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Abstract
We present a mathematical framework for analyzing the synthesis
of interacting finite state systems. The logic S1S is used to derive
simple, rigorous, and constructive solutions to problems in sequen-
tial synthesis. We obtain exact and approximate sets of permissible
FSM network behavior, and address the issue of FSM realizability.
This approach is also applied to synthesizing systems with fairness
and timed systems.

1 Introduction
The advent of modern VLSI CAD tools has radically changed the
process of designing digital systems. The first CAD tools automated
the final stages of design, such as placement and routing. As
the low level steps became better understood, the focus shifted
to the higher stages. In particular logic synthesis, the science of
optimizing designs (for various measures such as area, speed, or
power) specified at the gate level, has shifted to the forefront of
CAD research. Another area rapidly gaining importance is design
verification, the study of systematic methods for formally proving
the correctness of designs.

Logic synthesis algorithms originally targeted the optimization
of PLA implementations; this was followed by research in synthe-
sizing more general multi-level logic implementations. Currently,
the central thrust in logic synthesis is sequential synthesis, i.e. the
automatic optimization of the entire system. This can be at the
logic level (i.e. the input is a netlist of gates and latches) or the
state transition graph level. Designs invariably consist of a set of
interacting components. Natural questions related to such systems
are what is the optimal choice of a component, and automatically
deriving a component so as to satisfy given properties.

Previous work in the VLSI design automation community re-
lated to optimizing interacting state machines has tended to be ad
hoc and incomplete. The constructions and proofs offered are often
extremely cumbersome. Relevant papers include [1, 2, 3, 4, 5, 6].
One attempt at formal synthesis framework based on trace and au-
tomata theory is given in [7]. However, the central theorem relating
flexibility in a sub-circuit to the specification and the environment
is incorrect; we give the correct formulation. There is a large body
of theoretical work related to the existence of efficient decision pro-
cedures for deciding logics of programs [8, 9, 10, 11]. [9, 10] take
logical specifications and construct programs satisfying them. [8]
uses a game theoretic formulation to show that the set of moves for a
controller is an!-regular set. [11] gives an elegant characterization
of realizability.

Typically, the synthesis process has two stages: first, the set of
all possible implementations is characterized (which is the topic of
this paper), and then one is chosen according to some optimality
criteria. Using the sequential calculus S1S as our basic tool we
show in section 3.1 that the set of all implementations can always be
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captured by a single finite-state automaton, which can be generated
automatically. However, in practise such an automaton may be
prohibitively large to construct. One approach to alleviate this
problem is to define easier to handle automata which capture only
a subset of possible implementations. We pursue this approach in
section 3.2.

The rest of this paper is structured as follows: x2 reviews the
basic definitions and salient results. In x3 we apply these results to
synthesizing and optimizing finite state machine networks; specif-
ically, we derive sources of flexibility that can be exploited by
synthesis. We also address the issue of hardware realizability. In
x4 we describe extensions of our approach to synthesizing systems
which incorporate fairness constraints and timed systems.

The analysis in this paper is of a theoretical nature. In par-
ticular, the complexity of the exact procedures described can be
exponential, or even doubly exponential. From a theoretical point
of view, the complexity is inherent; this simply reinforces the need
for approximations and heuristics.

2 Definitions and Basic Results
This section reviews germane definitions and results. In particular,
the relationship between finite state machines, languages, and S1S
logic is established. For reasons that will become apparent later, we
will consider both automata on both finite and infnite sequences.
An excellent survey of the material covered in this section is in [12].

2.1 Finite State Automata and Machines
Given a finite set Σ, the set Σ� is the set of all finite sequencesover Σ.
A �-language over Σ is a subset of Σ�. GivenX 2 Σ� , jX j denotes
the length ofX . The set Σ! is the set of all infinite sequences over
Σ, i.e. all maps f : ! ! Σ, where ! = f0; 1; 2; : : :g is the set of
natural numbers. An !-language over Σ is a subset of Σ! .
Notation: Lower case variables will take values from alphabets;
upper case variables will be sequence valued.

Definition 1 A finite state automaton (FA) is a 5-tuple
(Σ; S; s0; T; A) where Σ is a finite set called the alphabet, S is
a finite set of states, s0 2 S is the initial state, T � S � Σ � S is
the transition relation, andA � S is the set of accepting states.

The automaton is said to be deterministic (variously a DFA) if
(8s:8x) [ j ft : (s; x; t) 2 Tg j� 1 ]; otherwise it is said to be
non-deterministic (variously an NFA).

A stringX 2 Σ� is accepted by the FA if there exists a sequence
of states � = �0�1 : : : �n such that n = jX j, �0 = s0, �n 2 A,
and (8i) [(�i;Xi; �i+1) 2 T ]. The language of the automaton is
the set of strings accepted by it; this language is said to be �-regular
if it is the language accepted by some automaton.

Definition 2 A Büchi automaton (BA) is a 5-tuple (Σ; S; s0; T; B)

where Σ is a finite set called the alphabet, S is a finite set of states,
s0 2 S is the initial state, T � S�Σ� S is the transition relation,
andB � S are the accepting states.



The automaton is said to be deterministic if (8s:8x) [ j ft :
(s;x; t) 2 Tgj � 1 ]; otherwise it is said to be non-deterministic.

A string x 2 Σ! is accepted by the BA if there exists a sequence
of states �0�1 : : : such that �0 = s0, and (8i) [(�i; xi; �i+1) 2 T ],
and inf(�) \ B 6= �, where inf(�) is the infinitary set of �, i.e.
the set of states that occur infinitely often in �. The language of
the automaton is the set of strings accepted by it; a language is
said to be !-regular if it is the language accepted by some Büchi
automaton.

Definition 3 A finite state machineM is a 5-tuple (S; s0; I;O; T )

whereS is a finite set of states, s0 2 S is the initial state, I is a finite
set of inputs, O is a finite set of outputs, and T � S � I � O � S

is the transition relation.
By definition,M is deterministic if

(8s:8i:8o)
�
jft : (s; i; o; t) 2 Tgj � 1

�

M is complete if

(8s:8i:9o:9t)
�
(s; i; o; t) 2 T

�

M is an implementation if, in addition to being complete, it
satisfies

(8s:8i)
�
jf(t; o) : (s; i; o; t) 2 Tgj � 1

�

M is Moore if, in addition to being an implementation, it satisifes
8s:8i:8o1:8o2:8t1:8t2

�
[(s; i; o1; t1) 2 T ] ^ [(s; i; o2; t2) 2 T ] ! (o1 = o2)

�

else it is said to be Mealy.
Given an input sequence i = (i1i2 � � � in), and output sequence

o = (o1o2 � � � on), a corresponding run is a sequence of states
� = (s0s1 � � � sn) such that (8k) [(sk; ik+1; ok+1; sk+1) 2 T ].
The notion of a run readily generalizes to infinite sequences.

Our definition of deterministic finite state machine has been
referred to as “pseudo non-deterministic” (PNDFSM) in the past [6].
The term deterministic was reserved for what we refer to as an
implementation. A related notion is that of incompletely specified
finite state machines (ISFSM), where given any state s and input i,
either (9!o:9!t) [(s; i; o; t) 2 T ] or (8o:8t) [(s; i; o; t) 2 T ].

Definition 4 The �-language identified with an FSM M =

(S; r; I;O; T ), denoted by L
M and referred to as the behavior

of M , is the set of sequences (i; o) 2 (I � O)� such that there
exists a run in M corresponding to (i; o).

Clearly the behavior LM is a �-regular language ([13, 12]) on
the alphabet I � O. The automaton AM defining the language is
simply the FSM itself – the states of AM are the states S, initial
states ofAM are the states r, the transition relation of the automaton
is f(s; (i; o); t) : (s; i; o; t) 2 T g, and all states are accepting.
Note that the behavior of a deterministic machine is defined by a
deterministic finite automaton.

Definition 5 Given a language L � (ΣI � ΣO)�, a finite state
machine M on input ΣI , output ΣO is said to be compatible with
L if LM � L; M is said to be a realization of L if it is compatible
withL and is an implementation. A language is said to be realizable
if there exists a realization of it; similarly an FSM is realizable if
its language is realizable.

Definition 6 A finite state machine with Büchi fairness is a tu-
ple (M;C) where M is an FSM, and C is a subset of the states
of M . Given F = (M;C), an FSM with fairness F is said to be
deterministic (complete) if M is deterministic (complete).

The notion of a corresponding run over infinite input/output se-
quences is defined analogously to that for ordinary FSM’s; a run �
is fair if the infinitary set of states is an element ofC . Similarly the
language of a finite state machine with fairness is defined to be the
language of the corresponding Büchi automaton.

Composition of finite state machines is defined in the usual
way [6]. In composing interacting FSM’s, (sometimes referred
to as a network of FSM’s) some inputs of each machine may be
the outputs of each machine, whereas some inputs may be external;
also, not all outputs need be external. The entire systems is itself
a finite state machine on the product state space, referred to as the
product machine [6]; transitions take place synchronously, i.e. in
“lock-step”. When the component machines are Mealy and derived
from hardware, composition can lead to combinational cycles, and
the product may have undesired oscillatory behaviors [14]. These
problems can be circumvented by using Moore machines; we will
come back to this phenomenon in section 3.3.

2.2 The Sequential Calculus S1S
The logic S1S is a formalism for analyzing sequencesover finite al-
phabets. It was studied in detail by Büchi in [15]; in particular it was
shown to be decidable. S1S provides an extremely powerful mech-
anism for analyzing and manipulating sequential systems – the full
expressiveness of logic (conjunction, negation, and quantification)
is available.

Definition 7 The logic S1S (second order theory of one successor)
is a second order logic [12]. Formulae are derived from the alphabet
f0; S;=;<;2;^;:;9; x1; x2; : : : ;X1;X2; : : :g. Lower case vari-
ables x1; x2; : : : are first order variables ranging over elements of
the domain, and upper case variables X1;X2; : : : are second order
variables ranging over subsets of the domain. The well formed
formulae of the logic S1S are given by the following syntax:

� Terms are constructed from the constant 0 and first order
variables by repeated applications of the successor function
S. Examples of terms – 0, SS0, SSSSx3 .

� Atomic formulae are of the form t1 = t2, t1 < t2, t 2 Xk .
Examples of atomic formulas – 0 < S0; x3 = Sx5; Sx72X2.

� S1S formulae are constructed from atomic formulas by using
the boolean connectives ^;: and quantification over both
kinds of variables. Examples of S1S formulas – (0 < S0) ^
(Sx7 2 X2), (9X:9x) [(x 2 X) ^ (Sx 2 X)]. We write
�(X1;X2; : : : ;Xn) to denote that at most X1;X2; : : : ;Xn

occur free in � (i.e. are not in the scope of any quantifier).
We will routinely use the symbols _;!; 8, etc as logical
abbreviations.

S1S formulae can be interpreted over the set of natural numbers,
where Sx is simply x+ 1. Formal semantics of S1S can be found
in [12]; we informally illustrate them by means of examples.
Example 1: (Non-empty subsets of ! contain minimal elements)

 = (8X)
�
(9x)(x 2 X)!

(9y)[(y 2 X) ^ :((9z)(z 2 X ^ (z < y)))]
�

The above sentence formally states that for every subset (X) of !,
if X is non-empty (9x 2 X), then it contains a least element (y).



Example 2: (Defining subsets of ! which contain 5 whenever they
contain 3.)

�0(X) = (SSS0 2 X)! (SSSSS0 2 X)

Example 3: (Defining the subset of even integers)

�1(X) = (0 2 X)^:(S0 2 X) ^ (8x)(x 2 X$SSx 2 X)

Example 4: (Defining the relation “every even number in X is in
Y ”)

�2(X;Y ) = (8x)
�
(9Z) (�1(Z)^ x 2 Z)!(x 2 X!x 2 Y )

�

Given a formula �(X1) in S1S, the class of subsets of ! defined
by �(X1) is the set f� � ! j �(�) is trueg. The class of subsets of
! is in a one to one correspondence with the set of !-sequences on
f0;1g – the 1’s in the sequencecan be thought of as representing the
integers in the corresponding set, e.g. 010101 : : :$ f1; 3; 5; : : :g.
In this way, an S1S formula �(X1) defines an !-language over
alphabet f0; 1g. More generally, formulae �(X1; X2; : : : ;Xn)

define subsets of (f0; 1gn)! .
The following result relates S1S formulae to !-automata.

Theorem 2.1 (Büchi 1961 [15, 12]) An!-language is definable in
S1S if and only if it is !-regular.

Proof:(Sketch:) The reverse direction involves a straightforward
construction of a formula coding up the transition structure of the
automaton.

The forward direction is by induction on the length of the S1S
formula. Automata for the atomic formulae are easily derived; an
inductive construction is used for :;^;9. 9 is handled by automa-
ton projection, ^ by automaton intersection, and : by automaton
complementation. The latter is the non-trivial step – invariably
performed by first determinizing the automaton, following which
complementation is trivial. The process of complementation is in-
herently exponential, since the number of states in the complement
can (in the worst case) be exponential in the number of states of the
given automaton.

With minor modifications, Büchi’s result also holds for sets of
finite words i.e. when set quantification is restricted to finite sets
only. In this case one speaks of the theory WS1S (weak S1S). The
corresponding result for WS1S states that a �-language is definable
in WS1S if and only if it is �-regular [12, 15].

Definition 8 Given a formula �A(X1;X2; : : : ;Xn) in S1S
(WS1S) we can uniquely identify a Büchi automaton (finite au-
tomaton)A over the alphabet f0; 1gn.

The relationship between automata and S1S allows us to formally
and succinctly express behaviors as formulae in logic, and also pro-
vides an automatic procedure to obtain automata from the formulae.
Hence, elegant yet rigorous proofs can be given to a large class of
solutions to problems related to finite state systems. Furthermore
these proofs are constructive, i.e. given formula in S1S/WS1S it is
possible to mechanically construct the corresponding automaton.

3 Synthesizing FSM networks
As mentioned in the introduction, a critical first step towards syn-
thesizing a component in a design is characterizing the set of all
valid implementations. In this section, the flexibility available for
sequential synthesis is analyzed. We use S1S to formulate the
“E-machine” of Watanabe [6] for a number of FSM interconnect
topologies, derive a spectrum of approximations to the E-machine,
and address the issue of realizability.

x yM

u C v

Figure 1: Example of interacting finite state machines; we will refer
to C as the controller

3.1 The E-machine
Consider machines communicating in the configuration shown in
figure 1. Supposex and y are the observable inputs and outputs, and
L
S
� (ΣX�ΣY )� is a �-regular specificationon them, i.e. the only

acceptable input–output behavior is that which is contained in LS .
Also suppose the machineM is fixed. The following theorem states
that all the flexibility available for synthesis at C is characterized
by a single languageLC

�

definable in S1S: for any FSMC ,M�C

satisfies S if and only if LC � L
C
�

Theorem 3.1 The set of all behaviors on u; v which will yield
behavior on the inputs and outputs which is compatible with the
specification is given by the following expression:

�
C
�

(U;V ) = (8X:8Y )
�
�
M
(X;Y; U; V )! �

S
(X;Y )

�
(1)

Proof: For input sequence V , the controller should not generate
output sequence U if and only if there exist sequencesX;Y such
thatM producesY; V on inputX;U and (X;Y ) does not lie in the
specification. Mathematically, the set of behaviors thatC should not
produce is given by (9X:9Y )[�M (X;U; V; Y ) ^:�S(X;Y )]; the
complement of this set, namely the set of U ’s that can be generated
corresponding to V is precisely the set defined by equation 1.

By the remarks in section 2.2, L
C
�

is regular. Note
that the number of states in an automaton for :�S(X;Y ) is
O(2jSS j) (automaton complementation by the power set con-
struction [13]). Thus, the number of states in the automaton
for [�M(X;U; V; Y ) ^ :�S(X;Y )] is O(jSM j �2jSSj) (automa-
ton product), and so, the number of states for the automaton

for:(9X:9Y )[�M(X;U; V; Y ) ^ :�S(X;Y )] isO(2jSMj�2
jSS j

).
This complexity is inherent: it can be achieved in the worst case.
We illustrate the construction for C� by means of an example,
described in figure 2.

In the special case when the automaton definingLS is determin-
istic, the corresponding bound is 2jSM j�jSS j . This is precisely the
construction of [6]; it is instructive to contrast this approach with
that taken in [6] and noting the simplicity afforded by appealing to
S1S.

The specificationautomaton could beM�C; this correspondsto
the re-synthesisproblem, i.e. supposewe wish to find a replacement
for the C block which is optimal (with respect to an appropriate
objective function) while preserving the observed behavior. Then
the behavior of the replacement must be contained in the behavior
L
C
�

.
In the most general settingM and the specification automaton are

non-deterministic and incompletely specified. In this case, simply
deciding if an implementation (in the sense of definition 5, section 2)
exists for the blockC which is compatible with the specification is
non-trivial; realizability is discussed in x 3.3.

There are variations on the interconnect structures to which an
approach similar to that of theorem 3.1 can be applied to derive
formulae expressing the set of permissible behaviors at a specified
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Figure 2: We are given an FSM on inputs x; u and outputs y; v,
and the specification that “if x goes high, then in the next state, y
should be high” formalized by the DFA S. We obtain C� by the
construction corresponding to equation 1. Any controller which
on composition with M yields a machine compatible with S is
contained in C�; in particular N1 and N2 are valid controllers.
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Figure 3: A variety of FSM network topologies; the name suggests
applications.

machine. In figure 3 we describe a set of FSM network topolo-
gies; below we give the S1S formulae defining the corresponding
E-machines. The ease with which we derive the flexibility is a
measure of the power of S1S logic – in the past, individual topolo-
gies have been considered individually, and the flexibility has been
laboriously derived. It is noteworthy that when all signals are ob-
servable at a machine, and the specification is deterministic, then
the machine defining the set of permissible behaviors is polynomial
sized.
Cascade-I (a) �A1

�

(X;U) = (8Y )[�A2(U;Y ) ! �S(X; Y )]

Cascade-I (b) �A2
�

(U;Y ) = (8X)[�A1(X;U) ! �S(X; Y )]

Cascade-II �B2
�

(U;V )=(8X:8Y ) [�B1(X; U )̂ �B3(V;Y )!�S(X; Y )]

Supervisory Control �C
�

(X; Y;U) = �P (U;X) ! �S(X; Y )

2-way Cascade (a) �M1
�

(X; V;U) = (8Y )[�M2 (V;U;Y ) ! �S(X; Y )]

2-way Cascade (b) �M2
�

(U;V;Y ) = (8X)[�M1(X; V;U) ! �S(X; Y )]

Rectification-I �V2
�

(U;V ) = (8X:8Y )[�V1 (X; V;U;Y ) ! �S(X; Y )]

Rectification-II �W1
�

(X; V;U;Y ) = �W2(V;U) ! �S(X; Y )

3.2 Optimization of FSM networks
In this section we describe procedures for optimizing networks
of finite state machines. In particular, we are interested in the
re-synthesis problem, i.e. the specification is the functionality of
the original FSM network. For such systems, the full range of
admissible behavior at a node is described by the E-machine, and
the original machine trivially satisfies the specification.

Deriving Optimal Implementations

Given the E-machine, one would like to derive an implementation
that is optimal. One criterion for optimality is state minimality.
In practice, deriving state minimal realizations from ISFSM’s is

easier than from general deterministic FSM’s [6] (although both
are NP-complete). Our interest in input don’t care sequences and
satisfiability don’t care sequences defined below partly stems from
the fact that the flexibility afforded by them can be captured by
ISFSM’s rather than general deterministic FSM’s.

We provide a spectrum of approximations to the flexibility at a
component, starting from more conservative approximations, and
leading up to the E-machine.

Let x; y be the input and output of the FSM network. Consider
a component machine C on inputs v and outputs u. Let M be the
rest of the network.

Definition 9 The strong satisfiability don’t care set forC is defined
by the following formula:

�
SDC

C

0 (V ) = :(9X̃:9Ũ :9Ỹ )[�
M
(X̃; Ũ ; V; Ỹ )]

It is precisely the set of sequences over v which can never be
generated, no matter what replacement is used for C .

This set gives a certain amount of flexibility in choosing imple-
mentations for C; namely any behavior in the machine C0 defined
below is acceptable.

�
C0 (V;U) = :�

SDC
C

0 (V ) ! �
C
(V;U)

In [16] we prove the above claim, show that C0 is an ISFSM, and
also demonstrate thatC0 does not provide all the flexibility available
in optimizing C .

Definition 10 The weak satisfiability don’t care set for C is given
by the following expression:

�
SDC

C

1 (V ) = :(9X̃:9Ũ :9Ỹ ) [�
M
(X̃; Ũ ; V; Ỹ ) ^ �

C
(Ũ ; V )]

It is precisely the set of sequences over v which can never be
generated in the product machine M � C , and corresponds to the
input don’t care sequences of [4].

This set gives additional flexibility over SDCC0 in choosing imple-
mentations for C; namely any behavior in the machine C1 defined
below is acceptable.

�
C1(V; U) = :�

SDC
C

1 (V ) ! �
C
(V; U)

In [16] we prove the above claim, show that C1 is an ISFSM, and
also demonstrate thatC1 does not provide all the flexibility available
in optimizing C .

Definition 11 The strong observability equivalence relation for C
is given by the following expression:

�
O
C

0 (V ) = (8X̃:8Ỹ :8Ũ) [�
M
(X̃; Ũ ; V; Ỹ )! �

M�C
(X̃; Ỹ )]

It is precisely the set of sequences over v for which any output
sequence over u is permissible. Clearly, for input sequences which
are never generated any output is acceptable, so �SDC

C

1 (V ) )

�O
C

0 (V ).

This set gives additional flexibility over SDCC1 in choosing imple-
mentations for C; namely any behavior in the machine C2 defined
below is acceptable.

�
C2(V;U) = :�

O
C

0 (V ) ! �
C
(U;V )

In [16] we prove the above claim, show that C2 is an ISFSM, and
also demonstrate thatC2 does not provide all the flexibility available
in optimizing C .



Realizable States: (DFA D : (SD; s0;ΣV � ΣU ; TD;AD))f
SC = AD ;

while ( TRUE ) f
remove states s from SC such that

:[(8v:9u:9t) [(s; v; u; t) 2 TD ^ (t 2 SC )]
if (no states were removed)

break;
g

return SC ;
g

Figure 4: Algorithm for deciding if a realization exists in a�-regular
specification

Definition 12 The true observability equivalence relation for C is
given by the following expression:

�
O
C

2 (V; U) = (8X̃) [(9Ỹ )�
M
(X̃; U; V; Ỹ )!

(8Ỹ ) (�
M
(X̃; U; V; Ỹ ) ! �

M�C
(X̃; Ỹ ))]

In [16], we prove that the true observability equivalence relation
is logically equivalent to �C

�

which defines the E-machine, and
hence captures all the flexibility possible for synthesizingC .

3.3 Realizability
The set LC

�

defined by �C
�

(U;V ) is the set of all acceptable con-
troller behavior. In general, LC

�

may not be realizable (x 2). This
can happen in two ways. There may be blocking input sequences
Ṽ , i.e. sequences for which there is no Ũ such that (Ũ ; Ṽ ) 2 LC

�

.
However, even if there are no blocking input sequences, a realiza-
tion may not exist because of causality, viz the output may depend
on future values of the input.

In [11] it is argued that a necessaryand sufficient condition for re-
alizability of a languageL over ΣV �ΣU is that a strategy tree must
exist for a player observing inputs over v and producing outputs
over u while ensuring that the input-output behavior is compatible
with the relation C�(U;V ). This can be checked using known
algorithms for emptiness of tree automaton [12]; we have devel-
oped an alternative algorithm which does not require tree automata.
This algorithm extends to the similar problem for finding Moore
realizations.

Given L
C
�

� (ΣV � ΣU )�, we wish to determine the exis-
tence of an implementable (cf section 2.1) finite state machine C
which is compatible with LC

�

in the sense (8V:8U) [�C(V; U) !

�C
�

(V;U)]. This can be done by calling the algorithm in figure 4
on a DFA for the language LC

�

.

Lemma 3.1 C� is realizable if and only if the set of states SC
remaining after convergence contains the initial state.

It should also be pointed out that when both M and the con-
troller C are Mealy machines, there exists the possibility of com-
binational cycles. In this case, hardware implementations may be
erroneous [14]. Since it is sufficient for the controller to be a Moore
machine to avoid combinational cycles, one approach is to look for
Moore realizations of C� . The algorithm of figure 4 can easily be
adapted to search for Moore realizations by removing states s from
SC such that :[(9u:8v:9t) ((s; v; u; t) 2 TD ^ (t 2 SC))]. Of

course, if M is a Moore machine, then a Mealy realization of LC
�

will operate correctly.

4 Synthesizing General Finite State Systems
In this section we sketch extensions of the technique developed in
the previous section to more general systems – specifically systems
with fairness, and real time systems.

4.1 Synthesizing Fairness
The analysis of systems with fairness is of growing importance
with the advent of formal verification [17]. In order to verify
large systems, they have to be simplified; in practice this is of-
ten done by abstraction, i.e. adding behaviors (possibly through
non-determinism) that the original system did not have in order to
obtain a more compact representation. Verification performed on
the abstract system is usually conservative. To get a more accu-
rate representation of the system, fairness constraints, which are
restrictions on the infinitary behavior of the system, are added.

Fairness constraints can be used to model specifications that
formalize notions of progress, eventuality, justice, liveness, etc [18].
Fairness is inherently required to model such properties.

Since fairness is a restriction on the infinitary behavior of the sys-
tem, the defining relations for languages derived from FSM’s with
fairness are formulae in S1S rather than WS1S. The definition for
the E-machine continues to give the range of permissible behaviors
at the controller in the context of!-languages. The construction of
the Büchi automatonC� proceeds as before – complementation of
S, followed by conjunction with M , projection down to u; v and
complementation again.

Complementation of non-deterministic Büchi automata is done
by a (highly non-trivial) generalization of the powerset construction
for NFA [19].

Testing the existence of an implementation requires checking
for the existence of a strategy tree (cf 3.3) which can be done
using tree automaton. Given LC

�

� (ΣV � ΣU)! , defined by a
non-deterministic Büchi automaton over the alphabet ΣV � ΣU the
following is a procedure for determining if a finite state machineC
exists which realizes LC

�

:

1. Determinize the automatonC� to obtain a deterministic Rabin
automaton [19].

2. In this Rabin automaton, project the symbols of the alphabet
ΣV � ΣU down to ΣV . Interpret the new structure as a Rabin
automaton on trees and check for tree emptiness;

As is shown in [11], an implementable controller exists if and only
if the tree emptiness check is negative. The algorithm of given
in [11] derives an implementation if one exists.

The complexity of this procedure is very high – the construction
of the deterministic Rabin automaton potentially yields of the order

of 2jSM j�2jSSj

states. Furthermore, the tree emptiness check is NP-
complete; the algorithm of [11] has complexity polynomial in the
number of states and exponential in the number of accepting pairs.

We illustrate this procedure by means of an example, as shown
in figure 4.1. Contrast this with the example on finite sequences in
figure 2 – in particular note the inherent need for a Büchi automaton
to capture the eventuality condition in the specification. Similarly
fairness is needed to define the set of permissible behavior.

4.2 Synthesizing Time
The formal analysis of real time systems is an area of active re-
search [20]. The behavior of a timed system is now a map from IR
rather than ! as was the case for discrete time systems. Languages
can be defined in terms of sets of maps from IR to the output, a finite
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Implementation N1
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Figure 5: We are given an FSM on inputs x; u and outputs y; v, and
the specification that “if x goes high, then eventually y should be
high” formalized by the Büchi automaton S. We obtain the Büchi
automaton C� by the construction corresponding to section 4.1.
Any controller which on composition with M yields a machine
compatible with S is contained in C�; in particular N1 and N2 are
valid controllers.

set of scalars. The real time control/synthesis problem is defined in
a manner analogous to that for discrete time.

LetS be a timed automaton whose language describes an accept-
able relationship between the input timed trace X and the output
timed trace Y , andM a timed automaton on inputs x; u and outputs
y; v. The formulation and derivation of the E-machine continues to
hold – the set LC

�

of strategies for a controller which can observe
v and control u which yields acceptable behavior is still given by
:(9X:9Y ) [�M (X;Y; U; V )^:(�S(X;Y ))], where �A is a for-
mula defining the language of the timed systemA in an appropriate
logic.

Different formulations of timed automaton yield different classes
of definable timed languages. [21] has identified a class closed
under both quantification and complementation; thus in theory this
class is synthesizable.

5 Conclusions
We have proposed the logic S1S as a formalism to describe per-
missible behaviors of an FSM interacting with other FSM’s. We
believe that this framework offers several advantages.

Firstly, for any S1S formula it is possible to automatically gen-
erate an automaton describing the same behaviors as the formula.
Thus, a fully automatic synthesis is possible that takes into account
all available degrees of freedom. In practice, the generated automa-
ton is often too large to handle with the state-of-the-art optimization
algorithms. Nevertheless, S1S provides a rigorous framework in
which one can prove that set of behaviors used as a don’t care con-
dition indeed represents permissible behaviors of the system. This
allows easy development of a spectrum of methods that explore
trade-offs between flexibility provided by the information about the
environment, and the price of storing and using this information.
On one side of the spectrum is the optimization of a component in
isolation, and on the other side is the construction of the E-machine.
In this paper we have also suggested three other points, analogous
to sets of don’t cares used in combinational synthesis. S1S provides
a systematic and simple way of reducing the problem of optimiz-
ing interacting FSM’s to optimizing a single FSM, with different
methods generating FSM’s of different sizes. Thus, any future im-
provement in FSM optimization algorithms will provide immediate
benefits to optimization of interacting FSM’s.

Secondly, in contrast to previous approaches, our approach is
easily extended to different interconnection topologies. In this paper

we have derived specifications of permissible behaviors for several
topologies, some of which have not previously been investigated.
By observing specifications for different topologies we were able
to formulate the following general property: if an FSM can observe
values of all the signal in the system, then the size of its E-machine
is polynomial; otherwise it is exponential.

Finally, our approach can also be extended to more general sys-
tems. We have sketched the extension to systems with fairness and
real-time systems.
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