < €2, t € Xi.
Examplesof atomicformulas—0 < SO, z3 = Szs, Sz7€ Xo.

e S1Sformulae are constructed from atomic formulas by using
the boolean connectives A, — and quantification over both
kinds of variables. Examples of S1Sformulas— (0 < S0) A
(Sz7 € X3), (3X.3x)[(x € X) A (Sz € X)]. We write
¢(X1, X2,...,Xn) to denote that at most X1, Xo,..., X,
occur free in ¢ (i.e. are not in the scope of any quantifier).
We will routinely use the symbols v, —, V, etc as logical
abbreviations.

S1Sformulae can beinterpreted over the set of natural numbers,
where Sz issimply z + 1. Formal semantics of S1S can be found
in [12]; weinformally illustrate them by means of examples.
Example 1: (Non-empty subsetsof w contain minimal elements)

v o= (VX)) [(Fr)(z € X) >

@)y € X) A =~((F=)(z € X A (2 <)))]]

The above sentence formally states that for every subset (X) of w,
if X isnon-empty (3z € X'), then it contains aleast element (y).



Example2: (Defining subsetsof w which contain 5 whenever they
contain 3.)

Po(X) =
Example 3: (Defining the subset of even integers)
(X)) =

Example 4: (Defining the relation “ every even number in X isin
YH)

(S550 € X) — (555550 € X)

(0e X)A(S0e X)A (Vo) (z € X 55z € X)

$2(X,Y) = (V2)[(3Z) ($1(Z)Az € Z) = (x € X €Y)]

Given aformulag(X71) in S1S, the class of subsets of w defined
by 8(X1) istheset {8 C w | #(8) istrue}. The classof subsets of
w isin aoneto one correspondencewith the set of w-sequenceson
{0, 1} —the 1'sin the sequencecan bethought of asrepresentingthe
integers in the corresponding set, e.g. 010101. .. « {1,3,5,...}.
In this way, an S1S formula 4(X1) defines an w-language over
aphabet {0,1}. More generally, formulae ¢(X1, X2, ..., X5)
definesubsetsof ({0, 1}™)“.

Thefollowing result relates S1S formulae to w-automata.

Theorem 2.1 (Blichi 1961 [15, 12]) Anw-languageisdefinablein
S1Sif and only if it isw-regular.

Proof:(Sketch:) The reverse direction involves a straightforward
construction of aformula coding up the transition structure of the
automaton.

The forward direction is by induction on the length of the S1S
formula. Automata for the atomic formulae are easily derived; an
inductive construction is used for =, A, 3. 3 is handled by automa-
ton projection, A by automaton intersection, and — by automaton
complementation. The latter is the non-trivial step — invariably
performed by first determinizing the automaton, following which
complementationistrivial. The process of complementation isin-
herently exponential, since the number of statesin the complement
can (in the worst case) be exponential in the number of states of the
given automaton. =

With minor modifications, Biichi's result also holds for sets of
finite words i.e. when set quantification is restricted to finite sets
only. In this case one speaks of the theory WSL1S (weak S1S). The
corresponding result for WSL1S statesthat a x-languageis definable
in WS1Sif and only if it is x-regular [12, 15].

Definition 8 Given a formula ¢* (X1, X»,...,X,) in SIS
(WSL1S) we can uniquely identify a Bichi automaton (finite au-
tomaton) .4 over the alphabet {0, 1}".

Therelationship between automataand S1S allows usto formally
and succinctly expressbehaviorsasformulaein logic, and aso pro-
videsan automatic procedureto obtain automatafrom the formulae.
Hence, elegant yet rigorous proofs can be given to alarge class of
solutions to problems related to finite state systems. Furthermore
these proofs are constructive, i.e. given formulain SIS/WS1Sit is
possibleto mechanically construct the corresponding automaton.

3 Synthesizing FSM networks

As mentioned in the introduction, a critical first step towards syn-
thesizing a component in a design is characterizing the set of all
valid implementations. In this section, the flexibility available for
seguential synthesis is analyzed. We use S1S to formulate the
“E-machine” of Watanabe [6] for a number of FSM interconnect
topologies, derive a spectrum of approximationsto the E-machine,
and addressthe issue of realizability.

X —> M > v

Figure 1: Exampleof interacting finite state machines; wewill refer
to C' asthe controller

3.1 TheE-machine

Consider machines communicating in the configuration shown in
figurel. Supposex andy arethe observableinputsand outputs, and
£7 C (Zx xZy)* isa*-regular specificationonthem, i.e. theonly
acceptable input—output behavior is that which is contained in £
Also supposethemachine M isfixed. Thefollowing theorem states
that all the flexibility available for synthesisat C' is characterized

by asinglelanguageﬁc* definablein S1S: for any FSM C, M x C'
satisfies 5 if andonly if £& c £¢°

Theorem 3.1 The set of al behaviors on w«, v which will yield
behavior on the inputs and outputs which is compatible with the
specificationis given by the following expression:

(U V) = (YXWY) [6M(X, V.U, V) = ¢%(X,Y)] ()
Proof: For input sequence V', the controller should not generate
output sequence U if and only if there exist sequences X, Y such
that M producesY, V" oninput X, U and (X, Y') doesnotlieinthe
specification. Mathematically, the set of behaviorsthat C' should not
produceisgivenby (3X.3Y)[¢™ (X, U, V, Y) A =¢° (X, Y)]; the
complement of this set, namely the set of U’sthat can be generated
correspondingto V' is precisely the set defined by equation1. =

By the remarks in section 2.2, £ s regular.  Note
that the number of states in an automaton for —¢°(X,Y) is
0(2!%s1y (automaton complementation by the power set con-
struction [13]). Thus, the number of states in the automaton
for [¢™(X,U,V,Y) A =¢(X,Y)]isO(]| Sa | -21°s!) (automa-
ton product), and so, the number of states for the automaton
for ~(IX.3Y)[6M (X, U, V, Y) A =5 (X, V)]isO(25m 255 ]y,
This complexity is inherent: it can be achieved in the worst case.
We illustrate the construction for C* by means of an example,
described in figure 2.

In the special case when the automaton defining £° is determin-
istic, the corresponding bound is 21511551 Thisiis precisely the
construction of [6]; it is instructive to contrast this approach with
that taken in [6] and noting the simplicity afforded by appealing to
S1S.

Thespecificationautomaton could be M x C'; this correspondsto
there-synthesisproblem, i.e. supposewewishto find areplacement
for the C' block which is optimal (with respect to an appropriate
objective function) while preserving the observed behavior. Then
the behavior of the replacement must be contained in the behavior
£,

Inthemost general setting M and the specification automaton are
non-deterministic and incompletely specified. In this case, simply
deciding if animplementation (in the sense of definition 5, section 2)
exists for the block C' which is compatible with the specification is
non-trivial; realizability is discussedin § 3.3.

There are variations on the interconnect structures to which an
approach similar to that of theorem 3.1 can be applied to derive
formulae expressing the set of permissible behaviors at a specified
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Figure 2: We are given an FSM on inputs z, » and outputs y, v,
and the specification that “if = goes high, then in the next state, y
should be high” formalized by the DFA S. We obtain C* by the
construction corresponding to equation 1. Any controller which
on composition with M yields a machine compatible with S is
containedin C*; in particular N1 and N2 are valid controllers.

X y
U
X ur—y o x| P
T I e =

Ex1. Cascade-| Ex3. Supervisory Control EX5. Rectification-|
X u v y u
B1 B2 B3 - M2
o) e e :
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Figure 3: A variety of FSM network topologies; the name suggests
applications.

machine. In figure 3 we describe a set of FSM network topolo-
gies; below we give the S1S formulae defining the corresponding
E-machines. The ease with which we derive the flexibility is a
measure of the power of S1Slogic —in the past, individual topolo-
gies have been considered individually, and the flexibility hasbeen
laboriously derived. It is noteworthy that when all signals are ob-
servable at a machine, and the specification is deterministic, then
the machine defining the set of permissible behaviorsis polynomial
sized.

Cascade-| (8) ¢“1" (X, U) = (VY)[¢2(U,Y) = ¢°(X,
Cascade| (b) ¢2° (U,Y) = (VX)[$1(X,U) = ¢5(X,Y)
Cascade-ll ¢52" (U, V)= (VX.VY) [¢71(X, U)AdZ3(V,Y) = ¢° (X, V)]
Supervisory Control € (X, Y, U) = ¢F (U, X) —» ¢5(X,Y)

2-way Cascade () ¢™1" (X, V,U) = (VY)[¢M2(V,U,Y) = ¢° (X, V)]
2-way Cascade (b) 2" (U, V,Y) = (VX)[¢pM1(X, V,U) = ¢5(X, V)]
Rectification-1 V2" (U, V) = (VX.VY)[¢"1(X, V,U,Y) = ¢°(X,Y)]
Rectification-1l ¢™W1" (X, V,U,Y) = ¢™2(V,U) = ¢5(X,Y)

3.2 Optimization of FSM networks

In this section we describe procedures for optimizing networks
of finite state machines. In particular, we are interested in the
re-synthesis problem, i.e. the specification is the functionality of
the original FSM network. For such systems, the full range of
admissible behavior at a node is described by the E-machine, and
the original machinetrivially satisfiesthe specification.

Y)]
Yy

)

Deriving Optimal | mplementations

Given the E-machine, one would like to derive an implementation
that is optimal. One criterion for optimality is state minimality.
In practice, deriving state minimal realizations from ISFSM’s is

easier than from general deterministic FSM’s [6] (although both
are NP-complete). Our interest in input don’t care sequences and
satisfiability don’t care sequences defined below partly stems from
the fact that the flexibility afforded by them can be captured by
ISFSM’s rather than general deterministic FSM’s.

We provide a spectrum of approximations to the flexibility at a
component, starting from more conservative approximations, and
leading up to the E-machine.

Let z, y be the input and output of the FSM network. Consider
a component machine C' on inputs v and outputs «. Let M bethe
rest of the network.

Definition 9 Thestrong satisfiability don’t caresetfor C' isdefined
by the following formula:

P (V) = ~(3X.30.IN6M(X,T,V,T)]

It is precisely the set of sequences over v which can never be
generated, no matter what replacement is used for C'.

This set gives a certain amount of flexibility in choosing imple-
mentations for C'; namely any behavior in the machine Cy defined
below is acceptable.

$°(V,U) ~6"PC5 (V) = ¢ (V,U)

In [16] we prove the above claim, show that Cj is an ISFSM, and
also demonstratethat Cp doesnot provideall theflexibility available
in optimizing C..

Definition 10 The weak satisfiability don’t care set for C' is given
by the following expression:

$SP (V) = —@3K.303V)[6M(K,0,V,¥) A (T, V)]

It is precisely the set of sequences over v which can never be
generated in the product machine M x C, and correspondsto the
input don’t care sequencesof [4].

This set gives additional flexibility over S DC§’ in choosingimple-
mentations for C'; namely any behavior in the machine C; defined
below is acceptable.

sV, U) = 0P (V) 5 ¢S (V,U)

In [16] we prove the above claim, show that C isan ISFSM, and
also demonstratethat Cy doesnot provideall theflexibility available
in optimizing C'.

Definition 11 The strong observability equivalencerelation for C
is given by the following expression:

6 (V) = (YRYPWO)[pM(X,0,V,¥) = ™ (X, 7]
It is precisely the set of sequences over v for which any output
seguenceover u is permissible. Clearly, for input sequenceswhich
are never generated any output is acceptable, so 521 (V) =
6B (V).

This set gives additional flexibility over S DCY in choosingimple-

mentations for C'; namely any behavior in the machine C, defined
below is acceptable.

$2V,U) = =% (V) = ¢S (U, V)

In [16] we prove the above claim, show that C> is an ISFSM, and
also demonstratethat C; doesnot provideall theflexibility available
in optimizing C'.



Realizable States: (DFAD: (SD7 so,2v X 2u,Tp, AD)){
Sec = Ap;
while (TRUE) {
removestates s from S« such that
S[(Vu.3u.3t) [(s,v,u,t) € Tp A (t € Sc)]
if (no states were removed)
break;

return S¢;

Figure4: Algorithm for decidingif arealization existsin ax-regular
specification

Definition 12 Thetrue observability equivalencerelationfor C'is
given by the following expression:

$%F (VU) = (vX)[EV)$M(K, UV, T) =

(vY) (o™(X,U,V, V) = ¢ (X, 1))]

In [16], we prove that the true observability equivalence relation

is logically equivalent to #°" which defines the E-machine, and
hence captures all the flexibility possiblefor synthesizing C'.

3.3 Realizability

Theset £ definedby ¢~ (U, V') is the set of all acceptable con-
troller behavior. In general, £ may not be realizable (§ 2). This
can happen in two ways. There may be blocking input sequences
V', i.e. sequencesfor which thereisno I/ suchthat (7, V) € £
However, even if there are no blocking input sequences, a realiza-
tion may not exist because of causality, viz the output may depend
on future values of the input.

In[11] it isargued that anecessary and sufficient condition for re-
alizability of alanguage £ over v x X isthat astrategy treemust
exist for a player observing inputs over v and producing outputs
over u while ensuring that the input-output behavior is compatible
with the relation C*(U, V). This can be checked using known
algorithms for emptiness of tree automaton [12]; we have devel-
oped an alternative algorithm which does not require tree automata.
This algorithm extends to the similar problem for finding Moore
realizations.

Given £ C (Zv x Zy)*, we wish to determine the exis-
tence of an implementable (cf section 2.1) finite state machine C'
which is compatiblewith £~ in the sense (YV.¥U ) [¢ (V, U) —
<" (V,U)]. Thiscan be done by calling the algorithm in figure 4
on aDFA for the language £ .

Lemma3.1 C* is redizable if and only if the set of states S¢
remaining after convergence containstheinitial state.

It should also be pointed out that when both A and the con-
troller C are Mealy machines, there exists the possibility of com-
binational cycles. In this case, hardware implementations may be
erroneous[14]. Sinceit issufficient for the controller to beaMoore
machineto avoid combinational cycles, one approachisto look for
Moorerealizations of C*. The algorithm of figure 4 can easily be
adapted to search for Moore realizations by removing states s from
S such that =[(Fu.Vv.3¢t) ((s,v,u,t) € Tp A (¢t € S¢))]. Of

course, if M isaMoore machine, then aMealy realization of £
will operate correctly.

4 Synthesizing General Finite State Systems

In this section we sketch extensions of the technique developed in
the previous section to more general systems— specifically systems
with fairness, and real time systems.

4.1 Synthesizing Fairness

The analysis of systems with fairness is of growing importance
with the advent of formal verification [17]. In order to verify
large systems, they have to be simplified; in practice this is of-
ten done by abstraction, i.e. adding behaviors (possibly through
non-determinism) that the original system did not have in order to
obtain a more compact representation. Verification performed on
the abstract system is usually conservative. To get a more accu-
rate representation of the system, fairness constraints, which are
restrictions on the infinitary behavior of the system, are added.

Fairness constraints can be used to model specifications that
formalize notionsof progress, eventuality, justice, liveness, etc [18].
Fairnessis inherently required to model such properties.

Sincefairnessisarestriction ontheinfinitary behavior of thesys-
tem, the defining relations for languages derived from FSM’s with
fairness are formulae in S1S rather than WS1S. The definition for
the E-machine continuesto give the range of permissible behaviors
at the controller in the context of w-languages. The construction of
the Biichi automaton C'* proceeds as before — complementation of
S, followed by conjunction with M, projection down to «, v and
complementation again.

Complementation of non-deterministic Biichi automata is done
by a(highly non-trivial) generalization of the powerset construction
for NFA [19].

Testing the existence of an implementation requires checking
for the existence of a strategy tree (cf 3.3) which can be done
using tree automaton. Given L¢" C (Zv x Zy)“, defined by a
non-deterministic Buchi automaton over the alphabet >y x Xy the
following is aprocedurefor determining if afinite state machineC'
existswhich realizes £¢ " :

1. Determinizethe automatonC'* to obtain adeterministic Rabin
automaton [19].

2. In this Rabin automaton, project the symbols of the alphabet
>y x Xy downto Xy . Interpret the new structure asaRabin
automaton on treesand check for tree emptiness;

Asisshownin[11], animplementable controller existsif and only
if the tree emptiness check is negative. The algorithm of given
in [11] derives an implementation if one exists.

The complexity of this procedureis very high —the construction
of the deterministic Rabin automaton potentially yields of the order

of 215212751 gates Furthermore, the tree emptinesscheck is NP-
complete; the algorithm of [11] has complexity polynomial in the
number of states and exponential in the number of accepting pairs.
We illustrate this procedure by means of an example, as shown
in figure 4.1. Contrast this with the example on finite sequencesin
figure 2 —in particular notethe inherent need for a Biichi automaton
to capture the eventuality condition in the specification. Similarly
fairnessis needed to define the set of permissible behavior.

4.2 Synthesizing Time

The formal analysis of real time systems is an area of active re-
search [20]. The behavior of atimed systemis now a map from IR
rather than w aswas the casefor discrete time systems. Languages
can be defined in terms of sets of mapsfrom IR to the output, afinite
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Figure5: We aregiven an FSM oninputsz, « and outputs y, v, and
the specification that “if = goes high, then eventually y should be
high” formalized by the Biichi automaton S. We obtain the Biichi
automaton C* by the construction corresponding to section 4.1.
Any controller which on composition with M yields a machine
compatiblewith S is contained in C*; in particular N1 and N2 are
valid controllers.

set of scalars. Thereal time control/synthesis problem isdefined in
amanner analogousto that for discrete time.

Let .S beatimed automaton whose language describesan accept-
able relationship between the input timed trace X and the output
timedtrace Y, and M atimed automaton oninputsz, « and outputs
y, v. Theformulation and derivation of the E-machine continuesto
hold —the set £°~ of strategies for a controller which can observe
v and control » which yields acceptable behavior is till given by
=(3X.3IV) [oM(X, Y, U, V) A=(¢°(X,Y))], where * isafor-
mula defining the language of thetimed system A in an appropriate
logic.

Different formulations of timed automatonyield different classes
of definable timed languages. [21] has identified a class closed
under both quantification and complementation; thusin theory this
classis synthesizable.

5 Conclusions

We have proposed the logic S1S as a formalism to describe per-
missible behaviors of an FSM interacting with other FSM’s. We
believe that this framework offers several advantages.

Firstly, for any S1Sformula it is possible to automatically gen-
erate an automaton describing the same behaviors as the formula.
Thus, afully automatic synthesisis possiblethat takesinto account
all availabledegrees of freedom. In practice, the generated automa-
tonisoften too large to handle with the state-of -the-art optimization
algorithms. Nevertheless, S1S provides a rigorous framework in
which one can prove that set of behaviors used asa don’t care con-
dition indeed represents permissible behaviors of the system. This
allows easy development of a spectrum of methods that explore
trade-offs between flexibility provided by the information about the
environment, and the price of storing and using this information.
On one side of the spectrum is the optimization of a component in
isolation, and on the other sideis the construction of the E-machine.
In this paper we have also suggested three other points, analogous
to setsof don’t caresused in combinational synthesis. S1S provides
a systematic and simple way of reducing the problem of optimiz-
ing interacting FSM’s to optimizing a single FSM, with different
methods generating FSM’s of different sizes. Thus, any future im-
provement in FSM optimization algorithms will provideimmediate
benefitsto optimization of interacting FSM’s.

Secondly, in contrast to previous approaches, our approach is
easily extended to different interconnectiontopologies. Inthis paper

we have derived specificationsof permissible behaviorsfor several
topologies, some of which have not previously been investigated.
By observing specifications for different topologies we were able
to formulate the following general property: if an FSM can observe
valuesof all the signal in the system, then the size of its E-machine
is polynomial; otherwise it is exponential.

Finally, our approach can aso be extended to more general sys-
tems. We have sketched the extension to systemswith fairness and
real-time systems.
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