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Sequential Testing Problems
for Bessel Processes

Peter Johnson & Goran Peskir

Consider the motion of a Brownian particle that takes place either in a two-
dimensional plane or in the three-dimensional space. Given that only the distance of
the particle to the origin is being observed, the problem is to detect the true dimension
as soon as possible and with minimal probabilities of the wrong terminal decisions.
We solve this problem in the Bayesian formulation under any prior probability of the
true dimension when the passage of time is penalised linearly.

1. Introduction

Imagine the motion of a Brownian particle that takes place either in a two-dimensional
plane or in the three-dimensional space. Assuming that only the distance of the particle to
the origin is being observed (Figure 1), the problem is to detect the true dimension as soon as
possible and with minimal probabilities of the wrong terminal decisions. The purpose of the
present paper is to derive the solution to this problem in the Bayesian formulation under any
prior probability of the true dimension when the passage of time is penalised linearly.

Denoting the distance of the Brownian particle to the origin by X , it is well known that
X may be viewed as a Bessel process of dimension 2 or 3. We study the problem above by
embedding it into the more general setting where a Bessel process X of dimension 6y > 2 or
01 > dp is being observed. In these cases 0 is known to be an entrance boundary point for X
viewed as a diffusion process in [0,00) where X is also known to be recurrent when dp = 2
and transient when ¢&; > 2. Our methods are developed to treat these cases and we will leave
other cases of Jdy € [0,2) with §; > Jp open for future development.

The loss to be minimised over sequential decision rules is expressed as the linear combination
of the expected running time and the probabilities of the wrong terminal decisions with prior
probabilities of the two dimensions given and fixed. This problem formulation of sequential
testing dates back to [14] and has been extensively studied to date (see [3] and the references
therein). The linear combination represents the Lagrangian and once the optimisation problem
has been solved in this form it will also lead to the solution of the constrained problem where
upper bounds are imposed on the probabilities of the wrong terminal decisions. Standard
arguments show that the initial optimisation problem can be reduced to an optimal stopping
problem for the posterior probability process Il of d; given X . A canonical example is the
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Figure 1. Distance to the origin of a Brownian particle whose simulated motion
that takes place either in a two-dimensional plane or in the three-dimensional space.

Brownian motion process with one or another constant drift (see [5] and [11]). This problem
has also been solved in finite horizon (see [2] and the references therein). Books [12, Section
4.2] and [8, Section 21] contain expositions of these results and provide further details and
references. In all these problems, however, the signal-to-noise ratio (defined as the difference
between the two drifts divided by the diffusion coefficient) is constant. This is no longer the
case in the sequential testing problem of the present paper and to our knowledge this is the
first time that such a problem has been solved in the literature.

A more general problem formulation for one-dimensional diffusion processes having one or
another non-constant drift has been considered in the recent paper [3]. This reference serves
as a starting point for the present paper and for future reference we will also make it explicit
in the analysis below which arguments/results are applicable/valid in the general case as well.
To recognise the Markovian structure in the optimal stopping problem referred to above one
considers the posterior probability process 1l of 6, given X , as well as the posterior probability
ratio process @ of 6; given X | in addition to the observed process X . These considerations
take place under the probability measure P, = 7P;+(1—7)P; where 7 is a prior probability
of d; being true and 1—m is a prior probability of d, being true. The process @ happens to
coincide (up to the initial point) with the likelihood ratio process L of P; and Py given X
that provides an explicit link to the observed process X . The two processes Il and @ are
in one-to-one correspondence so that one of them is Markov if and only if the other is Markov.
This is the case when the signal-to-noise ratio is constant. On the other hand, if the signal-
to-noise ratio is not constant, then both I/ and @ fail to be Markov processes. To remedy
the situation, as noted in [3], one needs to account for X and then both (II,X) and (&, X)
become Markov processes. This shows that if the signal-to-noise ratio is not constant, as in
the sequential testing problem of the present paper, then the optimal stopping problem under
consideration is inherently/fully two-dimensional and hence more difficult. Finding and fully
characterising the solution to this problem is the main/principal result of the present paper.

The exposition of the material is organised as follows. In Section 2 we formulate the optimal
stopping problem and recall the stochastic differential equations for I, ¢, L and X from [3,
Section 2]. The stochastic differential equations for 17, ¢ and X are expressed in terms of the



innovation process (standard Brownian motion) so that the stochastic differential equations for
both (11,X) and (@,X) are fully coupled. This makes the analysis of the optimal stopping
problem more complicated. In Section 3 we show that a measure change from P, to Py
simplifies the matters in that the stochastic differential equations for both (I, X) and (&, X)
become uncoupled in the second component. This is an important step that abandons the
innovation process and makes the subsequent analysis possible. The resulting optimal stopping
problem for (@, X) is expressed in Bolza form and in Section 4 we disclose its Lagrange and
Mayer formulations (see [8, Section 6] for the terminology). The Lagrange form is expressed in
terms of the local time of @ that makes the problem more intuitive.

In Section 5 we make use of the fact that a Bessel process of dimension 6 > 2 can be
time changed into a geometric Brownian motion. This has a dramatic effect on the problem
since the stochastic differential equations for the time-changed process (923, X ) get completely
decoupled and moreover reduce to two geometric Brownian motions driven by the same standard
Brownian motion. To understand this phenomenon within a more general context, one may
note that since the stochastic differential equations for the process (®,X) are also driven by
the same Brownian motion, we know that the resulting infinitesimal generator equation must
be of parabolic type. Reducing this equation to its canonical form by means of a diffeomorphic
transformation replaces the process (@, X) by the process (U, @) where U is a process of
bounded variation. It turns out moreover that the process U coincides with the additive
functional A which is used to time change (¥, X) to (#,X) through its inverse. Making use
of the diffeomorphic transformation in the Bolza problem for (Qg X ) , or solving the stochastic
differential equations for ® and X explicitly, we then show that this problem reduces to an
optimal stopping problem for the time-space process (t+s, @s)szo where the initial time ¢ is
expressed in terms of the initial points of @, = 7/(1—7) and Xy =z and as such can also be
negative. The resulting optimal stopping problem for the time-space process is also expressed
in Bolza form and in Section 6 we disclose its Lagrange and Mayer formulations.

Exploiting the equivalence of the optimal stopping problems for (437 X ) and (t+s, Qgs)szo
in Section 7 we prove the existence of the optimal stopping boundaries, describe their shape,
and derive their asymptotic behaviour at zero and infinity. The proof of their monotonicity
endorses by different /rigorous means the implication stated in [3, Lemma 2.1] that the optimal
stopping boundaries are monotone if the signal-to-noise ratio is monotone. Making use of the
established techniques for the treatment of time-space optimal stopping problems, in Section
8 we disclose the free-boundary problems which stand in one-to-one correspondence with the
optimal stopping problems. Further, in Section 9 we show that the optimal stopping boundaries
can be characterised as the unique solution to a coupled system of nonlinear Volterra integral
equations. These equations can be used to find the optimal stopping boundaries numerically.

2. Formulation of the problem

In this section we formulate the sequential testing problem under consideration and recall
stochastic differential equations for the underlying stochastic processes (cf. [3, Section 2]). These
traditional formulations will then be evaluated under a change of measure in the next section.

1. We consider a Bayesian formulation of the problem where it is assumed that one observes
a sample path of the Bessel process X of dimension dy > 2 or d; > §y with prior probabilities



1—7 and 7 respectively. The problem is to detect the true dimension as soon as possible and
with minimal probabilities of the wrong terminal decisions. This problem belongs to the class
of sequential testing problems as discussed in Section 1 above.

2. Standard arguments imply that the previous setting can be realised on a probability space
(Q, F,P;) with the probability measure P, decomposed as follows
(2.1) Pr=(1—-m)Py+ 7P

for m € [0,1] where P; is the probability measure under which the observed Bessel process X
has dimension ¢§; for ¢ =0,1. This can be formally achieved by introducing an unobservable
random variable 6 taking values 0 and 1 with probabilities 1—7 and 7 under P, and
assuming that X after starting in [0,00) solves the stochastic differential equation

(2.2) dXy = [Mo(Xt) + Q(Ml(XQ_Mo(Xt))} dt + o(X;) dB

driven by a standard Brownian motion B that is independent from 6 under P, where we set

-1 61 B
= & pi(z) = 5 & o(x)=1

(2.3) fio ()

for x > 0 and 7 € [0,1] . We will often assume below that X starts at a strictly positive
point and we will see below that this also yields solution when X starts at zero.

3. Being based upon the continued observation of X | the problem is to test sequentially
the hypotheses Hy : # =0 and H; : # = 1 with a minimal loss. For this, we are given a
sequential decision rule (7,d,), where 7 is a stopping time of X (i.e. a stopping time with
respect to the natural filtration FX = o(X,|0 < s <1t) of X for t > 0), and d, is an
FX _measurable random variable taking values 0 and 1. After stopping the observation of
X at time 7, the terminal decision function d, takes value i if and only if the hypothesis
H; is to be accepted for ¢ = 0,1. With constants a > 0 and b > 0 are given and fixed, the
problem then becomes to compute the risk function
(2.4) V() = (i]%f) Er[r+al(d, =0, =1)+bI(d, =1,0=0)]
for m € [0,1] and find the optimal decision rule (7.,d% ) at which the infimum in (2.4) is
attained. Note that E,.(7) in (2.4) is the expected waiting time until the terminal decision is
made, and P,(d; = 0,0 = 1) and P,(d, = 1,60 = 0) in (2.4) are probabilities of the wrong
terminal decisions respectively.

4. To tackle the sequential testing problem (2.4) we consider the posterior probability process
II = (II);>0 of Hy given X that is defined by

(2.5) I, = P,(6 = 1| 7))

for £ > 0. Noting that P.(d, =0,0 =1) = E;[(1-d,)Il;] and Pi(d, =1,0 =0) = E,[d,
(1-1II,)] , and defining d, = I(all, > b(1—1II;)) for any given (7,d,), it is easily seen that
the problem (2.4) is equivalent to the optimal stopping problem

(2.6) V(r) = inf Er[7+ M(IL,) ]
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where the infimum is taken over all stopping times 7 of X and M(w) = amr Ab(1—m) for
7w € [0,1] . Letting 7. denote the optimal stopping time in (2.6), and setting ¢ = b/(a+b) ,
these arguments also show that the optimal decision function in (2.4) is given by di = 0 if
II;, <c and df =1 if II,, > c¢. Thus to solve the initial problem (2.4) it is sufficient to solve
the optimal stopping problem (2.6). If the signal-to-noise ratio defined by

pia () — pro ()
2.7 = ——
(27) pla) = L
is constant for x > 0, then II is known to be a one-dimensional Markov (diffusion) process
so that the optimal stopping problem (2.6) can be tackled using established techniques both

in infinite and finite horizon (see [8, Section 21]). Note that this is no longer the case in the
setting of the present problem since from (2.3) we see that

(2.8) p(x) = % # constant

for x >0 where we set v = (01—30)/2 .

5. To connect the process Il to the observed process X we consider the likelihood ratio
process L = (L;);>0 defined by

dP;

2. L, =
(2.9) ' Iy,

where Py; and P;; denote the restrictions of the probability measures Py and P; to .7-"tX
for t > 0. By the Girsanov theorem one finds that

(2.10) L, — oxp </0t m()i;)(—)g(;(Xs) ix. %/Ot u?()i;)(—Xxg(Xs) ds)

for t > 0. A direct calculation based on (2.1) shows that the posterior probability distribution
ratio process ¥ = (Py)>0 of 6 given X that is defined by
C1-1I

(2.11) &,

can be expressed in terms of L (and hence X as well) as follows
(212) @t - q)o Lt

for t >0 where @y =7/(1—m). Note that L, in (2.10) is expressed in terms of a stochastic
integral with respect to X and as such may not be an explicit functional of the observed sample
path of X up to time ¢. We will see in Section 7 below that such an explicit functional can
be determined and that this issue is closely related to the parabolic nature of the underlying
partial differential equation.
6. To derive stochastic differential equations for the posterior processes Il and @ one may
apply It6’s formula in (2.10) to find that
_ i (Xe) —po(Xe)

(2.13) dL; = 2(X) Ly [dX, — po(Xy) dt]




with Lo = 1. Further applications of Itd’s formula in (2.11) and (2.12) then show that

P2 _
(215) d@t = pQ(Xt) L dt ‘I— p(Xt)gpt dBt
14+,

upon noting that X solves

(2.16) dXy = [po(Xy) + I (11 (Xy) — po(Xy)) | dt + o(X,) d By

where B = (B;)s>o is the innovation process defined by

= ' dX, "1 po(X5) pi1 (Xs) — po (X))
(2.17) Bt:/o U<XS>—/O [a(xs) LSS ds

for ¢ > 0 from where we see by Lévy’s characterisation theorem that B is a standard Brownian
motion with respect to (F/);>0 under P, for 7€ [0,1].

7. From (2.14) and (2.15) it is evident that II and ¢ cannot be Markov processes unless
the signal-to-noise ratio p defined in (2.7) is constant. If p is not constant such as in (2.8)
above then one needs to look at (2.14)+(2.16) and (2.15)+(2.16) as two systems of stochastic
differential equations for the pairs of processes (I1,X) and (P, X) respectively. It is well
known (see e.g. [10, pp 158-163]) that when these systems have a unique weak solution then
(I1,X) and (&, X) are (time-homogeneous) strong Markov processes under P, for = € [0,1].
Recalling known sufficient conditions for the existence and uniqueness of weak solutions (see
e.g. [10, pp 166-173]) we see that this is the case whenever x — po(x), = — pi(x) and
x +— o(x) are continuous with po(z) # pi(x) and o(x) > 0 for all x in the state space of X
(possibly excluding entrance boundary points). Note that these conclusions are not confined to
the setting of Bessel processes but hold generally in the sequential testing problems for diffusion
processes X solving (2.2) when the drift equals either py or p; depending on the outcome
of the unobservable random variable 6 .

8. The preceding considerations show that the optimal stopping problem (2.6) is inher-
ently/fully two-dimensional with the pairs of processes (II,X) and (®,X) solving (2.14)+
(2.16) and (2.15)+(2.16) being strong Markov when (2.8) holds. This fact makes the subsequent
analysis of these problems more challenging than when the signal-to-noise ratio p defined in
(2.7) is constant. The analysis of (2.6) performed in [3] is based on the stochastic differential
equations (2.14)+(2.16) and (2.15)+(2.16) under the probability measure P, for = € [0,1].
In this case one sees that these two systems of stochastic differential equations are fully coupled
(as both II and X as well as @ and X enter both (2.14) and (2.16) as well as (2.15) and
(2.16) respectively). This makes the analysis of (2.6) more involved. In the next section we
will see that a change of measure argument simplifies the setting and decouples the systems
(2.14)4(2.16) and (2.15)+(2.16) in the second equation so that the analysis of (2.6) becomes
easier and more penetrating. This change of measure argument is not confined to the Bessel
process setting and holds in general. Moreover, another major difficulty encountered in [3]
is that both IT and X as well as & and X enter the diffusion coefficient in (2.14) and
(2.15) respectively. This makes the use of comparison theorems for the systems of stochastic



differential equations (2.14)+(2.16) and (2.15)+(2.16) more challenging. We will see in Section
5 below that time change arguments remove the dependence of the diffusion coefficient on the
process X in both systems and in fact completely decouple the two equations in both systems.
This change of time argument is confined to the Bessel process setting and it will enable us in
Section 7 to reduce the optimal stopping problem (2.6) to a solvable form.

3. Measure change

In this section we show that changing the measure P, for 7 € [0,1] to Py in the optimal
stopping problems (2.6) above provides crucial simplifications of the setting which makes the
subsequent analysis possible. The change of measure arguments are presented in the proof of
Lemma 1. Recalling that the systems of stochastic differential equations (2.14)+(2.16) and
(2.15)+(2.16) are equivalent our focus in the sequel will be on the system (2.15)+(2.16) for the
pair of processes (@, X) after showing that this system takes a simpler form under the new
measure Py . This is then followed by a reformulation of the optimal stopping problem (2.6) in
terms of (&, X) under the new measure Py in Proposition 2 below.

1. In the sequel we let P, denote the restriction of the measure P, to FX for « € [0,1]

where 7 is a stopping time of X .

Lemma 1. The following identity holds

dP, » 1—7
1 — =
(3-1) dPo, 1-1II;

for all stopping times T of X and all € 1[0,1) .

Proof. A standard rule for the Radon-Nikodym derivatives based on (2.1) gives

dPl,T o dPl,T
P, P,

dP,
(32) I =Pr(6=1|FY) = (1-m) Po(6=1| F}) 22" + 7 Pi(6=1| F})

for any 7 and 7 as above given and fixed since Py(#=1) =0 and P;(#=1) = 1. Using the
identity (2.1) again this shows that

dP; -

(3.3) =T+ (-

dPOJ o ™

dPl,T B HT

from where by (2.9) we see that

. dPl,T . 1-m HT
CdPy, 7w 111,

(3.4) L

as stated in (2.11) and (2.12). From (3.3) and (3.4) we find that

dPr, dPy, dP, w l—7 I,  1-

s T
3.5 = - _
( ) dPO,T dPl,T dPO;r HT ™ 1 —HT 1 —HT

as claimed in (3.1) and the proof is complete. O



2. From (2.12) and (2.13) we see that the stochastic differential equations (2.15) and (2.16)
for (@, X) under the measure P, simplify to read as follows

(37) dXt = /L(](Xt) dt + O'(Xt) dBt

where (3.7) follows from (2.2) upon recalling that 6 equals 0 under P,. Recall that p in
(3.6) is given by (2.7) above, and fp and o in (3.7) are given in (2.3) above. The stochastic
differential equations (3.6)+(3.7) also hold in general under P, whenever pg # p; and o >0
in (2.12) are continuous and for the reasons stated at the end of Section 2 in this case we know
that (&, X) is a strong Markov process under Py . Note also from (2.10) and (2.12) with (3.7)
that under P, we have

(3.8) &, = Py exp (/Otp(Xs) dB, — %/Ot P2(X,) ds)

for t > 0. The stochastic differential equation (2.14) for the process II takes a slightly more
complicated form under the measure P, and given that this equation is equivalent to (3.6)
due to (2.11) we will not state it explicitly. Thus our focus in the sequel will be on the system
(3.6)+(3.7) for the pair of processes (@, X) under the measure P, .

3. We now show that the optimal stopping problem (2.6) admits a transparent reformulation
under the measure Py in terms of the process @ solving (3.6) with (3.7). Recall that & starts
at @y = m/(1—m) and this dependence on the initial point will be indicated by a superscript
to @ when needed.

Proposition 2. The value function V' from (2.6) satisfies the identity
(3.9) V(r) = (1—n)V(r)

where the value function V s given by
T 0

for e [0,1) with M(g) =apAb for ¢ € [0,00) and the infimum in (3.10) is taken over
all stopping times 7 of X .

Proof. With 7 € [0,1) given and fixed, and dropping the superscript from @ in the sequel
for simplicity, by the monotone and dominated convergence theorems it is enough to show that

(3.11) E.[r+M(IL,)] =:O——w)Eo[jfT(L+d§)dt+—ﬂ%(@7)}

for all bounded stopping times 7 of X . For this, suppose that such a stopping time 7 is
given and fixed, and note by (3.1) that

T M(I1,)
-1, ' 1-1I,

(312)  E [r+M(IL)] = (1—7) EO[ ] = (1-7) Eo[r(14®,) + M(,)]



where in the final equality we use (2.11) above. Integration by parts then gives

t t
(3.13) td, = / D, ds + / 5 dP,
0 0

where the final term defines a continuous local martingale in view of (3.6) above. Making use
of a localising sequence of stopping times for this local martingale if needed, and applying the
optional sampling theorem, we find from (3.13) that

(3.14) Eo(r®,) = Eo(/T@t dt).

Inserting this back into (3.12) we obtain (3.11) as claimed and the proof is complete. O

4. Note that the identities (3.9) and (3.10) are not confined to the setting of Bessel processes
but hold generally in the sequential testing problems for diffusion processes X solving (2.2)
when the drift equals either po or p; depending on the outcome of the unobservable random
variable 6. If p is not constant such as in (2.8) above then to tackle the resulting optimal
stopping problem (3.10) for the strong Markov process (@, X) solving (3.6)+(3.7) we will
enable (@, X) to start at any point (¢,z) in [0,00) X [0,00) under the probability measure
Pg}x (where we move 0 from the subscript to a superscript for notational reasons) so that the
optimal stopping problem (3.10) extends as follows

(3.15) Vip,z) = inf Eg@[ /0 T(1+@t) dt + M(@)]

for (¢, x) € [0,00) x[0,00) with PJ ((®,Xo) = (¢,2)) = 1 where the infimum in (3.15) is
taken over all stopping times 7 of (@, X). In this way we have reduced the initial sequential
testing problem (2.4) to the optimal stopping problem (3.15) for the strong Markov process
(@, X) solving the system of stochastic differential equations

1 dd, = v —- dB
(3 6) t VCSXt t
—1
1 dX, = >~ dt +dB
(3.17) ' = ox dt+db,

under the measure Pgm with (¢, ) € [0,00)x[0,00) . Note that this optimal stopping problem
is inherently /fully two-dimensional.

4. Lagrange and Mayer formulations

The optimal stopping problem (3.15) is Bolza formulated. In this section we derive its
Lagrange and Mayer reformulations which are helpful in the subsequent analysis of the problem.

1. We first consider the Lagrange reformulation of the optimal stopping problem (3.15).

Proposition 3. The value function V from (3.15) can be expressed as
(4.1) Vg, ) = inf ng[/o (1+&,) dt — ge’;/a(gp) + M(y)

9



for (p,x) € ]0,00)x[0,00) where ﬁf’/“(@) is the local time of ® at b/a and T given by

1 T
(4.2) ta(p) = P-lifgl g/ I(t—e <@, <Lie)d(d, o),
€ 0

and the infimum in (4.1) is taken over all stopping times T of (&, X) .

Proof. Note that ¢ — M(p) = ap Ab is a concave function on [0,00) with M’(dgp) =
—ady/a(dp) where &/, is the Dirac measure at b/a . By the It6-Tanaka formula we therefore
find using (3.16) that

~

(4.3) NI(@,) = NI(@0) + / NLL(®,) db, + - / 04 (&) NI (dy)
0 2 0
t
— dr() + [ AIL@) 3B~ S )
0 s

for ¢ > 0 where the second term on the right-hand side defines a continuous local martingale.
Making use of a localisation sequence of stopping times for this local martingale if needed, and
applying the optional sampling theorem, we find from (4.3) that

~ ~ a a
(4.4) EL. [M(2:)] = M(p) — 5 EL, [6°(®)]
for (¢, z) € [0,00)x[0,00) and all stopping times 7 of (&, X) . Inserting (4.4) into (3.15) we
obtain (4.1) as claimed and the proof is complete. O

The Lagrange reformulation (4.1) of the optimal stopping problem (3.15) reveals the under-
lying rationale for continuing vs stopping in a clearer manner. Indeed, recalling that the local
time process ¢ — €7/°(®) strictly increases only when &, is at b/a, and that (2/“(®) ~ /2
is strictly larger than f(f (14®;)ds ~ t for small ¢, we see from (4.1) that it should never
be optimal to stop at ¢ = b/a and the incentive for stopping should increase the further
away @; gets from b/a . We will see in Section 7 below that these informal conjectures can
be formalised and this will give a new proof of the known fact in the wider diffusion setting
that the set { (¢,z) € [0,00)x[0,00) | ¢ = b/a} is contained in the continuation set of the
sequential testing problem (2.4).

Note that the Lagrange reformulation (4.1) of the optimal stopping problem (3.15) is not
confined to the setting of Bessel processes but holds generally in the sequential testing problems
for diffusion processes X solving (2.2) when the drift equals either py or p; depending on
the outcome of the unobservable random variable 6 .

2. We next consider the Mayer reformulation of the optimal stopping problem (3.15).

Proposition 4. The value function V from (3.15) can be expressed as

(4.5) V(g ) = inf EY,, [(%+%¢T)X3 + (a@T/\b)] . ((%0—1-511(,0) 2

for (¢, ) € ]0,00)x[0,00) where the infimum is taken over all stopping times 7 of (@, X) .

10



Proof. From (3.16)4(3.17) we read that the infinitesimal generator of (@, X) is given by

do—1 ) 1 y2p? 1
4. Ly x = - - — = .
( 6) &, X or 3x+’yx8w+ 9 2 84p4p+ 9 a:z:a:
Defining K(p,z) = (1/8+¢/d1)2? it is easily verified that
(4.7) Lo x(K)(p, ) = 14¢
for all (p,x) € [0,00)x[0,00) . By Itd’s formula we thus get
¢
(4.8) K(®;, X,) = K(Po, Xo) + / Lox(K)(®,, X,)ds
0

t @s
+/ |:K¢(¢S7Xs)’yy _I' Kx(¢saXs)} st
0 s

t t 2 1
:K(@O,X0)+/(1+Q5s)ds+/ [5—+5—(2+7)¢S]X5d35
0 0 0 1

for ¢ > 0 where the final term on the right-hand side defines a continuous local martingale.
Making use of a localisation sequence of stopping times for this local martingale if needed, and
applying the optional sampling theorem, we find from (4.8) that

(4.9) EO[K(®,, X,)] = K(p,2) + E, [ / T(1+§l’>t)dt}

for (¢,z) € [0,00)x[0,00) and all (bounded) stopping times 7 of (@, X). Inserting (4.9)
into (3.15) we obtain (4.5) as claimed and the proof is complete. O

Note that the Mayer reformulation (4.5) of the optimal stopping problem (3.15) is specific
to the setting of Bessel processes. To find a Mayer reformulation of (3.15) in the sequential
testing problems for diffusion processes X solving (2.2) when the drift equals either ug or p
depending on the outcome of the unobservable random variable 6, one needs to find a partic-
ular solution K to the equation (4.7) where from (3.6)4(3.7) we read that the infinitesimal
generator ILg x of (&, X) is given by

1 1
(4.10) Lo x = po(2) a + ¢ p() 0() D + 5" () Do + 5.0 (2) Oa
and p is given by (2.7) above. Note that if p is constant then one needs to look for a solution
K to (4.7) that is a function of ¢ only since in this case @ is a one-dimensional (strong)
Markov process.

5. Reduction to a time-space problem

Recall that we have reduced the initial sequential testing problem (2.4) to the optimal stop-
ping problem (3.15) for the strong Markov process (®,X) solving (3.6)+(3.7) which in the
setting of Bessel processes become (3.16)+(3.17). A key difficulty in this setting is that X
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enters the diffusion coefficient of the stochastic differential equation (3.16). This makes the
applicability of available comparison theorems for (@, X) more challenging. To tackle the
problem in this section we make use of the known fact that a Bessel process of dimension § > 2
can be time changed into a geometric Brownian motion. We show that this has a dramatic
effect on the optimal stopping problem (3.15) since the stochastic differential equations for the
time-changed process (Qg X ) get completely decoupled and moreover reduce to two geometric
Brownian motions driven by the same standard Brownian motion. Solving the stochastic dif-
ferential equations for $ and X explicitly, we then show that the problem (3.15) reduces to
an optimal stopping problem for the time-space process (t+s,®;)s>0 where the initial time ¢
is expressed in terms of the initial points of @ and X and as such can also be negative.

To understand these steps within a more general context, note that since the stochastic
differential equations (3.16)+(3.17) are driven by the same Brownian motion, we know that
the resulting infinitesimal generator equation must be of parabolic type. It follows therefore
that reducing this equation to its canonical form by means of a diffeomorphic transforma-
tion to be found replaces the process (®,X) by the process (U,®) where U is a process
of bounded variation. We will see below that the process U happens to coincide with the
additive functional A which is used to time change (@,X) to (@,X) through its inverse.
Moreover applying A to the closed form expressions for @ and X enables us to determine
the diffeomorphic transformation itself explicitly. This provides probabilistic arguments for the
reduction of the infinitesimal generator equation to its canonical form. Using standard analytic
arguments for this reduction first and then applying the time change arguments would yield
the same outcome. The resulting time-space problem will be studied in Section 7 below.

1. Time change. Consider the additive functional A = (A;);>¢ defined by

t

ds
(51) At - ; X—S2
and note that ¢ +— A; is continuous and strictly increasing with Aqg = 0 and A; T oo as
t T oo (the latter property is well known for Bessel processes X of dimension § > 2 but will
also be verified below). Hence the same properties hold for its inverse 7' = (T});>¢ defined by

(5.2) T, = At

for ¢ > 0. Since A is adapted to (F;%)i>o it follows that each T} is a stopping time with
respect to (F{¥)i>o so that T = (T});>o defines a time change relative to (F;¥);>o . The fact
that ¢ +— T; is continuous and strictly increasing with T; < oo for ¢t > 0 (or equivalently
Ay T oo as t T oo) implies that standard time change transformations are applicable to
continuous semimartingales and their stochastic integrals without extra conditions on their
sample paths (see e.g. [9, pp 7-9 & pp 179-181]) and they will be used below without explicit
mention. Moreover, since (@, X) is a strong Markov process by the well-known result dating
back to [13] (see e.g. [10, p. 175] for a modern exposition) we know that the time-changed
process (@, X) = (D4, X;))i=0 defined by

(5.3) (@, X,) = (Dr,, X7,)

for t+ >0 is a Markov process under P2°, for (¢,z) € (0,00)%(0,00) . It is possible to verify
that (@, X) is a Feller process and hence by the same well-known result we could also conclude
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that (qg, X ) is a strong Markov process, however, we will make no use of the former fact while
the latter fact will also follow from the existence and uniqueness of a weak solution to the
system of stochastic differential equations for (@, X) derived below. Moreover from (5.1) one
can read off that the infinitesimal generator of (@, X ) is given by

(5.4) ]Lé’f{ = $2E¢7X

where ILg x is the infinitesimal generator of (&, X). Note also that ¢ = A, is a stopping
time of (¥, X) if and ~only if 7 =1, is a stopping time of (@, X) (where we recall that the
natural filtration of (&, X) coincides with the time-changed natural filtration of (&, X) given
by Fo = .7-"%){ for ¢ > 0). Finally, in addition to (5.1) it is easily seen using (5.2) that

t
(5.5) th/ X2ds
0

for t > 0. Below we will make use of this relation too.

2. Recalling that the process (@, X) solves the system of stochastic differential equations
(3.16)+(3.17) and making use of these equations we find that

" Tt @ t @T R t N -
(56) th:@Tt:@O—f—/ ’y—sdBSZ§p0+/’y . dBTSZQpO—f—/’}/@SdBS
0 X 0o X, 0
(5.7) X, =Xp, = X, +/Tt5°_1d +/TtdB—X +/t50_1dT+/tdB
. t = AT, = Ao . 2X, S ; s = A0 . 2X1 s . Ts

. Eoo—1 L
:X0+/ Xsds—ir/Xsst
0 2 0

where the process B = (By);>o is defined by

(5:5) 5 _ [dBr, _ [*dB, _ ["dB,
. t— —_— —

= — My,
0o Xt 0o X, 0o X g

upon setting M; = fo dBs/ X for t > 0. Since M = (M,;);>o is a continuous local martingale
with respect to (FX)iso it follows that B = (Bt)t>0 is a continuous local martlngale with
respect to (F);=o . Note moreover that (B, B), = (My, My), = (M, M)y, = 0 Tt ds/ X2 =
Ar, =t for t > 0. Hence by Lévy’s characterisation theorem (see e.g. [9, p. 150]) we can
conclude that B is a standard Brownian motion with respect to (.EX )e>o - It follows therefore
that (5.6)+(5.7) can be written as the following stochastic differential equations

0p—1

(5.10) X, = ( ) X, dt + X, dB,

under P) . for (p,z) € (0,00) % (0,00). This shows that & and X are fully decoupled
geometric Brownian motions (driven by the same standard Brownian motion) whose unique
strong solutions under P, are given by

2

(5.11) B = exp(vét - %t)
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(5.12) Xe =g exp(Bt + (%—1>t>

for (p,x) € (0,00)x(0,00) . Recalling known sufficient conditions (see e.g. [10, pp 166-173]) we
formally see that the system of stochastic differential equations (5.9)+(5.10) has a unique weak
solution and hence by the well-known result (see e.g. [10, pp 158-163]) we can conclude that
(¢, X) is a (time-homogeneous) strong Markov process under P2e, for (¢, z) € (0,00)x(0,00)
(this can also be verified directly using (5.11)+(5.12) above). These facts will be useful in the
subsequent analysis of the optimal stopping problem (3.15) since both (5.11) and (5.12) provide
Markovian representations of the solutions where initial points are expressed explicitly.

3. We can now make use of the previous facts and derive a time-changed version of the
optimal stopping problem (3.15) above.

Proposition 5. The value function V  from (3.15) satisfies the identity
(5.13) V(p,x) = inf Efm[/o (1+q%t)X§dt+M(q%(,)}
for (¢, ) € (0,00)x(0,00) where the infimum is taken over all stopping times o of (®,X) .

Proof. Recall that 7 = T, is a stopping time of (&, X) if and only if o = A, is a
stopping time of (@, X). Thus if either 7 or ¢ is given we can form o or 7 respectively
and using (5.5) note that

T

(5.14) Eg,z[/T(H@t) dt + M(@,)| = Eg@[/ (1+@) dt + N (2r,) |
_ E?M[/U(lqtsﬁn)th FI(8,)] = E37$[/U(1+@t))zfdt+]\2(@a)] .

Taking the infimum over all 7 and/or o on both sides of (5.14) as above we see that (5.13)
holds as claimed and the proof is complete. [l

It follows from Proposition 5 that the optimal stopping problem (3.15) is equivalent to
the optimal stopping problem defined on the right-hand side of (5.13) for the strong Markov
process (&, X) solving the system of stochastic differential equations (5.9)4(5.10) under P,
and given explicitly by (5.11)+(5.12) under Py for (¢, z) € (0,00) % (0, 00) . This equivalence
will be exploited in Section 7 when deriving basic properties of the optimal stopping boundaries.

4. Reduction to a time-space problem. We now show that the problem (5.13) can be further
reduced to a time-space problem of optimal stopping in dimension one. For this, note from
(5.11) and (5.12) that the following identity holds

- X A 1 L
(5.15) XP = S (@¢) et

where we set x = (6,+09—4)/2 (the scaling of this constant in (5.15) is motivated by the
presence of X7 in (5.13) above). Note that x > 0 since §; > dp > 2. Replacing ¢ in (5.15)
by A; from (5.1) above, and setting A} = a+A; , we see that (5.15) is equivalent to

(5.16) X;: _ (@f)l/’)’e%A?
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where a = (2/k)log(z/p'/7) for (p,r) € (0,00)x (0,00) . It is easily verified (using purely
analytic arguments) that the mapping defined by (5.16) is a diffeomorphism which reduces the
infinitesimal generator equation of (@, X) to its canonical form. This replaces the process
(@, X) by the process (U,®) where the bounded variation process U happens to coincide
with the process A used to time change (#,X) to (¥, X) in (5.3) above. The time-changed
version (5.15) of (5.16) does the same job for the process (@, X) which then gets replaced by
the time-space process (t+s,®,)s>0 upon noting that (5.15) can be rewritten as

5.17 XT = (§2) 5 tts)
(5.17) $=(29)

where we set the initial time to be

(5.18) =z 1 g((pr)

for (p,x) € (0,00)x(0,00) . Note that ¢ in (5.18) can also be negative. Recalling that ¢ =
w/(1—7) we see that the initial time ¢ is determined by the initial values of x and =7 in
the sequential testing problem (2.4). Once set in motion at the state (t,¢) , the time-space
process (t+s, Q%f)szo travels only forward in time (thus exhibiting a pure parabolic nature),
and the negativity of ¢ plays no role afterwards. The identification (5.18) plays an important
conceptual role in placing the optimal stopping problem (3.15) in the solvable setting.

5. We can now make use of the previous facts and derive a time-space version of the optimal
stopping problem (3.15) above. In addition to M(p) = ap Ab defined above we also set
L(g) = (14+¢)p*7 for ¢ € [0,00) in what follows.

Proposition 6. The value function 1% from (3.15) satisfies the identity
. T
(5.19) Vip,z) = V( 10g<<p1/~,) <p)
for (@, z) € (0,00)x(0,00) where the value function V is defined by
(5.20) V(t,p) = inf EO[ / R+ [($%) ds + M(@@)}
7 0

for (t,p) € Rx(0,00) and the infimum is taken over all stopping times o of P .

Proof. We see from (5.13) using (5.17) that

(5.21) Vi, ) = inf Egz[/oo(ljuq%s))%z dt + M(qﬁa)]
= inf E —/00(1+5f) (X2)2dt + M(gﬁf)]
= inf E /0 T (149 ()2 dp 1 M(q%f)]
= inf Eg /O "ttt JL(9%)ds + M(@@)} =V(t,x)
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for (¢,z) € (0,00)x(0,00) with ¢ given in (5.18) above. This completes the proof. O
We undertake the study of the optimal stopping problem (5.20) in Section 7 below by

deriving basic properties of the optimal stopping boundaries.

6. Lagrange and Mayer time-space formulations

The optimal stopping problem (5.20) is Bolza formulated. In this section we derive its
Lagrange and Mayer reformulations which are helpful in the subsequent analysis of the problem.

1. We first consider the Lagrange reformulation of the optimal stopping problem (5.20).

Proposition 7. The value function V from (5.20) can be expressed as

6.1) V(t, ) = inf EO[ / ) | ($9) ds — gef/a(q%w)] + M()
7 0
for (t,¢) € Rx(0,00) where 6?/“(@55") is the local time of 9% at bj/a and o given by
A 1 o A A A
(6.2) 4 (9¢) = P-h?oq 2—/ I(t—e <97 < 2ie)d(9%,9%),
€ g 0

and the infimum in (6.1) is taken over all stopping times o of P .

Proof. This can be derived in exactly the same way as Proposition 3 above (replacing the
process @ by its time-changed version @ ). O

The Lagrange reformulation (6.1) of the optimal stopping problem (5.20), similarly to
(4.1) in relation to (3.15), reveals the underlying rationale for continuing vs stopping in a
clearer manner. This again can be seen by recalling that the local time process s — (2/%($%)
strictly increases only when &% is at b/a, and that lid “(@P¥) ~ /5 is strictly larger than
N e [(2) dr ~ s for small s, we see from (6.1) that it should never be optimal to stop at
¢ = b/a and the incentive for stopping should increase the further away @¢ gets from b/a .
We will see in Section 7 below that these informal conjectures can be formalised as stated in
the paragraph following the proof of Proposition 3 above.

2. We next consider the Mayer reformulation of the optimal stopping problem (5.20).

Proposition 8. The value function V from (5.20) can be expressed as

(6.3) V(t, ¢) =inf E, [e“(““’) <5i+5i
i 0 1

—(13?) (#2)*" + (ad? A b)] - e“(élOJréil@) e

for (t,p) € Rx(0,00) where the infimum is taken over all stopping times o of P .

Proof. This can be derived by time changing (4.5) via (5.2) and using (5.17) above.
Alternatively we see from (5.9) that the infinitesimal generator of (t+s,®¥)>0 is given by

2
(6.4) O+ Ly = at+%¢aw.
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Defining K(t,p) = e ((1/80)+(¢/61))0*/7 it is easily verified that

~ A

(6.5) (O +1Lg) (K)(t, @) = e L)

for (t,¢) € Rx(0,00) where L is defined above Proposition 6. By Ito’s formula we thus get

(6.6) K(t+s,q%f):f%(t,<p)+/ (6t+ng)(K)(t+r,§23f)dr+/ K, (t4r,&7)y % dB,
0 0

A S ~ N S 2 2
:K(MO)Jr/ 6”(”’")L(q5f)dr+/ ’ye”(t”)<—+ il
0 0 v8 Yo

&7 ) (#9)"" dB,

for t > 0 where the final term on the right-hand side defines a continuous local martingale.
Making use of a localising sequence of stopping times for this local martingale if needed, and
applying the optional sampling theorem, we find from (6.6) that

(6.7) Eo[K(t+0,82)] = K(t,¢) + Eo[ / e~ (B9 dr
0

for all (bounded) stopping times ¢ of & . Inserting (6.7) into (5.20) we obtain (6.3) as claimed
and the proof is complete. 0]

Note that the Mayer reformulation (6.3) of the optimal stopping problem (5.20) is specific
to the setting of Bessel processes.

7. Properties of the optimal stopping boundaries

In this section we establish the existence of an optimal stopping time in (3.15) and derive
basic properties of the optimal stopping boundaries. Given that the optimal stopping problem
(3.15) stands in one-to-one correspondence with the optimal stopping problem (5.20) as shown
in Proposition 6 above, these facts then translate from (3.15) to (5.20) in a straightforward
manner. In the first part of this section we focus on the former problem.

1. Looking at (3.15) we may conclude that the (candidate) continuation and stopping sets
in this problem need to be defined as follows

(7.1) C = {(p.2) € [0,00)x[0,00) | V(ip,x) < M(y) }

(7.2) D = {(p.x) € [0,00) x[0,00) | V(p,z) = M(p) }

respectively. Time changing (4.5) by (5.2) and recalling that (5.11)4(5.12) define Markovian
functionals of the initial points, we see that the expectation in (4.5) defines a continuous function
of the initial point (g, z) for every (bounded) stopping time 7 given and fixed. Taking the
infimum over all (bounded) stopping times 7 we can thus conclude that the value function
V is upper semicontinuous. From (4.5) we see that the loss function is continuous and hence
lower semicontinuous too. It follows therefore by [8, Corollary 2.9] that the first entry time of
the process (@, X) into the closed set D defined by

(7.3) Tp=inf{t>0](d,X,) €D}
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is optimal in (3.15) whenever P,.(7p < o0) =1 for all (p,z) € [0,00)%[0,00) . In the sequel
we will establish this and other properties of 7p by analysing the boundary of D .

2. We first show that the vertical line ¢ = b/a is contained in C'. This fact is usually
established using the scale function and speed measure techniques (see [8, pp 292-293] and 3,
pp 523-524]). Motivated by the Lagrange reformulation (4.1) of (3.15) we now give a new proof
of this fact based on the local time as discussed following the proof of Proposition 3 above.

Lemma 9. The set {(p,x) € [0,00)x[0,00) | ¢ =b/a} is contained in the continuation
set C' of the optimal stoping problem (3.15).

Proof. Time changing (3.15) as in the proof of (5.13) and passing from M(®) to (%/*(d)
as in the proof of (6.1) we see that

(7.4) V(p.2) = inf Eq / (1469) (XD ds — & 14°(69)] + M ()
g 0
for (p,x) € (0,00)x(0,00) . By It6-Tanaka’s formula we find using (5.9) that

(7.5) DV~ b/a| = My + €7/ (")

for t > 0 where M = (M,;);>0 is a continuous martingale. Recalling (5.11) we see that the
left-hand side in (7.5) equals

(7.6) )9( VB-e 1)\ b ‘ i(m}%;ﬂ

a a
n

for t > 0. Taking E, on both sides of (7.5)+(7.6) and using that B, ~ v{B; we get

) o @] = Ve vi(ym - L) 30 VB ED

n=

for ¢t > 0. Dividing both sides of (7.6) by v/t > 0 and letting ¢ | 0 this shows that

t10 a

.1 b~ b_ - b\/?
. lim — Eo [,/ (®Y)] = y=E¢|By| = =,
(7.8) Hn\/E O[t ( )] "y o|Bil =7~ -

It means that Eo[¢/*(#¥/%)] ~ v/t as ¢ | 0. On the other hand, it is clear from (5.11) and
(5.12) that Eo[f()t(1+§§g/a) (X*)2ds] ~t as t | 0. Combining these two facts it is evident that
the expectation in (7.4) is strictly negative when ¢ =b/a if o =t is taken sufficiently small.
This shows that each point (b/a,z) belongs to C' for x > 0 and the proof is complete. [

3. Moving from the vertical line ¢ = b/a outwards let us formally define the (least) bound-
aries between C' and D by setting

(7.9) bo(z) = sup { ¢ € [0, g] | (p,z)eD} & bi(z) =inf {pe [g,oo} | (p,z)€D }

for every x> 0 given and fixed. Clearly by(z) < g < by(z) for all x >0 and the supremum
and infimum in (7.9) are attained since D is closed.
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Lemma 10. The mapping = — bo(x) is increasing and the mapping x +— by(z) 1is
decreasing with 0 < by(z) < 2 < by(z) < oo for all x>0 and we have

(7.10) C ={(p,z) €0,00)x[0,00) | bo(z) < ¢ < bi(x)}
(7.11) D ={(p,x) €[0,00)%x[0,00) | 0 < ¢ < by(xz) or bi(x) <p<oo}.

Proof. 1. Note from (5.11)-(5.13) that

~

(7.12) @ — V(p,x) is increasing and concave on [0, 00)

(7.13) x — V(p,x)—M(p) is increasing on [0, oc)

for each = > 0 and ¢ > 0 given and fixed. Concavity of ¢ — V(¢,z) in (7.12) combined
with non-negativity and piecewise linearity of ¢ +— M(p) in (3.15) implies that if (p,z) € D
with ¢ < b/a and ¢; < ¢ then (¢1,2) € D as well as that if (p,z) € D with ¢ > b/a
and ¢y > ¢ then (¢9,z) € D . This shows that by and b; from (7.9) alone separate C
and D fully and hence (7.10) and (7.11) are valid as claimed. Moreover, if (p,x;) € D and
zy > x; then by (7.13) we see that 0 = Vi, 1) —M(p) < V(p,22)—M(p) < 0 so that
V(p,23)—M(p) =0 and hence (p,22) € D as well. This shows that x +— by(x) is increasing
and x +— by(x) is decreasing on (0,00) as claimed.

2. We show that by(z) > 0 for all x > 0. For this, suppose that there exists z; > 0 such
that bo(z1) = 0. By the increase of by we then know that [0, ¢1]x [0, 1] is contained in C
where we let 7 stand for b/a. Set zq = x1/3 and x = 221/3, choose any ¢ in (0,p;),
and consider the stopping times

(7.14) o0 sy = nf{t>0] BY > ¢y or XP ¢ (x9,71) }
(7.15) Opozy =i {2 >0] X7 ¢ (zg,11) }.

Then o%* < op where op =inf{t > 0| (&, X,;) € D} is an optimal stopping time so

©1;T0,T1

that from (5.13) we find that

0,z
Tp1520,21

(7.16)  V(px) =EC, [ /0 UD(1+s23t)det + M(@D)} > E, [ / (1+7) (th)2dt]

0

> ZL’S EO [O’lerxo IEJ — T EO[

1'0 l'1j| > O
as ¢ | 0. This shows that taking ¢ > 0 sufficiently small we get Vip,z) > ap = M(p)
which is a contradiction since V < M . Hence bo(x) >0 for all x >0 as claimed.

3. We show that b;(z) < oo for all > 0. For this, suppose that there exists z; > 0 such
that by(z1) = oo . By the decrease of b; we then know that [b/a,00)x[0,z;] is contained in
C'. Set x =x1/2, choose any ¢y < ¢ in [b/a,o0), and consider the stopping times

(7.17) oo, =inf{t>0] Bf < g or XP >z}
(7.18) U;I:mf{t20|)ztx2x1}.
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Then ¢%2% < op so that from (5.13) we find that

$0;%1

P,z
Tpp;z1

(719)  V(p,z) = E?DJ[/OUD(lJrsZAﬁt)XEdHM(QBUD)} > EO[/

(1+87) (X7)? dt]

T
1

> (140) EO[/ ' (f(f)th] - (1+900)E0[/ (Xf)%t] > b
0 0

as ¢ — oo if ¢ is taken large enough for the final/strict inequality to hold (upon noting
that the final expectation is strictly positive). This shows that taking ¢ > 0 sufficiently large
we get V(p,x) > b = M(p) which is a contradiction since V < M . Hence by(z) < oo for
all x > 0 as claimed and the proof is complete. O

Lemma 11. The following relations hold

(7.20) h%l bo(x) =0 & h%l bi(x) = o0
. . b
(7.21) lim bg(z) = lim by(x) = —.
T—00 T—00 a

Proof. 1. For (7.20) in view of Lemma 10 it is enough to show that for every ¢ > 0 (small
and large) there exists = > 0 small enough such that (p,z) belongs to C'. For this, fix any
¢ >0 and note from (5.13) that

(7.22) Vip,z) < EO[/OS(Hq%f) (XF)2dt + M(q%f)}

for all > 0 with any s > 0 given and fixed. Since the random variable ng has for its
support the entire (0,00) , it is easily verified that the Jensen inequality is strict

A

(7.23) Eo [M(3%)] < M(yp)

S

where we note that ¢ +— M () = ap Ab is concave on (0,00) . Recalling (5.12) we see that
(7.24) EO[/ (1+8¢) (Xf)th} — Eo[/ (1+8¢) (X;)th}
0 0

can be made arbitrarily small in (0,00) by choosing z > 0 sufficiently small. Combining
(7.22)-(7.24) we see that V(p,z) < M(yp) for x > 0 sufficiently small so that (p,x) belongs
to C as needed and the proof of (7.20) is complete.

2. For (7.21) suppose that by(o0) := lim, . bp(x) < b/a and fix any ¢ € (by(c0),b/a)
(e.g. the mid point). Consider the stopping times

(7.25) oo ey = nf {t >0 7 ¢ (o, p1) or XF <y}
(7.26) 08, o =inf{t > 0] ¢ (0, 01) }
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with « > zy in (0,00) given and fixed where we set ¢y := b(co) and ¢; = b/a. Then
lopines < op so that from (5.13) we find that

$0,$1;Z0

o,z
To0,91;520

(7.27) Vip,x) = Egyx[/om(1+qﬁt))23dt+M(@D)} > Eo[/o

The1iz0 N 75001 ~
> 72 EO[/ (X2t - o0 EO[/ (X} di] = o0
0 0

as r — 00 (Aupon noting that the final expectation is strictly positive) which is a contradiction
since V' < M < b < oo . This shows that by(co) = b/a as claimed. The case (b/a,b;(c0)) # 0
can be disproved similarly and this completes the proof. U

(1+67) (X7)2dt

4. The results of Lemmas 9-11 translate from the optimal stopping problem (3.15) to its
time-space version (5.20) in a straightforward manner using the diffeomorphic transformation
described in (5.15)-(5.18). This can be summarised as follows (see Figure 2 below).

Corollary 12. The continuation and stopping sets in the optimal stopping problem (5.20)
are given by the following expressions

(7.28) C={(t.p) € Rx[0,00) | V(t,p) < M()}
= {(t,) € Rx[0,00) [ bo(t) < < bu(t) }
(7.29) D={(t,p) € Rx[0,00) | V(p,x) = M(p) }
= {(t,) € Rx[0,00) | 0 < < hy(t) or bi(t) < < oo}

respectively, where the mapping t — Bo(t) 15 increasing and the mapping t — IN)I(t) 18 decreas-
ing with 0 < bg(t) <2 < bi(t) < oo forall t € R and the following relations hold

(7.30) im bh(t) =0 & lim by (t) = 0o
i i b

Proof. All claims follow directly from the facts proved in Lemmas 9-11 using the equivalence
between the problem (3.15) and its time-changed version (5.13) combined with diffeomorphic
transformation (5.18) which realises the equivalence between the problem (5.13) and its time-
space verson (5.20) as established in Proposition 6 above. O

Remark 1. The conclusion that by(t) > 0 for all ¢ € IR in Corollary 12 cannot be derived
directly from the fact that bo(z) > 0 for all z >0 with lim,0bo(z) = 0 using (5.18) because
this implication would require some information on the rate of convergence in the latter limit.
We now show that by(t) > 0 for all + € IR when > 2. This can be done through a direct
analysis of the optimal stopping problem (5.20) as follows. Suppose that by(t1) = 0 for some
t1 € IR and fix any to <t;. Set 0 =t;—tp and consider the stopping time

(7.32) 0o = inf {s €1[0,0] | &5 > b/a}

for € >0 given and fixed. Since [to,t,)x[0,b/a] C C' we see that ag’s > 03/, Where O'g’g =
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inf{s> 0] (ty+s,9%) € D} is the optimal stopping time in (5.20). It follows therefore that

€ 15

~ g /a A A o /a
(7.33) V(to,e) > ED[/ ' e 0F9) (1 4-92) (2)2/ ds] > 2/ Eo[/ ’
0 0

en(to—&-s) eZBS—'ys ds

where we use (5.11) and note that
O'Z/a ~ 4 ~
(734) EO[/ em(to—&—s) 62Bs—’)/s ds] N EO[/ el@(to+s) 62Bs—'ys d8i| = 1>0
0 0

as ¢ | 0 since o3, T 0 due to ¢ | 0. From (7.33) and (7.34) we see that taking & > 0
sufficiently small we get V(te,e) > (I/2)e¥" > ae = M(e) which is a contradiction since
V < M . Hence by(t) >0 for all ¢t € IR when v > 2 as claimed.

Remark 2. We will see in Section 9 below that the optimal stopping boundaries by & b
can be characterised as the unique solution to a coupled system of nonlinear Volterra integral
equations. These equations can be used to find the optimal stopping boundaries bo & by
numerically (as shown in Figure 2 below). Using (5.18) it is easily seen that

(7.35) b () = exp (5 551(9) & b7 (0) = ¢ exp (5 b ()

for ¢ > 0 and these identities can then be used to find by & b; numerically (as shown in
Figure 3 below). We will return to this point at the end of Section 9 below.

8. Free-boundary problems

In this section we derive the free-boundary problems that stand in one-to-one correspon-
dence with the optimal stopping problems (3.15) and (5.20) respectively. The two free-boundary
problems are equivalent and the latter problem can be seen as a canonical time-changed refor-
mulation of the former problem. Using results derived in the previous sections we show that the
value functions and their optimal stopping boundaries (V, bo,b1) and (V; bo, I;I) from (3.15)
and (5.20) solve the free-boundary problems respectively. This establishes the existence of a
solution. Its uniqueness in natural classes of functions will follow from a more general unique-
ness result established in Section 9 below. This will also yield a double-integral representation
for the value function V expressed in terms of the optimal stopping boundaries bo & by . A
similar integral representation also holds for the value function V expressed in terms of the
optimal stopping boundaries by & b; but we will not state it explicitly.

1. We first consider the optimal stopping problem (3.15) where the strong Markov process
(&, X) solves the system of stochastic differential equations (3.16)+(3.17) under the measure
P, with (¢, z) € [0,00)x[0,00) . Recalling that the infinitesimal generator ILg x of (@, X)
is given by (4.10) with (2.3)+(2.8) above and relying on other properties of V and by &
by derived in Section 7 above, we are naturally led to formulate the following free-boundary
problem for finding V and by & by :

do—1 -~

7
V., +
2:L‘$

V ?ﬁva—f‘ %a;:—L in C

ﬁ

(8.1)

%?Iﬁ
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(8.2) V(g,x) = M(p) for (p,z) € D (instantaneous stopping)
(8.3) f/@(go,x) = M'(p) for ¢ =bo(z) & ¢ =bi(zx) with = >0 (smooth fit)
(8.4) Vo(p,2) =0 for ¢ =by(x) & ¢ =by(x) with >0 (smooth fit)

where we set L(p) = 14+¢ for ¢ € [0,00) and the (continuation) set C' and the (stopping)
set D are given by (7.10) and (7.11) respectively. Clearly the global condition (8.2) can be
replaced by the local condition V(g,z) = M(p) for ¢ = by(x) & ¢ = bi(x) with >0 so
that the free-boundary problem (8.1)-(8.4) needs to be considered on the closure of C' only
(extending V' to the rest of D as M being then evident).

2. We next consider the optimal stopping problem (5.20) where the strong Markov process
(t+5,8%?),50 in its second/spatial component solves the stochastic differential equation (5.9)
under the measure Py yielding the explicit representation (5.11) for ¢ > 0. Recalling that the
infinitesimal generator d,+ILg of (t4s,®?).q is given by (6.4) and relying on the connection
between (t+ s, d? ?)s>0 and (@, X) realised through (5.13) and (5.15)-(5.18) combined with
other properties of V and by & by derived in Section 7 above, we are naturally led to
formulate the following free-boundary problem for finding V and by & by

2

(Vi + % * Vo) (t,p) = —€™L(p) for (t,¢) € C

(8.5)

(8.6) V(t,p) = M(p) for (t,p) € D (instantaneous stopping)

(8.7) Vi(t,) =0 for ¢ =bo(t) & @ =bi(t) with t € IR (smooth fit)

(8.8) V,(t, o) = M'(¢) for ¢ =by(t) & @ =bi(t) with t € IR (smooth fit)

where we recall that L(p) = (14¢)¢*"7 for ¢ € [0,00) and the (continuation) set C' and
the (stopping) set D are given by (7.28) and (7.29) respectively. Clearly the global condition
(8.6) can be replaced by the local condition V(t,¢) = M(yp) for ¢ =by(t) & ¢ = by(t) with
t € IR so that the free-boundary problem (8.5)-(8.8) needs to be considered on the closure of
C' only (extending V to the rest of D as M being then evident).

3. To formulate the existence and uniqueness result for the free-boundary problem (8.1)-(8.4)
we let C denote the class of functions (F';ag,a;) such that

(8.9) F belongs to C'(Coyay) N C?*(Capay) and is bounded on [0, o) x [0, 00)
(8.10) ap is continuous and increasing on (0,00) with ao(0+) =0 and ag(c0) = b/a
(8.11) a; is continuous and decreasing on (0,00) with a;(0+) = oo and a;(c0) =b/a

where we set Cyy o = { (¢, 2) € [0,00)x[0,00) | ap(x) < ¢ < ai(zx) } .

Theorem 13. The free-boundary problem (8.1)-(8.4) has a unique solution (V, bo,b1) in
the class C where V is given by (3.15) and by & by are defined in (7.9).

Proof. The first fact to note is that the boundary points between C' and D are regular
for D relative to (®,X) and (®,X) in the sense that

(8.12) T —=0 & o — 0
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with Py -probability one whenever (¢,,z,) from C tends to (¢,z) at its boundary 0C
specified by ¢ = by(z) or ¢ =bi(x) for £ >0 as n — oo . Recall in (8.12) that 75" is the
first entry time of (¢#m%n X% into D and o%"™ is the first entry time of ($#m*r, X**) into
D for n>1. It is well known (because both (¥, X) and (@, X) are strong Feller processes)
that (8.12) is equivalent to the fact that the first hitting times of (@, X) and (&,X) to D
defined by 7p =inf{t > 0| ($;,X;) € D} and 6p =inf{t > 0] (4, X;) € D} are equal to
zero with P -probability one whenever (¢, z) belongs to dC . Given that the time change
t — T, in (5.2), which builds (@, X) from (&, X), is strictly increasing on [0,00) , we thus
see that the boundary points in OC are regular for D relative to (&, X) if and only if they
are regular relative to (437 X ) . The latter process however is just a pair of geometric Brownian
motions (5.11) and (5.12) for which (upon recalling that by & b, are monotone) the regularity
at each point ¢ or z for [p,00) or [r,00) respectively is evident from the regularity of 0 for
[0,00) relative to standard Brownian motion (with drift). These arguments establish (8.12)
and equipped with this fact we can then adapt the proof of Proposition 13 from [4] and infer
the global C! regularity of the value function V in the sense that

~

(8.13) (p,z) — V,(p,x) is continuous on [0, 00) %[0, 00)
(8.14) (¢, ) — Vy(p,x) is continuous on [0, 00)x [0, 00).

Moreover, since the problem (3.15) stands in one-to-one correspondence with the problem (5.20)
for the time-space process whose infinitesimal generator has only one partial derivative with
respect to time, and this correspondence is established by the diffeomorphic transformation
(5.18) (in addition to the time change (5.2)), we see that the same arguments as in the proof
of Corollary 14 from [4] imply that

(8.15) V., admits a continuous extension from C to cl(C)

where for notational reasons we let cl(C') denote the closure of C'. For the same reason we
see that the analogous arguments as in the proof of Proposition 15 from [4] imply the basic
regularity of by & b; in the sense that

(8.16) x+— bo(x) & x> by(x) are continuous on (0, 00).

Combined with other properties derived in Section 7 above, this shows that the triple (V, bo, b1)
belongs to the class C . Moreover, from the Bolza formulation (3.15) we know that V solves
(8.1) and from (8.13)+(8.14) we know that V satisfies (8.3) and (8.4). Since V evidently
satisfies (8.2) this show that the triple (V;bg,b;) is a solution to the free-boundary problem
(8.1)-(8.4) in the class C. To derive uniqueness of the solution we will first see in the next
section that any solution (F';ao,d;) to the free-boundary problem (8.5)-(8.8) in the class C
defined analogously to C (to be specified below) admits a closed double-integral representation
for F' in terms of do & @ , which in turn solve a coupled system of nonlinear Volterra integral
equations, and we will see that this system cannot have other solutions satisfying the required
properties. Recalling that the problem (3.15) stands in one-to-one correspondence with the
problem (5.20) and putting these facts together we can conclude that there cannot be more
than one solution to (8.1)-(8.4) in the class C as claimed. O
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4. To formulate the existence and uniqueness result for the free-boundary problem (8.5)-
(8.8) welet C be defined in exactly the same ways as C above with the domains [0, 00)x[0, c0)
and (0,00) being replaced by the domains IR x[0,00) and IR respectively (the right-hand
limits at 0 in (8.10) and (8.11) becoming the limits at —oo with the same values).

Corollary 14. The free-boundary problem (8.5)-(8.8) has a unique solution (\7, 50,51) in
the class C where V is given by (5.20) and by & by are defined in (7.32).

Proof. This follows from Theorem 13 using the fact that the value function V from (5.20)
and its optimal stopping boundaries bo & by are a canonical time- changed reformulation of
the value function V from (3.15) and its optimal stopping boundaries by and b; obtained by
means of the diffeomorphic transformation (5.18) as explained in Section 5 above. U

9. Nonlinear integral equations

In this section we show that the optimal stopping boundaries bo and b; from (7.29) can be
characterised as the unique solution to a coupled system of nonlinear Volterra integral equations.
This also yields a closed double-integral representation of the value function V from (5.20)
expressed in terms of the optimal stopping boundaries bo and by . Analogous results also hold
for the optimal stopping boundaries by and b, from (7.9) and the value function V from (3.15)
but we will not state them explicitly. As a consequence of the existence and uniqueness result
for the coupled system of nonlinear Volterra integral equations we also obtain uniqueness of the
solution to the free-boundary problems (8.1)-(8.4) and (8.5)-(8.8) as explained in the proofs
of Theorem 13 and Corollary 14 above. Finally, collecting the results derived throughout the
paper we conclude our exposition at the end of this section by disclosing the solution to the
initial problem.

From (5.11) we easily find that the probability density function of éﬁf is given by

2

7\/2—;@ exXp [_271275 (1tog (%) ol

for t >0 and ¢ & ¥ in (0,00). Having f we can evaluate the expression of interest
appearing in the theorem below as follows

(9.1) flpyt, ) =

~

(9.2) K(p3t, 01, 02) i= Eo[L(D7) I (1 <D <p2)] = /wZL(iﬁ)f(cp;tﬂb) drp

1

for t >0 and ¢, @1 & @, in (0,00) where L(¥) = (1+¢)9*7 for ¢ > 0.

~ Theorem 15 (Existence and uniqueness). The optimal stopping boundaries by and
by in the problem (5.20) can be characterised as the unique solution to the coupled system of
nonlinear Volterra integral equations

(9.3) aby(t) = /OO ") K (bo(t); s, bo(t+5), by (t+35)) ds
(9.4) b= /OO ") [ (by (b); 5, bo(t+5), by (t+5)) ds
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Figure 2. Location of the optimal stopping boundaries bo and by for the Bessel

motion from Figure 1.

in the class of continuous functions bo and_ by on IR where t — Eo(t) is increasing and
t— bi(t) is decreasing with 0 < by(t) < 2 < bi(t) < oo for t € R. The value function V in
the problem (5.20) admits the following representation

(9.5) V(t,g) = / ) K (15, Bolt-+5), by (t-+5)) ds
0

for (t,p) € Rx(0,00) . The optimal stopping time in the problem (5.20) is given by
(9.6) 05,5, =inf {5 > 0| ¢ ¢ (bo(t+s),bi(t+s)) }
under Py with (t,¢) € Rx(0,00) given and fized (see Figure 2 above).

Proof. 1. Ezxistence. We first show that the optimal stopping boundaries bo and b; in the
problem (5.20) solve the system (9.3)4+(9.4). Recalling that by, and b, satisfy the properties
stated following (9.3)+(9.4) as established above, this will prove the existence of the solution
to (9.3)4(9.4). For this, we will first note that Ité’s formula is applicable to V' composed with
(t+s,8¢) for s >0 with t € IR and ¢ € (0,00) given and fixed. Indeed, recalling that V is
C2 on the closure of C' and equals M on D (which also is C*? since the line ¢ = b/a at
which M as a function of two arguments is non-smooth belongs to C' as established above)
we see that the local time-space formula from [7] is applicable to V composed with (t+s, %)
for s > 0 and moreover this formula reduces to It6’s formula due to the smooth fit condition

(8.8). Using (8.5)4(8.6) this yields

(9.7) V(t+s,q%f):x7(t,go)+/ (17t+1ngf/)(t+r,q%f)dr+/ V,(t+7, 8%)y D dB,
0 0
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Figure 3. Kinematics of the process (@, X) associated with the Bessel motion
from Figure 1 and location of the optimal stopping boundaries by and by .

where M, fo (t+r, &%) 'y@“’ dB, is a continuous local martingale for s > 0. Taking a
localisation sequence of stopping times (7,),>1 for M | replacing s on both sides of (9.7) by
s A\ T, , applying the optional sampling theorem and letting n — oo, we obtain

(9.8) Eo[V(t+s,07)] = V(t, ) — Eo[ /0 e E(BE) T (B (1) < BF < By (1-47)) dr}

for s > 0. Letting s — oo and noting that 0 < V(t+s,d¢) < M(P¢) = ad? ANb — 0 we see
that the dominated and monotone convergence theorems yield

(9.9) V(t,p) = EO[ /0 N LG9) I (B (17) < B <Dy (t41)) dr}

which establishes the representation (9.5) upon recalling (9.2) above. Recalling that V(t,bo(t))
= M(bo(t)) = abo(t) and V(¢ bi(t)) = M(bo(t)) = b we see that (9.5) implies (9.3) and (9.4).
This shows that by and b; solve the system (9.3)+(9.4) as claimed.

2. Uniqueness. To show that by and b; are a unique solution to the system (3.3)+(3.4)
one can adopt the four-step procedure from the proof of uniqueness given on [1, Theorem 4.1]
extending and further refining the original arguments from [6, Theorem 3.1] in the case of a
single boundary. Given that the present setting creates no additional difficulties we will omit
further details of this verification and this completes the proof. 0J

The coupled system of nonlinear Volterra integral equations (9.3)+(9.4) can be used to find
the optimal stopping boundaries bo and b numerically. Note that the identity (9.8) can be
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used to produce a finite horizon approximation to the system obtained by replacing s with
T—t in (9.8) which yields (9.9) and hence (9.3)+(9.4) as well with 7—t in place of oo as the
upper limit of integration (making (9.3)+(9.4) solvable numerically by backward recursion).
Having found 50 and 51 the identities (7.35) can be used to calculate by and b; numerically.
Collecting the results derived throughout we now disclose the solution to the initial problem.

Corollary 16. With the initial point © > 0 of the process X solving (2.2)+(2.3) given
and fized, the value function of the initial problem (2.4) is given by

(9.10) Vi(m) = (1-m) V(210g[(12) 2], =)

for me (0,1) with v=(6,—00)/2 and r = (6,+00—4)/2 where the function V is given by
(9.5) above. The optimal stopping time in the initial problem (2.4) is given by

(9.11) T, = inf {t >0 | T (&y exp (—%/ﬂt ;Z ) ¢ (bo(Xy), b1(Xy)) }

l—-7m\=z

(see Figure 3 above upon noting that the random variable on the left-hand side from the non-
inclusion sign equals @7 with ¢ = 7/(1-r) for 7€ (0,1) fived) where by & by are expressed
in terms of bo & by by (7.35) respectively and bo & by are a unique solution to the coupled
system of nonlinear Volterra integral equations (9.3)+(9.4). The optimal decision function d.,
equals i and we conclude that the dimension of the observed process X is 0; if the stopping
in (9.11) happens at b; for i =0,1.

Proof. The identity (9.10) follows by combining (3.9)+(3.10) in Proposition 2 with (5.19)
in Proposition 6 and the result of Theorem 15. The explicit form (9.11) follows from (9.6)
in Theorem 15 combined with (5.15)-(5.18). The final claim on the optimal decision function
follows from the general argument invoked following (2.6) above completing the proof. O
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