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Abstract 
 
In testing statistical hypotheses, as in other statistical problems, we may be confronted with fuzzy concepts. 
This paper deals with the problem of testing hypotheses, when the hypotheses are fuzzy and the data are 
crisp. We first give new definitions for notion of mass (density) probability function with fuzzy parameter, 
probability of type I and type II errors and then state and prove the sequential probability ratio test, on the 
basis of these new errors, for testing fuzzy hypotheses. Numerical examples are also provided to illustrate the 
approach. 
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1. Introduction 
 
Statistical analysis, in traditional form, is based on cri- 
spness of data, random variable, point estimation, hypo- 
theses, parameter and so on. As there are many different 
situations in which the above mentioned concepts are 
imprecise. On the other hand, the theory of fuzzy sets is a 
well known tool for formulation and analysis of impre- 
cise and subjective concepts. Therefore the sequential 
probability ratio test with fuzzy hypotheses can be 
important. The problem of statistical inference in fuzzy 
environments are developed in different approaches. 

Delgado et al. [1] consider the problem of fuzzy hypo- 
theses testing with crisp data. Arnold [2,3] presents an 
approach to test fuzzily formulated hypotheses, in which 
he considered fuzzy constraints on the type I and II 
errors. Holena [4] considers a fuzzy generalization of a 
sophisticated approach to exploratory data analysis, the 
general unary hypotheses automaton. Holena [5] presents 
a principally different approach and motivates by the 
observational logic and its success in automated know- 
ledge discovery. Neyman-pearson lemma for fuzzy hy- 
potheses testing and Neyman-pearson lemma for fuzzy 
hypotheses testing with vague data is given by Taheri et 
al. and Torabi et al. [6,7]. Filzmoser and Viertl [8] 
present an approach for statistical testing at the basis of 
fuzzy values by introducing the fuzzy p-value. Some 
methods of statistical inference with fuzzy data, are 
reviewed by Viertl [9]. Buckley [10,11] studies the 
problems of statistical inference in fuzzy environment. 

Thompson and Geyer [12] proposed the Fuzzy p-values 
in latent variable problems. Taheri and Arefi [13] exhibit 
an approach for testing fuzzy hypotheses based on fuzzy 
test statistics. Parchami et al. [14] consider the problem 
of testing hypotheses, when the hypotheses are fuzzy and 
the data are crisp. they first introduce the notion of fuzzy 
p-value, by applying the extension principle and then 
present an approach for testing fuzzy hypotheses by 
comparing a fuzzy p-value and a fuzzy significance level, 
based on a comparison of two fuzzy sets. 

In present work, we first define a new approach for 
obtaining the probability (density) function, when the 
random variable is crisp and the parameter of interest is 
imprecise (fuzzy). Also, the type I and type II errors are 
introduced based on fuzzy hypotheses. Then, the 
sequential probability ratio test (SPRT) is defined and 
extended based on such hypotheses. 

We organize the matter in the following way:  
In section 2 we describe some basic concepts of fuzzy 

hypotheses, density (Mass) probability function with 
fuzzy parameter and necessary definitions. In section 3 
we come up sequential probability ratio test based on 
fuzzy hypotheses. In section 4 the previous definitions 
and the sequential probability ratio test will be illustrated 
by examples. 
 
2. Preliminaries 
 
In this section we describe fuzzy hypotheses, density 
(Mass) probability function with fuzzy parameter and 
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necessary definitions. 

Let  be a probability space, a random 
variable (RV) 

 , , P 
X  is a measurable function from 

 to , where X  is the probability 
measure induced by 
 P, ,   , ,  XP P

X  and is called the distribution of 
the RV X , i.e.,  

   = = dX X A
P A P X A P A


  .  

If  is dominated by a XP   finite measure  , i.e. 

XP   then by the Radon-Nikodym theorem 
(Billingsley, [15]), we have  

     = dX X A
P A f x x A 


  ,  

where  f x   is the Radon-Nikodym derivative of 

X  with respect to P   and is called the probability 
density function of X  with respect to  . In a 
statistical context, the measure   is usually a “counting 
measure” or a “Lebesgue measure”, hence  is  XP A

 =
x A

P X x 
  or  d

A
f x x , respectively. 

 
2.1. Canonical Fuzzy Numbers 

 

Let  = f x  > 0  be the “support” or “sample 

space” of , then a fuzzy subset    of X  is defined 
by its membership function 

S
 : 0.1 


. We denote 

by   x :    
  the   cut set of   and 0  

is the closure of the set  x  : 0

1) 
, and  

  is called a normal fuzzy set if there exists 
   such that ;    1x 

2)   is called a convex fuzzy set if 
       1 min ,x y x        


y  for all 

0,1  ;  
3)   is called a fuzzy number if   is a normal 

convex fuzzy set and its   cut sets, are bounded 
0  ;  

4)   is called a closed fuzzy number if   is a 
fuzzy number and its membership function    is upper 
semicontinuous;  

5)   is called a bounded fuzzy number if   is a 
fuzzy number and the support of its membership function 

   is compact. 
If   is a closed and bounded fuzzy number with 

 :L = inf      and = sup :U
       and its 

membership function be strictly increasing on the 
interval 1,L L

     and strictly decreasing on the interval 

1 ,U U    , then   is called a canonical fuzzy number 

(Klir and Yuan, [16]). 
The fuzzy canonical numbers (such as triangular or 

trapezoidal fuzzy numbers) are very realistic in fuzzy set 
theory, so we use this numbers for our goal. 

2.2. Fuzzy Hypotheses 
 

We define some models, as fuzzy sets of real numbers, 
for modeling the extended versions of the simple, the 
one-sided, and the two-sided ordinary (crisp) hypotheses 
to the fuzzy ones. 

Testing statistical hypothesis is a main branch of 
statistical inference. Typically, a statistical hypothesis is 
an assertion about the probability distribution of one or 
more random variable(s). Traditionally, all statisticians 
assume the hypothesis for which we wish provide a test 
are well-defined. This limitation, sometimes, force the 
statistician to make decision procedure in an unrealistic 
manner. This is because in realistic problems, we may 
come across non-precise (fuzzy) hypothesis. For example, 
suppose that   is the proportion of a population which 
have a disease. We take a random sample of elements 
and study the sample for having some idea about  . In 
crisp hypothesis testing, one uses the hypotheses of the 
form: 0 0.2H : =  versus 1 : 0.H 2   or 0 : 0.H 2   
versus 0 : > 0.H 2 , and so on. However, we would 
sometimes like to test more realistic hypotheses. In this 
example, more realistic expressions about   would be 
considered as: “small”, “very small”, “large”, “approxi- 
mately 0.2”, “essentially larger” and so on. Therefore, 
more realistic formulation of the hypotheses might be 

0 :H   is small, versus 1 :H   is not small. We call 
such expressions as fuzzy hypotheses. 

We define some models, as fuzzy sets of real numbers, 
for modeling the extended versions of the simple, the 
one-sided, and the two-sided crisp hypotheses to the 
fuzzy ones (Akbari and Rezaei, [17]).  

Definition 2.1 Let 0  be a real number and known.  
1) Any hypothesis of the form 

 0: .3 .3 .3H cmis cmapproximately cm   is called to be a 
fuzzy simple hypothesis. 

2) Any hypothesis of the form 
 0: .3 .15 .3 .3H cmis cmnot cmapproximately cm   is 
called to be a fuzzy two-sided hypothesis. 

3) Any hypothesis of the form 
 : .3 .15 .5 .15 .15 .H cmis cmessentially cmlarger cmthan cm

013cm  is called to be a fuzzy right one-sided hypo- 
thesis. 

4) Any hypothesis of the form 
 : .3 .15 .15 .15 .15 .H cmis cmessentially cmsmaller cmthan cm

03cm  is called to be a fuzzy left one-sided hypothesis.  
We denote the above definitions by  

  
  

0

0 0

.3 : .3 .3

.3 .65 .3 .3

a cm H cmis cmapproximately

cm cm cmis cmH



  
 

  


0

0

.3 : .3 .3 .

3 .3 .3 1.4

b cm H cmis cmessentially

cmlarger cmthan cm cm
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0

0

.3 : .3 .3 .3

.3 .3 1.6

c cm H cmis cmessentially cmsmaller

cmthan cm cm




 

   0 0.3 : .3 .3 .3 .65d cm H cmis cmapproximately cm cm   

 
2.3. Density (Mass) Probability Function 

 
Let X  is a RV and let   = : >XS x R f x  0  be 
the “support” or “sample” space of X  and  

 
   

 

1

0

1

0

d d

d d

H f x
f x

H





 

 

   


  





 

 




  

where  H   is the membership function of canonical 
fuzzy hypothesis and   is its  -cuts. 

We call the new density f x   as the fuzzy 
probability density (mass) function (FPDF) of X  
(Akbari and Rezaei [18]). We note that,   0f x   
and  

 
   

 

   
 

1

0

1

0

1

0

1

0

d d
d

d d

d d d

d d

1

X X

X

x S x S

x S

H f x
f x x
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(substitute the summation by integral in discrete cases). 
Let   :g x R R  be arbitrary function in x . Then 

we define  
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0

1

0

1

0

1

0

1

0

1

0

d

d d d

d d

d d d

d d

d d

d d

X

X

X

x S
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x S

E g X g x f x x

g x H f x x

H

H g x f x x
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H E g X

H















 

 

 

 

 

 



   

  

  

  

  

  



 



 

















  
 

  
 

 
 





















 

Let  1 2= , , , nX X X X
value 1 2= ,

 be a random sample, with 
observed  , , nx x x  x , where iX  has the 
FPDF  f x   with unknown   . For testing  

 :

 
0 0

1 1:

0

1

H is H or is

H is H or is

   

   









 

we state the following definitions:  

Definition 2.2 Let  X  be a test function. The 
probability of type I error of  X  is  

 
0

E X      , 

and the probability of type II error of  X  is  

  
1 1

1 1E X E X                . 

Definition 2.3 A teat   is said to be a test of level 
  if   , where  0,1  .  

we call   the size of  . 
 
3. Sequential Probability Ratio Test  

 
Consider testing a null fuzzy hypothesis against a 
alternative fuzzy hypothesis. In other words, suppose a 
sample can be drawn from one of two FPDFs and it is 
desired to test that the sample came from one distribution 
against the possibility that is came from the other. If 

 denotes the random variables, we want to test 1 2, ,X X 

 0 : ~ .iH X f 0  versus  0 : ~ .i 1X fH  . Th

o test was of the following form:  

e simple 

likelihood-rati

0
0   =     >

1
0.reject H if k for some constant k

L
   

The sequential test that we propose to consider 
em

L

ploys the likelihood-ratios sequentially. Define  

   
 

 
 

 
 

 
 

0 1 20

1 1 1 2

010

1 11

= = =
, , ,

=

m
m m

m

m

ii

m

ii

x
L x L x x x

f xL m

L m f x

 

















 

for  and compute sequentially

, , ,L x x xL x 

= 1, 2, ,m   1 2, , .    
dopt thefor d 1k  satisfying 0 10 < <k k , a  

following cedure take observa
fixed 0k  an

pro : tion 1x  and compute 

1 ; if 1 0k  , reject 0H ; if 1 1k  , accept 0H ; and if 
<0 1 1<k k , take obs tionerva  2x , and comp  2ute  . If 

2 0k  , reject 0H ; if 2 1k  , accept 0H ; and if 
<0 2 1<k k , take servat , and etc. e idea is 

ampling as long as 1< <j k
 ob ion x3  T

0k
h

to continue s   and stop as 
soon as 0j k   or 1j k  , rejecting 0H  if 0m k   
and accep 0ting H  if 1km  . The critic egio  
described seque be define as =1= n nC C , 
where  

al r n of the
ntial test can 

 
  

0 1 2 1

1 2 0

= : < , , , < ,

= 1,2, , 1, , , ,

n j

n

C x k x x x k

j n x x x



 



 
 

k

Similarly, the acceptance region can be defined as 

=1= .n nA A , where  
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j

k

When we considered the simple likelihood-ratio test 
fo

 
  
1 2 1

1 2 1

, , , < ,

= 1, 2,..., 1, , , ,

n

n

A x x x k

j n x x x



 




 

 0= : <x k

r fixed sample size n , we determined k  so that the 
test would have preass ned size ig  . We know want to 
determine 0k  and 1k  so that the quential probability 
ratio test will have preassigned 

 se
   and   for its 

respective sizes of type I and type II e ors. Note that  rr

   0 0 0
=1

=    =
Cnn

P reject H H is true L n


  

and  

   0 0 1
=1

=    =
Ann

P accept H H is false L n


  ,

where, as before, is a shortened notation for  0Cn
L n  

 01
d

n
i iiC

n
f x x


 
    . 

For fixed   and  , the above equations are two 
equations in t  two unknown 0k  and 1k . A solution 
of these two equations would give t e sequential 
probability ratio test having the desired preassigned error 
sizes 

he
h

  and  . As might be anticipated, the actual 
determ  0k  and 1k  from above equations can 
be a major comput onal pr ect. 

We note that the sample s

ination of

ize of a sequential 
pr

ati oj

obability ratio test is a random variable. The procedure 
says to continue sampling until n  first falls outside the 
interval  0 1,k k . The actual sam e size then depend on 
which rved; it is a function of the random 
variable 1 2, ,X X   and consequently is itself a RV. 
Denote it by eally, we would like to know the 
distribution of N  or at least the expectation of N . 
One way of assessing the performance of the sequential 
probability ratio test would be to evaluate the expected 
sample size that is required under each hypothesis. The 
following lemma, given without proof (Lehmann, [20]), 
state that the sequential probability ratio test with crisp 
hypotheses is an optimal test if performance is measured 
using expected sample size. We can similarly prove this 
lemma with fuzzy hypotheses based on introduced 
FDPF.  

Lemma

pl
,
ix s obse

s 
 N . Id

 3.1 The sequential probability ratio test with 
error sizes   and   minimizes both 
   E N H is e  and0 tru     E N H is true  among 

 followi
1 all tests 

which satisfy e ng: th

     P H is rejected H is true0 0  , 

 0 0    P H is rejected H is true  , and the expected 
sample size is finite.  

t the determination of  and 

th

We noted above tha 0k 1k  

at defines that particular sequential probability ratio 
test which has error sizes   and   is in general 
computationally quite difficult. The following lemma 
(with simple proof) gives an approximation to 0k  and 

1k .  
Lemma 3.2 Let  and be defined so that the 

sequential probability 
0k 1k  

eratio t st corresponding to 0k  
and 1k  has error sizes   and  ; then 0k  and  
can b pproximated by, sa 0k   an  1k  , wh e  

1k
e a y d er

0 1

1
=      = .

1
k and k     

 




 


 

Lemma 3.3 Let      and be the error sizes  the 
sequential probability 

 of
ratio test defined by 0k   and 1k   

given in before lemma. Then       
Naturally, one would pre  se

.  
atfer to u hse t quential 

probability ratio test having the desired preassigned error 
sizes   and  ; however, since it is difficult to to find 
the k  and  corresponding to such a sequential 
probability ratio test, instead one can use that sequential 
probability ratio test defined by 

0 1k

  and    of before 
equation and be assured that the the sum f the error 
sizes 

 o
  and    is less than or equal to the sum of the 

desire rror siz  d e es   and  . 
The procedure used in e p rforming a se ntial que

probability ratio test is to continue sampling as long as 

0 1< <mk k  and stop sampling as soon as 0m k   or  

1m<
 

k  . If 
 

0

1

lni

i

z
f x 

if x  
 
 
 


, an e va

n by the following: continue sam ling as  as 

ratio test, and let 


qui

p

lent test is 

 longgive

i
0 1=1

ln < < ln
n

ii
k z k , and stop sampling as soon as 

1=1
ln

n

ii
z k . As before, let N  be a 

he sa he sequential probability 
0=1

ln
n

iz k  or 
RV denoting t mple size of t

 
 

0

1

ln
i

i

i

z
f x 

f x  
 
 
 


. 

If the sequential probability ratio test leads to rejection 



of 0H , then the RV 0=1
ln

N

ii
Z k , but 

=1

N

ii
Z  is 

close to 0ln k  since 
=1 ii

N
Z  first becam an oe

=1 

ere 

 less th r  

h 

i ; hence 

k , wh

equal to  at the observation; hence 0ln k N t

0ln
N

E Z k  . Sim larly ln
N

iE Z k  = ii a
  1i

 0 1=1
ln 1 ln

N

ii
E Z k      

 0=   P H is rejected . Using Wald , s equation (Casella 

and Berger, [19])  

 
 
 

=1 0 1ln ln
( ) =

N

i
i

E Z
k k

E N
E Z E

   


 
1

i iZ
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we obtain  

   
 

 

 

0 1
0

0

0

ln 1 ln
  

  

1
ln 1 ln

1

  

i

i

k k
E N H is true

E Z N H is true

E Z H is true

 

  
 

 


   
       

 

and  

   
 

 

 

0 1
0

0

0

1 ln ln
  

  

1
1 ln ln

1
.

  

i

i

k k
E N H is flase

E Z H is flase

E Z H is true

 

  
 

 


   
       

 

 
4. Numerical Examples 

 
In this section, we illustrate the proposed approach for 

me distributions and use the ability of package “Maple 

( Behboodian, [6]) Let

so
6” [21] for this examples.  

Exam le 4.1 Taheri and p  X  
be a continues r.v. with PDF  

    = 2 2 1 1 0 < < 1       0 < < 1.f x x x x       

we want to test  

0

1

1
:    

3
1

:    
2

H is approximatly

H is approximatly






  

where the membership functions






 0H  and 1H  are de- 
fined in the following way:  

 

 

0

3
1 2

= 2 3H  

 

1

1
3 0 <

<
3 3

0

1
2 0 <

2
1

= 2 2 < 1
2

0

otherwise

H

otherwise

 



 

  

 





 

  




 

We can interpret 0  and 1  as the value of 

“
1

  
3

near to ” and “
1

  
2

near to ”. 

Let = 0.05

 0 = 2.986k   , ln  1ln = 4. . Hence, 554k

  =E true0N H is 38.556 , and = 39n , we must take 

whereas   = 25.4H is true

t 

1

= 25
Le

32E N , thus we take 
.  

Example 4.2 
n

 , , n1 2= ,X X X X  be a random 
sample where  ~ ,1iX   population, i.e.,  

   21 1
exp

2
=            ,   f x x x R

   
 

 
2π

and  ,

iH

  

 s a y hypotheses with mere our fuzz mbership 
funct n by:  

We can interpret 

ions give

 0 = 13 12 < 13

0

H

otherwise

   


 1

11 11 < 12

9 9 < 10

= 11 10 < 11

0

H

otherwise

 

 
  

 



 

  



 

0H  and 1H  
”.  

as the value of  
” and “

Let 
“  12near to  10tonear

. Hence,  0   = 85.155E N H is true= =0.05  , 
and we , whereas  must take n = 85
 1  = 8N H is true , thus e take = 88n . 

 4.3 Le
7.63
t 

E w
Example X  be a  where  a r ndom sample

 

 and = 0.01 . We obtain 

~ ,1iX E   pop   ulation, i.e.,

    =        > 0,f x x x exp ,  >   

and  ,

iH  s are our iangular fuzzy parameters with 
unctions  

 tr
membership f

  =i
i

a
a b





  


 

,

i
i i

i i

a a
a a a

H

a a b
b






    

  

for .  
We can interpret the canonical parameters as having 

values that are “near to ”. 
Let 

, 0a b 

ia
, 0 = 8a , 1 = 4a = 0.05  and  = 0.1 . Hence, 

  21.3250

whereas 

 =E N trueH is , and we must take n = 21 , 

 1  = 28.22E N H is true , thus we take 
n .  = 28

Exam .4 ple 4 Let X  be a R  the V from  ~ 0,U   
population, i.e.,  

  1
=            0 ,    > 0,f x x  


and  ,

iH

   

 s are our trapezoidal fuzzy parameters with 
mem unctions given by:  bership f

Copyright © 2011 SciRes.                                                                                  OJS 



M. G. AKBARI 
 

Copyright © 2011 SciRes.                                                                                  OJS 

92 

 

 

 

2

2

= 1i i i

a b
x x

2 2
2

.
2

i
i i

i
i i

x a a
x a x

a

H

x b b
x X b

b









  
  



  
   



for 
Let  and . If 
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