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Sequential Testing for Selection
R. A. Weitzman
Naval Postgraduate School

In sequential testing for selection, an applicant
for school or work responds via a computer ter-
minal to one item at a time until an acceptance or

rejection decision can be made with a preset proba-
bility of error. The test statistic, as a function of
item difficulties for standardization subgroups scor-
ing within successive quantiles of the criterion, is
an approximation of a Waldian probability ratio
that should improve as the number of quantiles in-
creases. Monte carlo simulation of 1,000 first-year
college students under 96 different testing condi-
tions indicated that a quantile number as low as
four could yield observed error rates that are close
to their nominal values with mean test lengths be-

tween 5 and 47. Application to real data, for which
interpolative estimation of the quantile item diffi-
culties was necessary, produced, with quantile num-
bers of four and five, even more accurate observed
error rates than the monte carlo studies did. Trun-
cation at 70 items narrowed the range of mean test

lengths for the real data to between 5 and 19. Im-
portant for use in selection, the critical values of
the test statistics are functions not only of the
nominal error rates but also, alternatively, of the
selection ratio, the base-rate success probability,
and the success probability among selectees, which
a test user is free to choose.

A serious problem of conventional testing for selection is that estimation accuracy is not uniform
over the entire range of applicant ability. Conventional tests ordinarily estimate middle-level abilities
with less error than abilities at the lower or upper levels. This is particularly a problem if a number of
users of a single test wish to select different fractions of applicants, some of which differ substantially
from one-half. The percentage of selection errors in the case of any of the more extreme selection frac-
tions may tend to be unacceptably large. Sequential testing, which consists of the presentation via a
computer terminal of one item at a time until a function of the item responses reaches a prede-
termined critical value, has the potential of working to resolve not only this but also another problem
that is important in a selection context: the lack of precise control in existing testing procedures over
both the probability of accepting an applicant who will fail and the probability of rejecting an appli-
cant who would succeed if accepted.

One form of sequential teSti~~&reg;&dquo;~.d~.ptwe9’ testing, introduced by Lord (1968) as &dquo;tailored&dquo; test-

ing-estimates the ability of an applicant by presenting one item at a time so that after the first item
the choice of items presented depends on (is tailored to) the applicant’s responses to the preceding
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items. Because each applicant thus tends to respond not only to a different number but also to a
unique set of items, adaptive testing can obtain uniformly accurate estimates over the entire applicant
ability range. Although an adaptive test used for selection may thus be equally accurate (or inaccur-
ate) regardless of the fraction of applicants selected, it sacrifices in this very equality needed accuracy
in the neighborhood of the cutting score for unneeded accuracy elsewhere in the ability range. Adap-
tive tests also generally neither specify nor control the probabilities of selection errors. A sizable liter-
ature exists on adaptive testing; two proceedings edited by Weiss (1978, 1980) contain a fair repre-
sentation of this literature.

Interest in sequential testing for classifying individuals is not new. Application to dichotomous
classification by Linn, Rock, and Cleary (1972) of a sequential procedure developed by Armitage
(1950) for polychotomous classification tended to confirm in real-data simulation a theoretical predic-
tion made by Green (1970) that sequential procedures might produce a reduction in testing time over
conventional procedures of about 50%. The procedure investigated by Linn et al. (1972) required an
end to testing as soon as a statistic computed from the response data was farther from zero than a
preset number. Though a monotonic function of this number, the observed rate of classification
errors was not subject to precise control by the procedure.

Developed specifically for use in selection, the form of sequential testing described here can both
concentrate its accuracy at the cutting score and control the probabilities of selection errors. Called
selective testing, this form of sequential testing is an adaptation to selection of the sequential proba-
bility ratio test (SPRT) developed by Wald (1945). Other testing adaptations of the SPRT apply spe-
cifically to the determination of subject matter mastery (Epstein & Knerr, 1978; Ferguson, 1970; Ka-
lisch, 1980; Kingsbury & Weiss, 1980; Reckase, 1980). These adaptations all involve Wald’s bi-

nominal test of two proportions, typically of the amount of subject matter known, that bracket an
&dquo;indifference region&dquo;; only for students whose proportions fall outside this region do the mastery or
nonmastery decisions tend to have error rates that are no higher than previously specified values.
Selective testing, by contrast, works to control the error rates for everyone.

Testing Procedure

Most Waldian sequential methods use a probability ratio test statistic updated after each ob-
servation to test twopoint hypotheses, such as Hla p~ = ~1 against H2: fJ = fJ2’ where 1A designates either
a population mean or, subscripted, a specific (point) value of the mean. Wald (1945) suggested but
did not develop tests of corresponding composite hypotheses-Hi i p < ~o versus IA > po. Follow-

ing directly from Wald’s suggestion, which involved integrals in the numerator and the denominator
of the test statistic, the procedure proposed here uses summations to approximate the integrals. This
procedure is a test for each applicant of the composite hypotheses I~, 9 < 80 versus N2: 6 > 8°’ where
8 designates a measure of the applicant’s subsequent school or job performance and 00 designates the
performance measurement separating success from failure for all accepted applicants. In this proce-
dure, the applicant responds at a computer terminal to one item at a time until, on reaching a value
farther from one than an upper or lower critical value, the probability ratio test statistic determines
the selection decision with preset probabilities of error: a, the probability of accepting an applicant
for whom 0 < Oo, and {3, the probability of rejecting an applicant for whom 0 > 00.

The approach to the development of this procedure relies, as large-scale empirical test develop-
ment generally does, on the existence of both performance measurements and item responses for a
large, so-called &dquo;standardization&dquo; group of individuals. The performance measurements are ordered,
and K separate subgroups of individuals having performance measurements in intervals between suc-
cessive quantiles are identified. If the quantiles are quartiles, for example, K = 4, corresponding to
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the four subgroups between the zeroth and the first quartile, between the first and the second quartile
(median), between the second and the third quartile, and between the third and the fourth quartile.
For each subgroup k (k ~ 1, 2, ..., the proportion of individuals who answer item correctly is de-
termined: pi,. Then, in subsequent the ratio Ln is for each applicant as
the applicant responds successively to items i &reg; 1, 2, ..., n: e

v ~

wherein* designates the standardization subgroup immediately above the performance measurement
(80) separating success from failure and x~ equals 1 for a correct and 0 for an incorrect response to
item i. On the local independence assumption that item responses are independent for applicants who
have equal performance measurements, this ratio is an approximation that should improve as K in-
creases. To the extent that local independence exists within every subgroup, each product in this ratio
is the probability that a member of the corresponding subgroup will make the response sequence
xg9 x2, ..., xn. Subgroup memberships are mutually exclusive. Multiplied by 1/~, which cancels, the
numerator of Ln is thus the probability that a member of one of the t&reg;p K - K* + 1 subgroups will
make the response sequence; and the denominator, the probability that a member of one of the bot-
tom I~~ - 1 subgroups will make the response sequence. According to Wald (1945), the critical values
for L, are (1 - (3)/~ and j3/(1 - a); acceptance occurs when L, goes above (I - fl)la and rejection
e~her~L,~ goes below (3/(1 - a). These critical values tend to assure the error probabilities, a and ~3, be-
cause appr&reg;xim~t~ly f - f3 of the applicants belonging to the t&reg;p I~’ - K* + 1 subgroups and a of the
applicants belonging to the bottom ~f’~ - 1 subgroups will have values of I,n above (1 - j3)/~9 while {3
of the applicants belonging to the top 1~ - K* + 1 subgroups and 1 -- o- of the applicants belonging to
the bottom ~~ - 1 subgroups will have values of Ln below ~/(1 - ~). The qualification &dquo;approxi-
mately&dquo; reflects the tendency &reg;f L~ to change discretely, rather than continuously, as a function of M.
If I~ is large enough, therefore, testing ends with error probability approximately a as soon as Ln be-
comes larger than (1 - /3)/~r or with error probability approximately (3 as soon as Lnbecomes smaller
than f3/(1 - a). As real world estimates rather than theoretical values, the Pik’s decrease in
reliability as K increases. Fortunately, monte carlo data simulation, described in the next section, in-
dicates that a value of K as low as 4 can yield actual error rates that are close to their nominal values.

Although the items presented in this procedure may vary from applicant to applicant, the test
length for each applicant will tend to be shortest if the items presented are the ones for which the dif-
ferences p~K* -ptt~°-,~ are largest. Making the item-to-item discrete changes i~ Ln correspondingly
largest, these are the items that are the most discriminating near 80. Applicants for whom 0 is near 0o
will generally need to respond to more items than other applicants. Control over test length for all ap-
plicants is possible, however, by manipulating the nominal value of ~39 provided the cost of rejecting
applicants who might be successful if selected is not too high. The monte carlo studies to be reported
indicate that test lengths between 7 and 1 may provide predictions for which error rates closely ap-
proximate the nominal values of a = .05 and P = .15. If the number of acceptable applicants is
greater than the required or desired number, the selection procedure can attempt within the accept-
able pool to meet goals of racial or ethnic balance. This attempt will be free from charges of reverse
discrimination because no test score differences distinguish one acceptable applicant from another.
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More familiar than a and 0 within a selection context are the selection ratio ( the base rate (Q)9
which is the proportion of applicants who would be successful on the criterion if all were selected; and
the corresponding proportion for the actual selectees (caw). (In this notation, the lower-case letters are
conditional, and the upper-case letters marginal probabilities.) These five probabilities are related so
that knowledge of any three of them determines the other two. Because of this relationship, the criti-
cal values of L, are expressible in terms of 4,9 Q, and cu, rather than in terms of a and 0, as follows: i

for the upper and

- ...

for the lower critical value. Circumstances normally determine the values of V and S. Different from
a conventional test, in which the predictive validity (together with W and Q) determines the value of w,
a test user is free to choose this value in a selective test. Affecting only the expected number of items,
this freedom of choice is a unique advantage of a selective test, unshared by sequential tests, like the
ones cited previously, that do not control overall error rates. Another advantage, of course-one
shared by all sequential tests-is the expectation that the number of items corresponding to any value
of w will be lower than for a conventional test.

Monte Carlo Illustration

Method

The data simulated consisted of the criterion grade-point averages and predictor item responses
of 1,000 first-year college students. Models used to create the data specified the parent distribution of
grade-point averages and the theoretical distribution of item difficulties as a function of these aver-
ages. Figure 1 shows these distributions. The parent distribution of grade-point averages was normal
with a mean of 3 and a standard deviation (o) of V3; the item difficulties followed an ogival item char-
acteristic curve (ICC) over the scale of grade-point averages with a mean at either their 25th or their
50th centile and a standard deviation equal to either o or 2a. In all, the 1,000 fictiti&reg;us college students
went through 96 different monte carlo testing simulations: one for each of the four ICCs as well as
each of two failure fractions (1/4 and 1/z), also shown in Figure 1; each of two values of ~ (4 and 12);
and each of six combinations of a and (3 (~3 = .05 to .15 ~~d ~ _ .05 to (3, both in steps of .05).

To compute the probability ratio L,, pi, was approximated by the weighted average of difficulties
for item i within quantile ko 1

where Oj is the median of the jll quantile (j = 1, 2, ..., 120) of the grade-point-average distribution (~)
and Oi is the ICC ogival function for item i. Comparison of a number, P, chosen randomly from a uni-
form distribution over the interval between zero and one with the difficulty, ~~(~;), of item for a stu-
dent having grade-point average Oj determined the response of the student to the item: correct if
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Figure 1
Monte Carlo Distributions of Student Grade-Point Averages

Showing 25% (Cross-Hatched) and 50% (Cross-Hatched plus Striped) Failure Rates
with Item Characteristic Curves for Which

the Mean’s Percentile and the Standard Deviation Are
25 and 1 (a), 50 and 1 (b), 25 and 2 (c), and 50 and 2 (d)

P < ~~(~.)9 incorrect otherwise. The failure fraction --f’o+(t)dt determined the value of 9o separating
success from failure. An acceptance error was recorded whenever L, went above (I - ~3)/~ and Oj was
less than 0o; a rejection error was recorded whenever L. went below 0/(l - a) and Q was greater than
&reg;~m The number of acceptance errors divided by the number of students for whom 6j was below 0o
should tend to be equal to 0’; the number of rejection errors divided by the number of students for
whom 8j was above 80 should tend to be equal to ~30

Resulto

Representing in succession the four ICCs shown in Figure 1, Figures 2 through 5 show the error-
rate results. The two columns in each figure represent different failure fractions; the two rows, dif-
ferent values &reg;f I~’a Generally, the observed values of a and P (open circles) rather closely approximate
their nominal values (solid circles). The approximation tends to be better for 2o ICCs than for lo ICCs
and for ICCs centered at failure fraction centiles than for ICCs centered elsewhere. No difference in

goodness of approximation is readily noticeable for the two values &reg;f Ka
Table 1 contains the mean and standard deviation of test length for each of the 96 simulations.

Both these statistics tend to increase or decrease together. Both are notably larger for K = 12 than for
K = 4, for 20 ICCs than for lo ICCs, and for smaller values of ~- and P than for larger values. All these
results agree more or less with expectations except for those for the two values of K. Why should test
length tend to be so much greater for K = 12 than for 1< = 4, especially when their approximations of
~ and (3 tend to be equally good? The answer would seem to depend on the tendency for the terms
summed in to be closer in value to their neighbors for the larger than for the smaller value of Ka

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  

May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



342

Figure 2
Comparison of Observed (Open Circles) with Preset (Solid Circles)

Acceptance (a) and Rejection ((3) Error Rates for 4 (Upper) and 12 (Lower) Quantiles
and 25% (Left) and 50% (Right) Failure Rates

in 1,000 Monte Carlo Sequential Tests Represented by Figure l(a)

These terms, particularly, include the neighboring two on either side of the quantile boundary separ-
ating success from failure. Following each item response, the change in Ln should thus tend to be
smaller, and the test length correspondingly larger, for K = 12 than for I~ _ 4. The results generally
indicate that for K = 4 not only may observed a and 0 values approximate their nominal counterparts
well enough but also test length means and standard deviations may be low enough for practical use,
particularly when 0 is no smaller than .15 and a is no smaller than .05.
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Figure 3
Comparison of Observed (Open Circles) with Preset (Solid Circles)

Acceptance (a) and Rejection «(3) Error Rates for 4 (Upper) and 12 (Lower) Quantiles
and 25% (Left) and 50% (Right) Failure Rates

in 1,000 Monte Carlo Sequential Tests Represented by Figure l(b)

Application to 1 Data

Application problems exist because groups of applicants having the same criterion scores may
overlap quantile boundaries. This overlap possibility may, in fact, be responsible for two application
problems. One is the determination of p;k values, and the other is the interpretation of error rates.
Monte carlo simulation avoided these problems by using a continuous criterion distribution.

The problem involved in the determination of a pi, value when overlap exists is how to assign
members of a group that overlaps the boundary between quantile k and one of its neighbors (k - 1 or
k + 1). The most straightforward solution to this problem would seem to be to compute p values
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Figure 4
Comparison of Observed (Open Circles) with Preset (Solid Circles)

Acceptance (a) and Rejection ({3) Error Rates for 4 (Upper) and 12 (Lower) Quantiles
and 25% (Left) and 50% (Right) Failure Rates

in 1,000 Monte Carlo Sequential Tests Represented by Figure 1( c)
o n

separately for the nonoverlapping and overlapping groups spanning quantile k and then to weight the
contributions to pi, of these groups by their proportional representation in the quantile i

- ~ I ~ ~

large enough group may overlap both boundaries of the quantile to make N, equal to zero and N, and
I~H th~ same N.

The interpretation of error rates may be a problem because of possible overlap of the boundary
separating success from failure on the criterion. Does a member of the overlapping group count as an
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Figure 5
Comparison of Observed (Open Circles) with Preset (Solid Circles)

Acceptance (a) and Rejection (fl) Error Rates for 4 (Upper) and 12 (Lower) Quantiles
and 25% (Left) and 50% (Right) Failure Rates

in 1,000 Monte Carlo Sequential Tests Represented by Figure l(d)

where the Ms are the numbers of individuals in the quantile and thc p’s the proportions of correctly
responding individuals from the low (L) overlapping group, the middle (M) nonoverlapping group or
groups, and the high (H) overlapping group. Any (but not all) of the 1V’s may be equal to zero, and a
error if accepted or rejected? What kind of error, acceptance or rejection? Proportional representa-
tion also provides a solution to this problem. If the overlapping group consists of five individuals with
two supposed to be on the lower and three on the upper side of the boundary separating success from
failure, for example, then the number of the acceptance and rejection errors to be recorded for the
group depends on the number of applicants actually accepted or rejected, as shown in Table 2. The
failure fraction that requires a certain number of individuals in the overlapping group to be account-
able as failures thus effectively classifies rejections in excess of this number as rejection errors and re-
jections short of this number as acceptance errors.
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Table 1
Mean and Standard Deviation of Test Length in 96 i~&reg;nte Carlo Studies

’Note. It em c> a r a c 58 I Pf fiVIUiOJ m~a~ is ~n fo~°m equ~va ~nt gra e&reg;po~nt&reg;averago 
°

percentile of student who has .50 probability of answering item correctly; g unit

(0) i standard deviation of student grade&reg;poi nt&reg;averago distribution.

Use of these treatments of overlap on real data demonstrated that selective testing, which worked
on monte carlo data, can have corresponding success in practical applications.

Method

The real-data pool consisted of the responses (correct/incorrect) of 960 Navy enlisted men to the
70 items of the Navy Electronics Technician Selection Test (ETST) together with the final numerical
grades of these men in the Navy Basic Electronics and Electricity School in San Diego, California.
The histogram in Figure 6 describes the frequency distribution of these grades. The shaded, stippled,
and blank areas represent the different failure rates used in eight separate studies: 25% and 75% with
K = 4 and 20% and 80% with K = 5. Use of the overlap treatments just described resolved the prob-
lems arising from the overlap apparent in a number of the score groups. Two studies used each failure
rate; students unsorted by Item 70 were accepted in one and rejected in the other. Although each en-

Table 2
Errors Recorded for Members of a Criterion Score Group

Containing Two Failures and Three Successes
as a Functi&reg;n of the Number Rejected 

-
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Figure 6
Real-Data Distribution of Final-Examination Scores for 960 Students

Showing 20% (Left Solid), 25% (Left Solid plus Stippled),
75% (Complement of Right Solid plus Stippled), and
80% (Complement of Right Solid) Failure Rates

listed man took the entire 70-item test, computer runs simulated the sequential procedure by
selecting one item at a time. The order of selection corresponded to the ranking of the correlations be-
tween item responses and final grades. The correlation between the entire test and the final-grade cri-
terion was .60.

Results

Figure 7 shows the error-rate results. The upper two graphs in the figure compare the expected
(solid circles) and observed (open circles) error rates for K = 4; the lower two graphs make the same
comparisons for I~ _ 5. In each comparison, the failure rates differed for the computation of the ob-
served a and {3 values so that the groups used to compute the a and fl coordinates of the open circles
consisted of 240 (upper) &reg;r 192 (lower) men in the left graphs and 720 (upper) or 768 (lower) in the
right graphs. For students unsorted by Item 70, the acceptance and rejection decisions worked in the
left graphs to inflate and in the right graphs to deflate the observed a and 0 values. Aside from this
slight inflationary or deflationary effect, the accuracy and stability of these values depend on the sizes
of the groups used to compute them. The difference in accuracy and stability between the left and the
right graphs reflects this dependence. The closeness of the observed to the expected values in the right
graphs indicates that the corresponding discrepancies in the left graphs are due largely, if not entire-
ly, to sampling error. Selective testing thus appears to work on real as well as on monte carlo data.

Table 3 presents the mean test lengths (left cell entries) and 70-itern frequencies (right cell entries)
obtained in the real-data studies. Resembling the monte carlo results presented in Table 1 for the leo
items, the means here range from 5 four 0’ = {3 = .15 with a large failure rate to 17 or 19 f&reg;r ~ _ /~ = .05
with a small failure rate. Each combination of a and 0 has only 4, rather than 8, test length means
and 70-item frequencies because these values do not depend, as the observed a and 0 values do, on the
acceptance or rejection of a student unsorted by Item 70. The mean test lengths tended to be well be-
low 70, and in most cases relatively few of the 960 students required as many as 70 items for a selec-
tion decision.

These results support the supposition that sequential tests are more efficient than their conven-
tional counterparts. A direct conventional-sequential comparison strengthened this support. The 70-
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Figure 7
Comparison of Observed (Open Circles) with Preset (Solid Circles)

Acceptance (a) and Rejection ({3) Error Rates for 4 (Upper) and 5 (Lower) Quantiles
with Failure Rates Equal to 25% for Observed a and 75% for Observed {3 (Upper Left),

75% for Observed a and 25% Observed{3 (Upper Right),
20% for ~bserved ~ and 80% for Observed {3 (Lower Left),

and 80% for Observed a and 20% for Observed {3 (Lower Right)
in Real-Data Sequential Tests of 960 Students Described by Figure 6

item ETST provided the conventional data, and one of the corresponding selective tests provided the
sequential data for the comparison. Involving an 80% failure rate ~raith ~ _ .05 and fl = .15, the par-
ticular selective test compared had a mean length of 9 items and a 70-item frequency of 10 (see Table
3). Table 4 shows the corresponding decision-outcome percentages. The 4 in the lower right cell, for
example, is the overall percentage for the accepted 5% of the 80% failures (.04 = .05 x .80). The selec-
tion ratio (BV), represented by the marginal entry in the Accept column, is .21. The base rate (Q), com-
plementary to the .80 failures, is .20; without testing, this is the probability of selecting a potentially
successful student. The probabilities of successful selection with testing (co’s) differ markedly, not
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Table 3
Mean Test Length a n d 70-item Frequency for 960 Real Students

only from this value, but also from each other for the sequential and conventional tests. Table 4 indi-
cates that for the sequential test the probability of successful selection is 17/21, or .81; the Taylor-
Russell tables (Taylor & Russell, 1939) indicate in the case of a .20 base rate and .20 selection ratio
that for the conventional test, with its predictive validity of .60, the corresponding probability is .50.
While the 70-item conventional test improved the probability of selecting a potentially successful stu-
dent from .20 to .50, therefore, the improvement was substantially greater for the sequential test with
its expected length of only 9 items: from .20 to .81. Although the reduction in testing time just illus-
trated is greater than the 50% predicted by Green (1970) and demonstrated by Linn et al. (1972), the
comparison was not altogether unfair. The sequential test did not consist only of items most dis-
criminating at 00 but, rather, of items that correlated maximally with the overall final-grade criterion.
The conventional test might have done better if it contained only items most discriminating at Oo, but,

Table 4

Decision-outcome Matrix for Sequential I Test

with 80% Failure Rate and a =.05 and B=ae15

Notes Entries are percentages.
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for the same reason, so might the sequential test. Sequential testing for selection thus compares favor-
ably on real data with conventional testing for the same purpose.

Discussion

In a sequential, as opposed to a conventional, test the number and identity of items can vary
from individual to individual. Extensively studied, adaptive tests are sequential tests whose purpose is
measurement; the varying number and identity of items in an adaptive test can control the error of
measurement for every individual who takes the test. Adaptive test theory involves formulaic specifi-
cation of ICCs, and application of the theory requires prior estimation of the parameters of these
curves. Less difficult to apply, sequential testing for the purpose of selection, as described here, in-
volves no formulaic specification of ICCs and requires, instead of parameter estimation for each item,
only estimation of the proportion of individuals who answer the item correctly in each quartile, or
smaller quantile, of the criterion distribution.

Although these differences in purpose and ease of application are important, more basic is the
difference in the abscissas of the ICCs used in the two forms of a sequential test. The adaptive test
abscissa is a latent variable that has no direct empirical referent external to the test; in contrast, the
selective test abscissa is the criterion variable on which the test is supposed to predict success or fail-
ure. The requirement of local independence on the abscissa, an assumption that defines the latent
variable of an adaptive test, is thus a condition of a selective test that real data may or may not satisfy.
The products in Equation 1 express this condition. The numerator and denominator of this equation
contain sums representing alternative events. Each of these events is a sequence of correct or incorrect
item responses by an individual whose criterion measurement lies within a specific quantile (k). The
corresponding (k&dquo;) product of response probabilities in Equation 1 approximates the probability of
the response sequence for the individual to the extent that the condition of local independence exists
over the entire quantile. The successful application of Equation 1 to real data indicates the existence
of this condition in these data. The real-data results are thus empirical as well as illustrative. These
results show, in corroboration of theory, not only that a selective test is capable of greater selection ac-
curacy with fewer items than a corresponding conventional test but also that uniquely in a selective
test-different from its adaptive, sequential-mastery, and conventional counterparts-this selection
accuracy is under the control of the test user.

References

Armitage, P. Sequential analysis with more than two
alternative hypotheses, and its relation to dis-
criminant function analysis. Journal of the Royal
Statistical Society, 1950,12, 137-144.

Epstein, K. I., & Knerr, C. S. Applications of sequen-
tial testing procedures to performance testing. In
D. J. Weiss (Ed.), Proceedings of the 1977 Com-
puterized Adaptive Testing Conference. Min-

neapolis MN: University of Minnesota, Depart-
ment of Psychology, Psychometric Methods Pro-
gram, 1978.

Ferguson, R. A model for computer-assisted cri-
terion-referenced measurement. Education, 1970,
91, 25-31.

Green, B. F. Comments on tailored testing. In W.
Holtzman (Ed.), Computer assisted instruction,
testing, and guidance. New York: Harper & Row,
1970.

Kalisch, S. J. A model for computerized adaptive
testing related to instructional situations. In D. J.
Weiss (Ed.), Proceedings of the 1979 Com-
puterized Adaptive Testing Conference. Min-
neapolis MN: University of Minnesota, Depart-
ment of Psychology, Psychometric Methods Pro-
gram, Computerized Adaptive Testing Labora-
tory, 1980.

Kingsbury, G. G., & Weiss, D. J. A comparison of
ICC-based adaptive mastery testing and the Wald-

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  

May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



351

ian probability ratio method. In D. J. Weiss (Ed.),
Proceedings of the 1979 Computerized Adaptive
Testing Conference. Minneapolis MN: University
of Minnesota, Department of Psychology, Psycho-
metric Methods Program, Computerized Adaptive
Testing Laboratory, 1980.

Linn, R. L., Rock, D. A., & Cleary, T. A. Sequential
testing for dichotomous decisions. Educational
and Psychological Measurement, 1972, 32, 85-95.

Lord, F. M. Some test theory for tailored testing. (Re-
search Bulletin RB-68-38). Princeton NJ: Educa-
tional Testing Service, 1968.

Reckase, M. Some decision procedures for use with
tailored testing. In D. J. Weiss (Ed.), Proceedings
of the 1979 Computerized Adaptive Testing Con-
ference. Minneapolis MN: University of Minneso-
ta, Department of Psychology, Psychometric
Methods Program, Computerized Adaptive Test-
ing Laboratory, 1980.

Taylor, H. C., & Russell, J. T. The relationship of
validity coefficients to the practical effectiveness of
tests in selection: Discussion and tables. Journal

of Applied Psychology, 1939, 23, 565-578.
Wald, A. Sequential tests of statistical hypotheses.

Annals of Mathematical Statistics, 1945, 16,
117-186.

Weiss, D. J. (Ed.). Proceedings of the 1977 Computer-
ized Adaptive Testing Conference. Minneapolis
MN: University of Minnesota, Department of Psy-
chology, Psychometric Methods Program, 1978.

Weiss, D. J. (Ed.). Proceedings of the 1979 Computer-
ized Adaptive Testing Conference. Minneapolis
MN: University of Minnesota, Department of Psy-
chology, Psychometric Methods Program, Com-

puterized Adaptive Testing Laboratory, 1980.

Acknowledgments

This research was supported by the Naval Postgradu-
ate School Research Foundation with furads provided
by the Chief of Naval Research.

Author’s Address

Send requests for reprints or further information to
R. A. Weitzman, Department of Administrative
Sciences, Naval Postgraduate School, Monterey CA
93940.

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  

May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



124

ERROR CORRECTION

Weitzman, R. A. Sequential testing, Volume 6, Number 3, pp. 337-351.

Due to a typesetting error, several lines at the bottom of page 344 were interchanged
with lines on page 345.

The lines following Equation 5 on page 344 should read as follows:

where the N’s are the numbers of individuals in the quantile and the p’s the proportions of correctly

responding individuals from the low (L) overlapping group, the middle (M) nonoverlapping group or

groups, and the high (H) overlapping group. Any (but not all) of the IV’s may be equal to zero, and a

large enough group may overlap both boundaries of the quantile to make NM equal to zero and N,, and

NH the same N.

The text below Figure 5 on page 345 should read as follows:

The interpretation of error rates may be a problem because of possible overlap of the boundary
separating success from failure on the criterion. Does a member of the overlapping group count as an
error if accepted or rejected? What kind of error, acceptance or rejection? Proportional representation
also provides a solution to this problem. If the overlapping group consists of five individuals with two

supposed to be on the lower and three on the upper side of the boundary separating success from failure,
for example, then the number of the acceptance and rejection errors to be recorded for the group depends
on the number of applicants actually accepted or rejected, as shown in Table 2. The failure fraction that

requires a certain number of individuals in the overlapping group to be accountable as failures thus

effectively classifies rejections in excess of this number as rejection errors and rejections short of this

number as acceptance errors.

Readers should remove this page and insert it in their copy for future reference.
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