SEQUENTIAL TESTS FOR THE MEAN OF A NORMAL DISTRIBUTION
IV (DISCRETE CASE)

By HermaN CHERNOFF!

Stanford University

1. Summary. The problem of sequentially testing whether the mean of a
normal distribution is positive has been approximated by the continuous analogue
where one must decide whether the mean drift of a Wiener-Lévy process is posi-
tive or negative [3]. The asymptotic behavior of the solution of the latter prob-
lem has been studied as ¢ — < and as ¢ — 0[1], [2], [4], [5]. The original (discrete)
problem, can be regarded as a variation of the continuous problem where one is
permitted to stop observation only at the discrete time points &, & <+ &, to +
25, - .

Especially since the numerical computation of the solution of the continuous
version can be carried out by solving the discrete version for small 8, it is im-
portant to study the relationship between the solutions of the discrete and
continuous problems. These solutions are represented by symmetric continua-
tion regions whose upper boundaries are Z;(¢) and #(¢) respectively. The main
result of this paper is that

(1.1) (t) = #(t) + 26 + o(~/5).

This result involves relating the original problem to an associated problem and
studying the limiting behavior of the solution of the associated problem. This
solution corresponds to the solution of a Wiener-Hopf equation. Results of
Spitzer [6], [7] can be used to characterize the solution of the Wiener-Hopf
equation and yield # as an integral, which, as Gordon Latta pointed out to the
author, is equal to {(3)/(2r)} = —.5824.

The associated problem referred to above is the following. A Wiener-Lévy
process Z; starting at a point (z, ¢), ¢ < 0 is observed at a cost of one per unit
time. If the observation is stopped before ¢ = 0, there is no payoff. If t = 0 is
reached, the payoff is Z¢' if Z, < 0 and 0 if Z, > 0. Stopping is permitted at
times t = —1, —2, «--

2. Introduction. The reader is referred to [3], and particularly to Section 3 of
[2] for a description of the problem and notation. Briefly, assuming that the
mean drift x has a normal a-prior: probability distribution 9(uo , o0’ ), one begins
observing, starting at the point (o, fo) = (ue/00’, 1/00"), the Wiener process X,
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with independent normal increments with mean u per unit time and variance 1
per unit time, at a cost of one per unit time. If the process reaches X, = z at
time ¢ the a-posterior: probability distribution of u is 91(z/t, 1/t). In the nor-
malized version of the problem the cost of reaching the wrong decision is [u]
and the a-posteriori risk of stopping may be computed to be

(2.1) D(z,t) = (™)
where .
Y(y) =e(y) —yll —2(y)] fory=0
= o(y) + y2(y) fory <0,

¢ is the standard normal density and ® the corresponding c.d.f. For any sequential
stopping rule which may be represented by a continuation set in the (z, t) space
the a-posterior? risk given X, = z, (not counting the sampling cost required to
reach (x, t)) is given by B(z, t) where

(2.3) 1+ B, + (2/t)B: + 3B = 0

in the interior of the continuation set and B = D on the stopping set. It was seen
that the optimal procedure is represented by a continuation set such that B < D
on the continuation set and the additional boundary condition B, = D, , is
satisfied. Incidentally it was also seen that B,, — D., = 2 on the boundary.

Outside the continuation set B — D vanishes. Inside but near the optimal
boundary # B — D behaves like —(z — &)°.

Consider the statistician who is permitted to use the optimal continuous
procedure for ¢ = t but for ¢ < # may stop only at time points {; — §, t; —
28, -+ - , ete. If he measures B — D near the boundary of the continuation region
his problem resembles the associated problem described in the summary. This
remark is the key to the applicability of the associated problem to our result.

In Section 3, the solution of the associated problem is studied with the help of
Spitzer’s results. In Section 4, we examine variations of the associated problem
relevant to our application and to the stability of an iterative solution of the
Wiener-Hopf equation. In Section 5, these results are applied to obtain the
desired result concerning the relation of the boundary &; of the discrete problem
to Z.

(2.2)

3. The associated problem. The associated problem is defined in the last para-
graph of Section 1. In this section we show that the solution consists of stopping
if Z_, =2 £(—n) where the 2( —n) are negative, decrease as n — « and converge
to & = —.5824. The conditional risk for the optimal procedure, given Z, = 2
is studied. Bounds and limiting properties are derived using Spitzer’s results on
the solution of certain Wiener-Hopf equations. On occasion, the proofs have
been designed to avoid using the analytic and special properties of the normal
distribution so that some results can be generalized.

Let 0(z, t) represent the infimum, among all procedures, of the conditional
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risks (not counting the cost of reaching time { < 0) given that Z, = 2. The
procedure, which consists of stopping when #(z, —n) = 0 and continuing if
#(z, —n) < 0, is optimal and does not involve past history and therefore cor-
responds to a continuation set in the half plane ¢ < 0. For any procedure repre-
sented by a continuation set, the conditional risk v(z, ¢) is easily seen to satisfy

(3.1) 14+v 4+ 3v.,=0
subject to the boundary conditions » = 0 for ¢ < 0 and

v(2,0) = —2* forz =0
(3.2)

=0 forz > 0.
We shall find it convenient to define the following operators.

(3.3) Hou(z) = 8 + [Zoulz + ev/5)e(e) de = 6 + Spu(z), 820
(3.4) Tu(z) = [Leu(ye(y — 2)dy = [Z2u(z + e)o(e) de.

These operators are defined and analytic for complex z provided u is measurable
and does not grow too rapidly as 2 — — «. The function v = S;u(z), regarded as
a function of z and §, satisfies the heat equation v; = v,,/2. From the probabilistic
interpretation of S; as an expectation the relation Hs, [Hj,u] = Hs, vs,u follows
immediately.

As an analytic function we see that

dTu(z) f (y — 2)uly)e(y — 2) dy.

For our applications we shall have functions % which are identically zero for
z greater than some negative number a. Furthermore the derivatives will be
bounded by a polynomial for z < a. Then

dTu(z) _
dz

(3.5) —o(a — 2)ula=) + Tu'(2).

For any procedure with risk v(z, t) we define
(3.6) Wz, —n — 1) = 1 + [Zo0(z + ¢ —n)e(e) de

which represents the risk given that Z_, ; = 2 and that we do not stop at time
—n — 1. When referring to the optimal procedure we shall use a circumflex.
Hence the equations

(3.7) h(z, —mn — 1) = 1 + [Z.0(z + ¢ —n)e(e) de
(3.8) #(z, —n) = min [h(z, —n),0]

define the backward induction which gives the optimal procedure and the cor-
responding risk for the associated problem.
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It is convenient to define
(89) IL(z2) =T = [Yuyoly — 2)dy = [T% (2 + €)"¢(e) de
(8.10) Ju(z) = [sy'e(y — 2)dy = [Z. (2 + €)"¢(e) de.

Note that (—1)"I.(2) = J.(—2) > 0 and [,(z2) +J.(2) = E{(z 4+ ¢)"] where
¢ is normally distributed with mean 0 and variance 1. Furthermore I,’(z) =
nl,y (2) and J,(z) = nJ._1(z). In particular

Jo(z) = ®(2), Io(z) + Jo(z) = 1
(3.11) Ji(z) = 22(2) + o(2), I(z) + Ji(2) = =
' Jo(z) = (22 + 1)®(2) + 20(2), L(2) + Ja(z) = & + 1

Jy(2) = (& + 3)®(2) + (£ + 2)e(2),  Is(2) + Ja(z) = &' + 3.

Finally J.(z) — 0 as z — — « and hence is bounded for real z < 0, as is I,,(z)
for real z = 0.

LeEMMa 3.1

(a) Thefunction h(z, —1) is an entire function. As a function of real z, b’ (2, —1)
>0, h"(z2, —1) < 0,h(z, —=1) > lasz — =, Rz, —1) + 2 —>0asz —> — =».

(b) h(z, —1) vanishes for a unique value of z = 2(—1) < 0 and

oz, —1) = h(z, —=1) > v(2,0)  forz < 2(—1)
Mz, —1) =0 = v(z, 0) Jorz =z 2(—1).
Proor. We compute & and apply (3.5) to represent its derivatives.
bz, —1) = 1 — T = —2" + Ju(2)
Wz, —1) = —2Tz = —2I(2)
B (z, —=1) = —2T1 = —2Iy(z) = —28(—¢).

Each property in the lemma is easy to establish now.

LeMMma 3.2.
#e, —n — 1) =z #(z, —n) Jor nz0
(3.12) R .
hiz, —m — 1) 2 h(z, —n) for nz=1
and

bz, —n) =0 for z = 0.

Proor. If the discrete problem is modified by replacing v(z, 0) by #(z, —1)
the corresponding optimal solution would replace (z, —n) by #(2, —n — 1). But
since the termination risk is increased by the modification, the optimal risk is
also increased. The lemma follows.

LemMa 3.3. The statement of Lemma 3.1 is valid with h(z, —n), (z, —n) and
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5(—n) replacing h(z, —1), (2, —1) and 3(—1). Furthermore 3(—n) =<
2(—n + 1).
Proor. The lemma holds for n = 1. Assume it for a given value of n. Then

Bz, =n — 1) = 1 + Tli(z, —n)]
Bz, —n —1) = Té'(z, —n) > 0
Bz, =n — 1) = —g[a(—n) — W [2(—=n), —n)] + T?" (¢, —n) < 0.

Clearly T#(z, —n) — 0 as z — « and hence i(z, —n — 1) — 1. Forz < (—n),
#(z, —n) = h(z, —n) and h(z, —n) + 2’ — 0 asz — — . Therefore, as z — — o,
#(z, —n) = —2° + o(1). Invoking Lemma 3.2 and the Lebesgue convergence
theorem it follows that A(z, —n — 1) 4 2° — 0. The lemma follows.

Combining Lemmas 3.1 to 3.3 yields .

TaeorEM 3.1. The optimal procedure for the associated problem consists of stop-
pingif Z_, 2 2(—n), where 3(—n — 1) < 2(—n) < 0.

To obtain the limiting behavior of #(z, —n) and 2(—n) as n — o, it is useful
to derive an upper bound. One method for doing so involves considering the con-
tinuous time procedure which calls for stopping when Z, = 0. An alternative,
which would generalize to problems without a continuous time analogue, in-
volves the procedure which calls for stopping when Z_,, = 0. The two procedures
are applied in the following lemmas to obtain the desired bound.

Lemma 3.4. The continuous time procedure which consists of stopping when
Z, = 0 has risk v(z, &) = v(z, 0).

Proor. This result could be established directly by an argument which in-
volves integrating payoff and sampling time with respect to the probability
elements corresponding to paths which terminate before time zero and those
which intersect the ¢ axis for Z, between y and y 4+ dy but which never go above
the z axis.

As an alternative we simply note that for z < 0,v(z, t) = —2° is a solution of
the associated partial differential equation (3.1) which satisfies the boundary
condition forz = 0,1 < 0Oandfor¢t = 0,2z = 0.

LEmMa 3.5.

(a) =2 £ 0(z, —n) = =2+ 1forz £0,n =0,

(b) =1 £ 3(—n) <0forn > 0.

Proor. The first inequality of (a) is included in Lemma 3.3. Let »* be the risk
associated with the procedure which consists of terminating at ¢ = —n if Z; goes
above zero for some { between —n — 1 and —n. Relating this procedure to that
of Lemma 3.4, v*(z, t) < 1 -+ v(g, 0). On the other hand it is suboptimal and
hence the second inequality of part (a) follows. Thus #(z, —n) < 0 forz < —1
and 2(—n) = —1.

LemMA 3.6. The procedure which consists of stopping when Z_, = 0 has risk
v(z, — n) < vz, 0) + & Then #(z, —n) < v(z, 0) + %, and 2(—n) = —1/2%

Proor. Let X, =Z_. —Z_;,2<0,and Zy =2+ X, + Xou+ - + X1.
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Then
E(n — Z8) = =2 = Ey(n — Z}) + Eo(n — Zo),
v(z, ~n) = Ey(n — Z') + Eo(n — M)

where E; is the contribution to the expectation of paths which do not stop till
time 0, E, is the contribution of the remaining paths and — M is the stopping
time. Now

B{Z& | Z_yw M} =M+ 2%, Eyn—2Z7) = Ey(n— M) — Ey(ZLy).

Applying the type of argument used by Wald in deriving bounds for the operating
characteristics of the sequential probability ratio test

Eo(Z2x) = Bof [3 4oy — Z_ys) dy} < Ja(0) = 4.

Combining these equations the first part of the lemma follows. The rest is an im-
mediate consequence.

THEOREM 3.2.

(a) Asn — «,0(z, —n), h(z, —n) and 5(—n) converge monotontcally to 9(z),
R(z) and %, where % is between 0 and —1/2}. Also h(z, —n) and ¥’ (2, —n) con-
verge uniformly to h(z) and ﬁ'(z) for z bounded from below.

(b) The limiting funclions satzsfy
h(z) =1+ To
(3.13) ® 7o)
#(z) = min [h(z), O]

and h(z) is strictly increasing, concave, and approaches 1 as z — « while #(z) = 0
for z = % and 1s negative for z < 2.
(¢) The funciion vo(z) = #(z + %) satisfies

vo(2) = 1 4+ Two(2) for 2 =0,
(3.14) v (2) = Ty (2) > 0 for 2 <0,
—(z+ 8 Swk) 2 -G+ +1 for 2z < 0.

Proor. The monotone convergence is trivial. We restrict ourselves to sets
where z is bounded from below. Then A(z, —n) is bounded. Since W(z, —n) is
positive and decreasing, A'(2, —n) is bounded. Then every subsequence of
i (2, ~n) has a uniformly convergent subsequence to a non-negative and mono-
tone limit which must be &' (2). It follows that A(z, —n) and A'(2, —n) converge
uniformly to A(z) and #’(z). We may take limits of both sides of the equations
(8.7, 3.8) defining A(z, —n) and #(z, —n), since (2, ~n)] £ 2% Part (b) follows
readily.

Because #(z, —n) = —2’ for z < 0 and A(z, —n) is concave the tangent line
at a point on the &(z, —n) curve does not intersect the parabola. This implies
that fz'(z, —n) £ —2z + 2 for 2z < 0. With this bound the Lebesgue con-
vergence theorem yields B = T%. Part (c) follows immediately.
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CoroLLARY 1.
(a) [¥e ey (2) dz

= 21 — exp {— (1/2n) [ZlD/ (N + )] log [1 — ¢ "] dg}].

(b) & = —(1/27)[Ze N log {N'/2[1 — ¢ ™|} d\ = — .5824.

(e) v,'(0) = 24

Proov. Spitzer [6], [7] has shown that there is a unique non-decreasing positive
solution of the equation

(3.15) F(z) = [5 Fleo(z — ¢) de
subject to (0) = 1 and that this function satisfies the following properties
14 [Gr e dF(z) = exp {—(1/2m)[Za NN + £)] log [1 — ¢ ] di}
liMgae (F(2)/2) = 2 _
lim,.., [(F(2)/2%) — 2] = (1/2r)[Zo N log 2M[1 — exp (—A/2)]™ dA.

For ¢ > 0, F(z) = cv)/(—z) satisfies (3.15). Hence for the appropriate ¢,
o (0) = 1, and lim,.e cvy’' (—2)/z = 2!, The bounds on #(z) of Theorem 3.2
imply that, if the limits exist as 2 — — 0, v (2)/2 — —2, and v, (2) + 2 —
—2% Thus ¢ = 27 and (a), (b), and (¢) follow.

For0 <& < 1,0(z, —n — &) = H,b(z, —n) converges to H;5(z). Thus the
following corollary will be useful.

COROLLARY 2.

(a) Hsb(2) 1s strictly increasing and concave in z.

(b) =& £ Hp(z) £ ="+ (6 + 1)/2forz £ 0.

(C) H51+5277(z) = Hhﬁ(z) + 2. S

(d) H61+52{>(Z) = Halﬁ(Z) + 0(527)7
where the term O is uniform, for z bounded from below and 8; bounded, as 8, — 0.
For z unbounded the O term is bounded by a constant as 5, — 0.

Proor.

°° 3—2)s !
Hi() = o+ [ o+ ev/Do@de=s+ [ 0+ ev/ele) de

I

3—2)s "} .
f—( ) ¥'(z + ev/8)o(e) de > 0.

0

d .
(E HB U(z)

Increasing z decreases the integrand and the range of integration and (a) follows.
Since #(z) = —2*forz = 0, Hid(z) = 8[1 — L(z//3)] = oh(2//5, —1) = =2~
Since 9(z) < v(z, 0) + 3, Hsb(2) < oh(2/v/5, —1) + } = 8[(—2"/8) + 3] + %
for z = 0. Thus we have part (b).

The concavity of H;,? implies that

Hss,0(2) = 6 + E{H: 0(z + e\/8,)} < 8 + Hyb(2).
Finally, in the proof of the theorem, we noted that A'(z, —n) £ —2z + 2 for
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z < 0. A similar argument yields (d/dz)H;,5(z) £ —2z 4+ K, for some constant
K, if 8; is bounded. For z bounded from below and §; bounded, there is a K, such
that

H; 0(z + e\/82)

H; 0(z + e\/5y) = Hy,0(2) + Koe/3, for 0

Hsd(z + eVE) = — (2 + eV/5,) for e = —8 "
Part (d) follows by integrating,

%

H; 0(z) for ¢e>0
=

4, Modified versions of the associated problem. For our purposes it is neces-
sary to consider a modification of the associated problem. The modification will
involve changing v(z, 0), the time points at which stopping is permitted, and
the cost of observation.

Two other changes are of general interest and will also be dealt with even
though they are not necessary for the main result. First, the results of Section 3
indicate an iterative technique of approximating a solution of the equation
1 + Tv = » or of the equation T» = v. We shall observe that changing »(z, 0) by
a function which is bounded does not affect lim,.., #(2, —n). This implies that
the iterative technique is stable to the extent that the limiting effect of an error
approaches zero. We shall also show that the procedure of stopping when Z; = 0
is optimal among procedures where the time of stopping is not restricted.

For notational uniformity we use the following conventions. If v(z, 0) is re-
placed by v:(z, 0), v.(z, ¢) will represent the risk associated with a given pro-
cedure. A circumflex is used to indicate the optimal risk, a dagger is used to indi-
cate that the set of possible time points for stopping prior to ¢ = 0 is
{teim = 1,2, -- -}, where t, # —n, and a subscript ¢ is used to indicate that the
cost of sampling is given by a rate ¢(¢) # 1. Finally, the optimal procedure for
the continuous case where one is permitted to stop at any time is denoted bya
tilde.

LemMa 4.1. Let v(z, 0) of the associated discrete problem be replaced by v1(z,0) =
v(z,0) — K, K > 0. The optimal procedure consists of stopping of Z_, = 2*(—n)
and continuing if Z_, < z°(—n). The corresponding optimal risk #i(z, —n) is
monotone increasing and concave in z. It is monolone increasing in n, 2*(—n) is
monolone decreasing in n, and 2~ (—n) is finite for n sufficiently large.

Proor. Let fu(z, —m — 1) = 1 + ffw t(z + ¢, —n)e(e) de. Following the
development of the preceding section, we find that A (z, —1) is concave with
positive derivative and A (z, —1) = (2, 0). Hence

(2, —1) = min [f(z, —1), 0] = 01(z, 0)

and, as before, this implies that #,(z, —n) is monotone increasing in n. Besides
#1(z, —1) is concave with non-negative derivative. By induction we find the con-
cavity and positive derivative of f,(z, —n) for all n. Thus the optimal procedure
consists of stopping when Z_, > 2*(—n), which is the root of h(z, —n) =0,
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and continuing otherwise. Note that if K > 1, there may be no root z*(—=).
In that case we may say 2*(—n) = «. In any case there is at most one root. The
monotonicity of 9,(2, —n) in n implies the monotonicity of z*(—n). Note that
if 0,(2, —n) —¢ < 0asz— o, hy(z, —n — 1) — ¢ + 1. Thus z*(—n) becomes
finite in a finite number of steps.

TrEOREM 4.1. Let v(z, 0) of the associated discrete problem be replaced by a meas-
urable function vi(z, 0) such that [v(z, 0) — vi(z, 0)| = K. Then the optimal risk
(e, t) = (2, t) + o(1) where the o(1) term approaches zero as t — — © uni-
formly for z bounded from below. As n — o« the optimal procedure for the modified
problem calls for stopping when Z_, = 2 + o(1) and continuing if Z_, < 4 + o(1).

Proor. For any specified procedure, the difference between the risks for the
modified and original problems {»; — v| is bounded by K times the probability of
reaching time 0. The optimal stopping sets for both problems include that for the
problem where v*(z, 0) = v(z, 0) — K. From Lemma 4.1 it follows that the
probability of a path emanating from (z, ¢) reaching time O approaches 0 as
t — — « uniformly for z in any interval bounded from below, for each optimal
procedure. The risk, in the modified problem, for using the procedure optimal
for the original problem is no larger than 4(z, ¢) + o(1). Hence #1(z, ) < 9(z, t)
+ o(1). Similarly #(z, t) < t:(z, t) + o(1).

Combining this with the trivial bound |#:1(z, ) — #(z, ¢)| < K, it follows that
asn — »

hi(z, = — 1) = 1 + [Zuta(y, —n)e(y — 2) dy

converges uniformly to A(z) for z bounded from below. Finally, for z sufficiently
negative, hi(z, —n — 1) < h(z, —n — 1) + K + 1 < 0. Since 9,(z, —n) =
min [h;(z, —n), 0] all stopping points (2, —n) for the optimal procedure for the
modified problem are such that z is bounded from below. Since hi(z, —n) con-
verges uniformly to the strictly monotone function A(z) for z bounded from below,
the optimal procedure is as deseribed in the statement of the theorem.

LEMMA 42, If [t, + n| £ 17 < 3, and tos < t Z 1, , then |87(2, 1) — H, - 5(2)]
< o(1) + 70(1) where 0 and O are uniform for z bounded from below ast — — « .
For z unbounded, o and O are uniformly bounded by a quadratic in .

Proor. The optimal procedures with stopping restricted to times {—n <+ 5}
and {—n — #} haverisks d1(2,t + 1 — ) fort +1 — 9 < O0and do(2,t + 1 + 3)
for t + 1 4+ 5 < 0 where v(z, 0) = min [Hi_pw(z, 0), 0] and (2, 0) =
min [Hy2(z, 0), 0]. Both v1(z, 0) — v(2,.0) and v:(2, 0) — v(z, 0) are bounded
and hence 8:(2, 1) = v(e, t) + o(1) and %y(2, t) = v(z, t) + o(1).

The difference between the risks for (i) the optimal procedure for the modified
time problem and (ii) the procedure which stops at times —n + 5 if the former
stops at time £, is less than 29. Hence

(4.1) (2, ta) Z (2, ta + 1 —n) — 2.

Similarly, we compare (i) the optimal procedure subject to stopping at times
—n4+1—9, —-n+2—9 -, —1— 5, with (ii) the procedure which stops at
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i, if the former stops at —r — 7,7 < n — 1. Then
(42) (2 ta) = Hip im0z, tas) S Hinogyuiba(z, —n + 2) + 2n.

Letér=n— 6 —n = 2nand 8 = 9 4+ n + & = 29. Then applying part (d) of
Corollary 2

(2, ta) 2 Hy0(2) + o(1)] — 27 2 8(2) + o(1) + 4°0(1)
h'(z, t) £ His[o(z) + o(1)] + 20 = h(z) + o(1) + 7'0(1)
e, 1) = 0(2) + o(1) + 70(1).

The lemma follows easily.

Let u.(2) = —2" forz < 0and O forz = 0.

LEmMmA 4.3.
(4.3) Silur(2)] = w(z) + ot/ (2r)!
(4.4) Silus(2)] = us(z) + 3ous(z) + 26/(2r )},

Proor.

Siltzns1(2)] = —6" (267 = —E[(z + )™ + 6" (287,
Also

—Ion1(2) £ —Ions1(0) = J2u4a(0) = 2"7&.’/(211')% for 220
J2n+1(2) é J2n+1(0) for z é 0.

Substituting in the first equality for S; for z.= 0 and the second for z < 0, the
result follows.

Lemma 4.4. If [t. + n] £ m < 3, and v2(2, 0) = vi(z, 0) + naus(2), 72 > 0,
then there is a constant K such that

(4.5) Ba'(2, t) < 01 (2, t) + mlus(2) + 3ltlm(z) + K(£ — 1)].

Proor. Applying Lemma 4.3, the result holds for #; < ¢ < 0. Suppose it holds
fort, £t < 0. Then

H652T(z; tn) é H,;z‘)lf(z, tn) + 77286[u3(z) + 3|tn|ul(z) + K(tnz - tn)
< Hit)'(2, ta) + mlus + 3lta] + 8w
+ Kt — to) -+ [26 + 3|t.]16"/(2n)Y.

Applying this inequality for § < ¢, — t,11, gives the desired result fort,.; < ¢ <
0. Applying the inequality for § = #, — t,.; and using the fact that 3,'(z, tn41) =
min [H,,., +117¢T(z, tn), 0], the result follows for { = {,,;, which completes the
induection.

The following lemma is trivial and is stated without proof.

LemmMa 4.5. If two modifications of the associated problem have the same stopping
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times t, and initial risk v;(2, 0) but differ in their observation cost rates ci(t) and
¢o(t), then

Bey(2, 1) = 0ley(2, t) + supwr<o [ [er(z)— o(2)] do

TuEoREM 4.2. If the associated problem is modified so that
(i) the possible stopping times are t, , where |t + n| = m <
(ii) v(z, 0) 7s replaced by vi(z, 0) where vi(z, 0) = v(z, 0)
and |vi(z, 0) — v(2, 0)| < —n:’ for z < 0, and
(iii) the observation cost rate is c(t) where |c(t) — 1| < ns, then as { — — =

w;c(zi t) — Hy—d(2)| < nslt] + nolus(z) + 3[t|ua(z) + K —1)]
+ @I0) + o(1) i tap <t =t

and the same bound applies to hio(2, ta) — h(2). The o and O terms are uniform for
2 bounded from below and the n; bounded. They are also bounded by a quadratic in
z for all 2.

Proor. From Lemma 4.5 we have [01.(z, 1) — ti'(z,¢)] < n3|t| Then applying
Lemma 4.4 [9:'(2, t) — 9'(2, t)] < nafus(2) + 3ltlus(z) + K (£ — t)]. Finally, from
Lemma 4.2, |0'(2, 1) — H.,—-#(2)| < o(1) + (m)!0(1). Thus (4.6) follows. As
t — tas1 from above 9}.(z, t) — h’{g(z t) and H,,,_w(z) — th_,n“v(z) Since
[t — tayr — 1| < 2m and Hlv = h, |Hps,, D(2) — i(2)| £ (m)O(1). Thus we
have the desired result for A}, — A.

Inasmuch as a number of variations of the associated problem have been
discussed, we digress briefly to study the continuous time version of the problem.

LeEMMA 4.6. The associated problem is invariant under the transformations
t* = a¥%, ZH = aZ,, and v* (2%, t*) = d’v(z, t). [The stopping times are trans-
formed accordingly.]

The proof is trivial but the result will be used to relate the continuous and
discrete versions of the problem.

THEOREM 4.3. The optimal procedure for the continuous version of the associated
problem [with the original initial risk v(z, 0)] consists of stopping when Z, = 0 and
continuing otherwise. This procedure has risk 9(z, t) = v(z, 0).

Proor. Applying Lemma 4.6, the dlscrete problem converts to one in which
the stopping times are t,* = —na’ and v™ (2%, 0) = a%(z, 0) = v(z , 0). Hence
the original solutlon Wlth msk v(z, t) converts to stopping if Z%,.: = a2(—n)
which has risk 9*(2*,t*) = a™ (z */a, t /a ) The transformed continuous prob-
lem goes into itself. But [3¥(2*, t*) — o *(2*, t*)] £ o® and thus the transformed
discrete solution and risk converge to the continuous solution and risk as ¢ — 0.
Applying Lemma 3.5 with n = —t*/a” where @’ — 0 so thatn is integral, p* (2%,
t*) — v(z*, 0) and the theorem follows.

o=

0 for z

1i%
=]

(4.6)

5. The comparison of the discrete and continuous solution. To relate the
discrete and continuous solutions for the sequential analysis problem, we find
it convenient to convert the latter to the (y, t) = [(z/t), ¢] scale. Let § be the
upper boundary for the optimal continuous time procedure and %; be the upper
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boundary for the optimal discrete time procedure where the stopping times
are ty == no.

We introduce several new procedures. Let y;™ represent the optimal procedure
subject to the restriction that for ¢ < # , one can stop only at the discrete time
points &, — 8, & — 25, --- . For ¢t = &, y5" coincides with §. Let ys** coincide
with y5* for t < t and with §; for t = & . (The risks will use the same designation
as the procedures. Thus b(y, t) = B(z, t) and bs(y, t) = Bi(z, £).)

The four risk functions are closely related. It is clear that

b<b" b =b*"

Furthermore comparing bs with the risk of the non-optimal procedure which
stops at &, + 78 if § leads to stopping for & + (r — 1)§ < ¢ £ & + 75, we see that
bs < b+ 5. Fort = t,b"" = b;and bs™ = band hence 0 < bs**(y,¢) — bs*(y, t)
< sfort = to. But %~ and ;™™ coincide for ¢ > ¢, and thus the above inequality
holds also for ¢ > t, . Thus

0 < by, t) — by, t) = 2.

The outermost boundary, i.e., the procedure with the largest continuation set
at the times to — néand ¢t = &, is 4. But 8(§ — a,t) — d(§ — @, t) &~ —a’#*
for small a. This is due to the fact that B,, — D,, = —2and b,, — d,,, = —2f at
the optimal boundary. Hence the boundaries are all within O(5') of one another,
where the O is uniform for ¢ in any interval I bounded away from zero and infinity
where b,,, is uniformly bounded within some fixed distance of §.

Consider a process Y, starting at (yo + 6%, to — n8) where y, = 7(t0). Let
n — = in such a way that n = o(8™"). For each of the four procedures, the prob-
ability of termination along the upper boundary before time ¢, approaches one as
n — <« since the increments of Y, are normally distributed with means 0 and
variances (f — n8)™" — (o — (n — 1)8)™" =2 8ty . Hence for each of these
procedures, b(y, -+ &'z, to — nd) can be expressed as an ‘average’ of values of
d along the boundary and of b(y, t) or bs(y, t) where the weight attached
to b(y, t) or bs(y, t) approaches zero as n— . Thus the direct effect
(in this weighted average) of a discrepancy of O(8) in b (y, &) is 0(8)
on b(y + 6’:‘z, to — nd).

Since »;* and y;** coincide for ¢ <

(5.1) b (yo + 8%, to — m8) — b (yo + %2, ty — n8) = o(8).
As indicated above b;* = by £ by**. Thus it follows that
(52)  bi(yo + 8%, to — n8) — bi*(yo + 82, to — n8) = 0(5).

Now we introduce a variation g5 of ¥;* by not permitting the rejection of
H, : p > 0 before time ¢, . Suppose n is large but né is small and ¥ > a > 0. The
probability that a process starting at (y, & — nd) would lead to rejection of
H, before time #, (using the y;* procedure) is o[exp (—a’/2n8)]. We may adjust
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n— »,eg,n = o(8), so that this probability is o[3*]. Then we have
(5.3)  Bs(yo + 8%, to — m8) — bs™(yo + 8%, 8o — n8) = 0(8)  foryy + 6% > a.
Finally we relate g; to the associated problem. Let
=t — 7, 2= (y — yo)td
vi(z, 0) = [b(y, to) — d(y, 10))57".

Bestricting ourselves to te I, we have b,, — d,, = —2t2 at the optimal boundary,
b — d is bounded, and b(y, £) — d(y, t) + 22@y — §)? < Kly—9[® for some
K and for y in the continuation region. It follows that

v1(2,0) = 0 forz >0
n(z, 0) = —2° + 2°0[8"] forz 0.

(5.4)

(5.5)

With this transformation the ¢ problem becomes a variation of the associated
problem, where the initial risk is v;(2, 0) the stopping times are

b =10 Tt — (ty — n8)7] = —n + O(0%),

and the rate of sampling cost is ' per unit time in the ¢ scale and hence [ d¢*/df]™
=1+ 0(nd).

Now we let n — « so that n*s — 0 and apply Theorem 4.2. It follows that for
2 bounded
Bs(yo + 82t to — md) — d(yo + d'2t ', to — nd) = dld(z) 4+ O(n’8) + o(1)].
Hence
bs(yo + 82t to — nd) — d(yo + d2te ", 1o — md)

= §[8(2) + O(n%) + o(1)]

and the §; procedure calls for §topping if Vs > v + 6%150_1[@ + 0(1)] and
continuing if Y —ns < o -+ 8 [¢ + o(1)]. Finally three steps lead to the
following theorem. First we apply Theorem 4.2 to time {p — (n + p)3,0 < p < 1.
Then we note that (5.6) holds uniformly for £, in 7, and #, may be shifted to
ty + né if {y + née I. Finally we transform to the (x, {) space. We have

TuaroreM 5.1. The relotion between the optimal discrete and optimal continuous
procedures are described Izy

(a) &(1) = #(1) + 6T + o(1)]

(b) Bs(& + 82,80 — pd) — D(& 4 8%2, 60 — pd) =8H,#(z) +0(8)0 = p < 1
where o applies uniformly for p and z bounded and t in an interval I bounded away
from 0 and o where B, s uniformly bounded within some fized distance from .

(5.6)
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