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Abstract. In this note, we introduce a new type of warped products called as sequential warped products
to cover a wider variety of exact solutions to Einstein’s field equation. First, we study the geometry of
sequential warped products and obtain covariant derivatives, curvature tensor, Ricci curvature and scalar
curvature formulas. Then some important consequences of these formulas are also stated. We provide
characterizations of geodesics and two different types of conformal vector fields, namely, Killing vector
fields and concircular vector fields on sequential warped product manifolds. Finally, we consider the
geometry of two classes of sequential warped product space-time models which are sequential generalized
Robertson-Walker space-times and sequential standard static space-times.

1. Introduction

O’Neill and Bishop defined warped product manifolds to construct Riemannian manifolds with negative
sectional curvature[9]. Since then this notion has played some important roles in differential geometry as
well as in physics because warped product space-time models are used to obtain exact solutions to Einstein’s
equation [1–3, 7, 8, 17, 20].

Doubly and multiply warped product manifolds are generalizations of (singly) warped product mani-
folds [13, 26, 27]. In this article, we define a new class of warped product manifolds, called as sequential
warped products where the base factor of the warped product is itself a new warped product manifold.
Sequential warped products can be considered as a generalization of singly warped products. There are
many space-times where base, fiber or both are expressed as a warped product manifolds. Among many
such examples, we would like to mention especially non-trivial ones such as Taub-Nut and stationary
metrics (see [25]) also Schwarzschild and generalized Riemannian anti de Sitter T2 black hole metrics (see
§3.2 of [5] for details). Moreover, some base conformal warped product space-times can be expressed as a
sequential warped product (see [14]).

We first introduce fundamental definitions about the new concept and state some related remarks.

Definition 1.1. Let Mi be three pseudo-Riemannian manifolds with metrics 1i for i = 1, 2, 3. Let f : M1 → (0,∞)
and h : M1 ×M2 → (0,∞) be two smooth positive functions on M1 and M1 ×M2, respectively. Then the sequential
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warped product manifold, denoted by
(
M1 × f M2

)
×h M3, is the triple product manifold M̄ = (M1 ×M2) × M3

furnished with the metric tensor

1̄ =
(
11 ⊕ f 212

)
⊕ h213

The functions f and h are called warping functions.

Note that if (Mi, 1i) are all Riemannian manifolds for any i = 1, 2, 3, then the sequential warped product
manifold

(
M1 × f M2

)
×h M3 is also a Riemannian manifold.

Remark 1.2. The warped product of the form M1 × f1

(
M2 × f2 M3

)
furnished by the metric

1 = 11 + f 2
1

(
12 + f 2

2 13

)
is called the iterated warped product manifold of the manifolds M1,M2 and M3. As a metric space, the iterated warped
product manifold is equal to the sequential warped product

(
M1 × f M2

)
×h M3 where f = f1 and h = f1 f2. Similarly,

a sequential warped product
(
M1 × f M2

)
×h M3 with a separable function h : M1 ×M2 → R is equal as a metric

space to the iterated warped product manifold.

Remark 1.3. If the warping function h of the sequential warped product
(
M1 × f M2

)
×h M3 is defined only on M1,

then we have a multiply warped product manifold M1 × f M2 ×h M3 with two fibers.

Remark 1.4. A multiply warped product manifold of the form M1 × f1 M2 × f2 M3 is the sequential warped product
manifold

(
M1 × f1 M2

)
× f2 M3 equipped with the metric

1 =
(
11 + f 2

1 12

)
+ f 2

2 13

where both f1 and f2 are positive functions defined on M1.

Now, we would like to explain how to extend a generalized Robertson-Walker space-time and a standard
static space-time within the framework of sequential warped products.

Let (Mi, 1i) be two ni−dimensional Riemannian manifolds for any i = 1, 2. Suppose that I is an open,
connected subinterval of R and dt2 is the Euclidean metric tensor on I. Then
• An (n1 + n2 + 1)− dimensional product manifold I × (M1 ×M2) furnished with the metric tensor

1̄ = −h2dt2
⊕

(
11 ⊕ f 212

)
(1)

is a sequential standard static space-time and is denoted by M̄ = Ih×
(
M1 × f M2

)
where h : M1×M2 → (0,∞)

and f : M1 → (0,∞) are two smooth functions.
Note that standard static space-times can be considered as a generalization of the Einstein static

universe[2–4, 8, 12, 23, 24]. Obviously, one can obtain a standard static space-time from a sequential
standard static space-time by taking M2 to be a singleton.
• An (n1 + n2 + 1)− dimensional product manifold (I ×M1) ×M2 furnished with the metric tensor

1̄ = −dt2
⊕ h2

(
11 ⊕ f 212

)
, (2)

is a sequential generalized Robertson-Walker space-time is denoted by M̄ = I ×h

(
M1 × f M2

)
where h : I →

(0,∞) and f : M1 → (0,∞) are two smooth functions.
Note that generalized Robertson-Walker space-times can be considered as a generalization of Robertson-

Walker space-time [21, 22]. As in the case of sequential standard static space-times, one can obtain a
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generalized Robertson-Walker space-time from a sequential generalized Robertson-Walker space-time by
taking M2 to be the empty set a singleton.

In [25], there are many exact solutions of Einstein field equation where the space-time may be written
of the form I × (M1 ×M2) with metrics of the form (1) or (2).

Notice also that Sn
1 × F or Hn

1 × F are standard models in string theory where F is a Calabi-Yau, Ricci
flat Riemannian manifold and Sn

1 is the de Sitter and also Hn
1 is the anti-de Sitter manifold both of which

are warped product manifolds (see page 183 of [6]). Thus sequential warped product space-times play
important role not only in the theory of general relativity but also in the string theory.

In this article, we study some geometric concepts such as curvature, geodesics, Killing vector fields
and concircular vector fields on sequential warped products. In section 2, we derive covariant derivative
formulas for sequential warped product manifolds. Then we derive many curvature formulas such as Ricci
curvature and scalar curvature formulas. In section 3, we derive a characterization of two disjoint classes of
conformal vector fields on sequential warped product manifolds. In the last section, we apply our results
presented in Section 2 and Section 3, to sequential standard space-times and generalized Robertson-Walker
space-times.

Before we begin to state our main results, we would like to fix notations used throughout the entire
article.

Notation 1.5. Let M̄ =
(
M1 × f M2

)
×h M3 be a sequential warped product manifold with metric 1̄ =

(
11 ⊕ f 212

)
⊕

h213 where f : M1 → (0,∞) and h : M1 ×M2 → (0,∞). Then

• M = M1 × f M2 is a warped product with the metric tensor 1 = 11 ⊕ f 212.

• grad1 f is the gradient of f on M1 and ‖grad1 f ‖2 = 11(grad1 f ,grad1 f ).

• gradh is the gradient of h on M and ‖gradh‖2 = 1(gradh,gradh).

• The same notation is used to denote a vector field and its lift to the sequential warped product manifold.

2. Curvature of Sequential Warped Product Manifolds

In this section, we will explore the geometry of sequential warped products of the form
(
M1 × f M2

)
×h M3

by providing the covariant derivative, curvature tensor, Ricci and scalar curvature formulas. The proofs
that are straightforward can be obtained by applying similar results on singly warped products twice.

Proposition 2.1. Let M̄ =
(
M1 × f M2

)
×hM3 be a sequential warped product manifold with metric 1̄ =

(
11 ⊕ f 212

)
⊕

h213 and also let Xi,Yi ∈ X(Mi) for any i = 1, 2, 3. Then

1. ∇̄X1 Y1 = ∇1
X1

Y1

2. ∇̄X1 X2 = ∇̄X2 X1 = X1
(
ln f

)
X2

3. ∇̄X2 Y2 = ∇2
X2

Y2 − f12 (X2,Y2) grad1 f
4. ∇̄X3 X1 = ∇̄X1 X3 = X1 (ln h) X3

5. ∇̄X2 X3 = ∇̄X3 X2 = X2 (ln h) X3

6. ∇̄X3 Y3 = ∇3
X3

Y3 − h13 (X3,Y3) gradh

Proposition 2.2. Let M̄ =
(
M1 × f M2

)
×hM3 be a sequential warped product manifold with metric 1̄ =

(
11 ⊕ f 212

)
⊕

h213 and also let Xi,Yi,Zi ∈ X(Mi) for any i = 1, 2, 3. Then

1. R̄(X1,Y1) Z1 = R1 (X1,Y1) Z1

2. R̄(X2,Y2) Z2 = R2 (X2,Y2) Z2 −
∥∥∥grad1 f

∥∥∥2 [
12 (X2,Z2) Y2 − 12 (Y2,Z2) X2

]
3. R̄(X1,Y2) Z1 =

−1
f

H f
1 (X1,Z1) Y2
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4. R̄(X1,Y2) Z2 = f12 (Y2,Z2)∇1
X1

grad1 f
5. R̄(X1,Y2) Z3 = 0
6. R̄(Xi,Yi) Z j = 0, i , j

7. R̄(Xi,Y3) Z j =
−1
h

Hh
(
Xi,Z j

)
Y3, i, j = 1, 2

8. R̄(Xi,Y3) Z3 = h13 (Y3,Z3)∇Xi gradh, i = 1, 2
9. R̄(X3,Y3) Z3 = R3 (X3,Y3) Z3 −

∥∥∥gradh
∥∥∥2 [
13 (X3,Z3) Y3 − 13 (Y3,Z3) X3

]
Now consider the Ricci curvature denoted by R̄ic of a sequential warped product of the form

(
M1 × f M2

)
×h

M3.

Proposition 2.3. Let M̄ =
(
M1 × f M2

)
×hM3 be a sequential warped product manifold with metric 1̄ =

(
11 ⊕ f 212

)
⊕

h213 and also let Xi,Yi,Zi ∈ X(Mi) for any i = 1, 2, 3. Then

1. R̄ic(X1,Y1) =Ric1 (X1,Y1) −
n2

f
H f

1 (X1,Y1) −
n3

h
Hh (X1,Y1)

2. R̄ic(X2,Y2) =Ric2 (X2,Y2) − f ]12 (X2,Y2) −
n3

h
Hh (X2,Y2)

3. R̄ic(X3,Y3) =Ric3 (X3,Y3) − h]13 (X3,Y3)
4. R̄ic

(
Xi,Y j

)
= 0, i , j

where f ] = f∆1 f + (n2 − 1)
∥∥∥grad1 f

∥∥∥2
and h] = h∆h + (n3 − 1)

∥∥∥gradh
∥∥∥2

We now apply the last result to establish conditions for a sequential warped product to be Einstein.

Theorem 2.4. The sequential warped product
(
M1 × f M2

)
×h M3 is Einstein with R̄ic= λ1̄ if and only if

1. Ric1 = λ11 +
n2

f
H f

1 +
n3

h
Hh

2. Ric2 =
(
λ f 2 + f ]

)
12 +

n3

h
Hh

3. M3 is Einstein with Ric3 =
(
λh2 + h]

)
13.

In [11], F. Dobarro and E. Lamı́ Dozo established a relationship between the scalar curvature of a warped
product of the form M× f N and that of its base and fiber manifolds M and N. In the following theorem we
derive a quite different result for a sequential warped product manifold.

Theorem 2.5. Let M̄ =
(
M1 × f M2

)
×h M3 be a sequential warped product manifold with metric 1̄ =

(
11 ⊕ f 212

)
⊕

h213 and let ri be the scalar curvature of Mi, i = 1, 2, 3. Then the scalar curvature r of M̄ is given by

r = r1 +
r2

f 2 +
r3

h2 −
2n2

f
∆1 f −

2n3

h
∆h −

n2 (n2 − 1)
f 2

∥∥∥grad1 f
∥∥∥2
−

n3 (n3 − 1)
h2

∥∥∥gradh
∥∥∥2

Proof. Let
{
e1, e2, ..., en1

}
,
{
en1+1, en1+2, ..., en1+n2

}
and

{
en1+n2+1 + en1+n2+2, ..., en

}
be three frames over M1, M2 and

M3 respectively. The scalar curvature r of M̄ is given by

r =

n1∑
i=1

R̄ic (ei, ei) +
1
f 2

n1+n2∑
i=n1+1

R̄ic (ei, ei) +
1
h2

n1+n2+n3∑
i=n1+n2+1

R̄ic (ei, ei)

= r1 −
n2

f
∆1 f −

n3

h

n1∑
i=1

Hh (ei, ei) +
1
f 2 r2 −

n2

f 2 f ] −
1
f 2

n3

h

n1+n2∑
i=n1+1

Hh (ei, ei)

+
1
h2

[
r3 − h]n3

]
= r1 +

1
f 2 r2 +

1
h2 r3 −

n2

f
∆1 f −

n3

h
∆h −

n2

f 2 f ] −
n3

h2 h]

= r1 +
r2

f 2 +
r3

h2 −
2n2

f
∆1 f −

2n3

h
∆h −

n2 (n2 − 1)
f 2

∥∥∥grad1 f
∥∥∥2
−

n3 (n3 − 1)
h2

∥∥∥gradh
∥∥∥2
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Suppose that M̄ =
(
M1 × f M2

)
×h M3 has a constant sectional curvature κ. Then the first item of

Proposition (2.2) yields

R̄ (X1,Y1) Z1 = κ
{
11 (X1,Z1) Y1 − 11 (Y1,Z1) X1

}
R̄ (X1,Y1) Z1 = R1 (X1,Y1) Z1

Thus M1 has a constant sectional curvature κ1 = κ. The second item implies that

R̄ (X2,Y2) Z2 = κ
{
1 (X2,Z2) Y2 − 1 (Y2,Z2) X2

}
= κ f 2 {

12 (X2,Z2) Y2 − 12 (Y2,Z2) X2
}

R̄ (X2,Y2) Z2 = R2 (X2,Y2) Z2 −
∥∥∥grad1 f

∥∥∥2 {
12 (X2,Z2) Y2 − 12 (Y2,Z2) X2

}
Therefore, Shur’s Lemma implies that M2 has a constant sectional curvature κ2 given by

κ2 = κ f 2 +
∥∥∥grad1 f

∥∥∥2

for n2 ≥ 3. Similarly, M3 has a constant sectional curvature curvature κ3 given by

κ3 = κh2 +
∥∥∥gradh

∥∥∥2

for n3 ≥ 3.

Theorem 2.6. Let M̄ =
(
M1 × f M2

)
×h M3 be a sequential warped product manifold with metric 1̄ =

(
11 ⊕ f 212

)
⊕

h213. Assume that M̄ has a constant sectional curvature κ. Then

1. M1 has a costant sectional curvature κ1 = κ,
2. M2 has a costant sectional curvature κ2 = κ f 2 +

∥∥∥grad1 f
∥∥∥2

for n2 ≥ 3, and

3. M3 has a costant sectional curvature κ3 = κh2 +
∥∥∥gradh

∥∥∥2
for n3 ≥ 3.

3. Conformal vector fields

Conformal vector fields have well-known geometrical and physical interpretations and have been
studied for a long time by geometers and physicists on Riemannian and pseudo-Riemannian manifolds.
Killing vector fields are conformal vector fields on (pseudo-) Riemannian manifolds that preserve metric,
i.e, under the flow of a Killing vector field the metric does not change. The set of all Killing vector fields on
a connected Riemannian manifold forms a Lie algebra over the set of real numbers.[7, 8, 16–19, 23]

In [12], the authors studied Killing vector fields of warped product manifolds specially on standard static
space-times. They prove some global characterization of the Killing vector fields of a standard static space-
time. More explicitly, they obtain a form of a Killing vector field on this class of space-times. Moreover, a
characterization of the Killing vector fields on a standard static space-time with compact Riemannian parts
and many other interesting results are given. In this section, we study the concept of conformal vector
fields on sequential warped product manifolds.

A vector field ζ on a Riemannian manifold
(
M, 1

)
is conformal if

Lζ1 = ρ1 (3)

whereLζ is the Lie derivative in direction of the vector field ζ. Moreover, ζ is called a Killing vector field if
ρ = 0. This is equivalent to say that ζ is Killing if

1 (∇Xζ,Y) + 1 (X,∇Yζ) = 0 (4)
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for any vector fields X,Y ∈ X (M). By symmetry of the above equation, ζ is Killing if

1 (∇Xζ,X) = 0 (5)

for any vector field X ∈ X (M).
From now on M̄ =

(
M1 × f M2

)
×h M3 denotes a sequential warped product manifold with metric

1̄ =
(
11 ⊕ f 212

)
⊕ h213.

Theorem 3.1. A vector field ζ ∈ X
((

M1 × f M2

)
×h M3

)
is Killing if

1. ζi is Killing on Mi, for every i = 1, 2, 3
2. ζ1

(
f
)

= 0
3. (ζ1 + ζ2) h = 0

Proof. The vector field ζ ∈ X
(
M̄

)
is Killing by equation (5) if and only if

1̄
(
∇̄Xζ,X

)
= 0

for any vector field X ∈ X
(
M̄

)
. It is clear that

1̄
(
∇̄Xζ,X

)
= 1̄

(
∇̄X1ζ1 + ∇̄X1ζ2 + ∇̄X1ζ3,X

)
+1̄

(
∇̄X2ζ1 + ∇̄X2ζ2 + ∇̄X2ζ3,X

)
+1̄

(
∇̄X3ζ1 + ∇̄X3ζ2 + ∇̄X3ζ3,X

)
Now using Proposition (2.1) we have

1̄
(
∇̄Xζ,X

)
= 1̄

(
∇

1
X1
ζ1 + X1

(
ln f

)
ζ2 + X1 (ln h) ζ3,X

)
+1̄

(
ζ1

(
ln f

)
X2 + ∇2

X2
ζ2 − f12 (ζ2,X2) grad1 f + X2 (ln h) ζ3,X

)
+1̄

(
ζ1 (ln h) X3 + ζ2 (ln h) X3 + ∇3

X3
ζ3 − h13 (ζ3,X3) gradh,X

)
= 11

(
∇

1
X1
ζ1,X1

)
+ f 212

(
∇

2
X2
ζ2,X2

)
+ h213

(
∇

3
X3
ζ3,X3

)
+ fζ1

(
f
)
12 (X2,X2) + h (ζ1 + ζ2) (h) 13 (X3,X3)

From this equation one can easily deduce the result.

The following result will enable us to discuss the converse of the above result.

Proposition 3.2. A vector field ζ ∈ X
((

M1 × f M2

)
×h M3

)
satisfies(

Lζ1
)

(X,Y) =
(
L

1
ζ1
11

)
(X1,Y1) + f 2

(
L

2
ζ2
12

)
(X2,Y2) + h2

(
L

3
ζ3
13

)
(X3,Y3)

+2 fζ1
(

f
)
12 (X2,Y2) + 2h (ζ1 + ζ2) (h) 13 (X3,Y3) (6)

for any vector fields X,Y ∈ X
((

M1 × f M2

)
×h M3

)
.

Theorem 3.3. Let ζ ∈ X
((

M1 × f M2

)
×h M3

)
be a Killing vector field. Then

1. ζ1 is Killing on M1,
2. ζ2 is conformal on M2 with conformal factor −2ζ1

(
ln f

)
,

3. ζ3 is conformal on M3 with conformal factor −2 (ζ1 + ζ2) (ln h).
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Proof. Consider equation (6). We have the following cases. By substituting X = X1 and Y = Y1, we obtain(
L

1
ζ1
11

)
(X1,Y1) = 0

and thus ζ1 is Killing. Now, let X = X2 and Y = Y2, be then we have

0 = f 2
(
L

2
ζ2
12

)
(X2,Y2) + 2 fζ1

(
f
)
12 (X2,Y2)(

L
2
ζ2
12

)
(X2,Y2) = −2ζ1

(
ln f

)
12 (X2,Y2)

and thus ζ2 is conformal. Finally, if X = X3 and Y = Y3, then

0 = h2
(
L

3
ζ3
13

)
(X3,Y3) + 2h (ζ1 + ζ2) (h) 13 (X3,Y3)(

L
3
ζ3
13

)
(X3,Y3) = −2 (ζ1 + ζ2) (ln h) 13 (X3,Y3)

and thus ζ3 is conformal.

Theorem 3.4. Let ζ ∈ X
((

M1 × f M2

)
×h M3

)
be a vector field on a sequential warped product manifold. Assume

that

1. ζi is conformal on Mi with factor ρi for each i,
2. ρ1 = ρ2 + 2ζ1

(
ln f

)
,

3. ρ1 = ρ3 + 2 (ζ1 + ζ2) (ln h).

Then ζ is conformal on M̄.

Now, we will study the geodesic curves and their equations on a sequential warped product. In a
sequential warped product of the form

(
M1 × f M2

)
×h M3, as product manifold, a curve α (t) can be written

as α (t) = (α1 (t) , α2 (t) , α3 (t)) with αi (t) the projections of α into Mi for any i = 1, 2, 3.

Lemma 3.5. Let α (t) = (α1 (t) , α2 (t) , α3 (t)) be a smooth curve on a sequential warped product of the form M̄ =(
M1 × f M2

)
×h M3 with metric 1̄ =

(
11 ⊕ f 212

)
⊕ h213. Then α is a geodesic in M̄ if and only if

1. ∇1
α̇1
α̇1 = f ‖α̇2‖

2
2 grad1 f + h ‖α̇3‖

2
3
(
gradh

)T on M1

2. ∇2
α̇2
α̇2 = −2α̇1

(
ln f

)
α̇2 + h ‖α̇3‖

2
3
(
gradh

)⊥ on M2

3. ∇3
α̇3
α̇3 = −2α̇1 (ln h) α̇3 − 2α̇2 (ln h) α̇3 on M3

Proof. Then αi (t) is regular hence we can suppose αi (t) is an integral curve of α̇i on Mi and so α (t) is an
integral curve of α̇ = α̇1 + α̇2 + α̇3. Thus

∇̄α̇α̇ = ∇̄α̇1 α̇1 + ∇̄α̇1 α̇2 + ∇̄α̇1 α̇3

+∇̄α̇2 α̇1 + ∇̄α̇2 α̇2 + ∇̄α̇2 α̇3

+∇̄α̇3 α̇1 + ∇̄α̇3 α̇2 + ∇̄α̇3 α̇3

Now we apply Proposition (2.1) to get

∇̄α̇α̇ = ∇
1
α̇1
α̇1 + 2α̇1

(
ln f

)
α̇2 + 2α̇1 (ln h) α̇3

+2α̇2 (ln h) α̇3 + ∇2
α̇2
α̇2 − f12 (α̇2, α̇2) grad1 f

+∇3
α̇3
α̇3 − h13 (α̇3, α̇3) gradh

This equation implies that

∇̄α̇α̇ = ∇
1
α̇1
α̇1 − f12 (α̇2, α̇2) grad1 f − h13 (α̇3, α̇3)

(
gradh

)T

+∇2
α̇2
α̇2 + 2α̇1

(
ln f

)
α̇2 − h13 (α̇3, α̇3)

(
gradh

)⊥
+∇3

α̇3
α̇3 + 2α̇1 (ln h) α̇3 + 2α̇2 (ln h) α̇3
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Theorem 3.6. Let ζ ∈ X
((

M1 × f M2

)
×h M3

)
be a Killing vector field. Then 1 (ζ,X) is constant along the integral

curve α (t) = (α1 (t) , α2 (t) , α3 (t)) of X if

1. ∇1
X1

X1 = f ‖α̇2‖
2
2 grad1 f + h ‖α̇3‖

2
3
(
gradh

)T on M1

2. ∇2
X2

X2 = −2X1
(
ln f

)
X2 + h ‖α̇3‖

2
3
(
gradh

)⊥ on M2

3. ∇3
X3

X3 = −2X1 (ln h) X3 − 2X2 (ln h) X3 on M3.

Proof. The conditions (1-3) imply that α (t) is a geodesic and so ∇XX = 0 (see Lemma 3.5). Thus 1 (ζ,X) is
constant along the integral curve of X.

A vector field ζ on a Riemannian manifold M is called concircular vector field if

∇Xζ = µX

for any vector field X where µ is function defined on M. It is clear that(
Lζ1

)
(X,Y) = 2µ1 (X,Y)

i.e. any concircular vector field is a conformal vector field. Concircular vector fields have many applications
in geometry and physics[10]. A concircular vector field is sometimes called a closed conformal vector field.

Theorem 3.7. Let ζ ∈ X
((

M1 × f M2

)
×h M3

)
be a concircular vector field on M̄ =

(
M1 × f M2

)
×h M3. Then each

ζi is a non-zero concircular vector field on Mi for any i = 1, 2, 3 if and only if both f and h are constant functions.

Proof. Using the definition of concircular vector fields and Theorem 2.1, we obtain that

∇Xζ = ∇X1ζ1 + ∇X1ζ2 + ∇X1ζ3 + ∇X2ζ1 + ∇X2ζ2 + ∇X2ζ3 + ∇X3ζ1 + ∇X3ζ2 + ∇X3ζ3

µX = ∇
1
X1
ζ1 + X1

(
f
)
ζ2 + X1 (h) ζ3 + ζ1

(
f
)

X2 + ∇2
X2
ζ2 − f12 (X2, ζ2) grad1 f

+X2 (h) ζ3 + ζ1 (h) X3 + ζ2 (h) X3 + ∇3
X3
ζ3 − h13 (X3, ζ3) gradh

Suppose that both f and h are constant functions, then

∇
1
X1
ζ1 − f12 (X2, ζ2) grad1 f − h13 (X3, ζ3)

(
gradh

)T = µX1

∇
2
X2
ζ2 + X1

(
f
)
ζ2 + ζ1

(
f
)

X2 − h13 (X3, ζ3)
(
gradh

)⊥ = µX2 (7)

∇
3
X3
ζ3 + X1 (h) ζ3 + X2 (h) ζ3 + ζ1 (h) X3 + ζ2 (h) X3 = µX3

Now, suppose that both f and h are constant functions, then

∇
1
X1
ζ1 = µX1

∇
2
X2
ζ2 = µX2

∇
3
X3
ζ3 = µX3

i.e., each ζi is concircular on Mi for i = 1, 2, 3. Conversely, we suppose that

∇
1
X1
ζ1 = µ1X1

∇
2
X2
ζ2 = µ2X2

∇
3
X3
ζ3 = µ3X3

Hence Equation 7 becomes

µ1X1 − f12 (X2, ζ2) grad1 f − h13 (X3, ζ3)
(
gradh

)T = µX1

µ2X2 + X1
(

f
)
ζ2 + ζ1

(
f
)

X2 − h13 (X3, ζ3)
(
gradh

)⊥ = µX2

µ3X3 + X1 (h) ζ3 + X2 (h) ζ3 + ζ1 (h) X3 + ζ2 (h) X3 = µX3
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µ̄1X1 − f12 (X2, ζ2) grad1 f − h13 (X3, ζ3)
(
gradh

)T = 0 (8)
µ̄2X2 + X1

(
f
)
ζ2 + ζ1

(
f
)

X2 − h13 (X3, ζ3)
(
gradh

)⊥ = 0 (9)
µ̄3X3 + X1 (h) ζ3 + X2 (h) ζ3 + ζ1 (h) X3 + ζ2 (h) X3 = 0 (10)

These equations must be satisfied by any arbitrary vector field X. Let us put X3 = 0 in Equation 10, then

(X1 + X2) (h) ζ3 = 0

Since ζ3 does not vanish, (X1 + X2) (h) = 0 for any vector field X1 + X2 and so h is constant. Now, Equations
8 and 9 become

µ̄1X1 − f12 (X2, ζ2) grad1 f = 0
µ̄2X2 + X1

(
f
)
ζ2 + ζ1

(
f
)

X2 = 0

Similarly, we can prove that f is constant.

The converse of the above result is considered in the following theorem.

Theorem 3.8. A vector field ζ = ζ1 ∈ X
((

M1 × f M2

)
×h M3

)
is a concircular vector field if ζ1 is a concircular vector

field with factor µ1 = ζ1
(
ln f

)
= ζ1 (ln h).

4. Geometry of Sequential Warped Product Space-times

We will state basic geometric formulas of two types sequential warped product space-times, namely
sequential generalized Robertson-Walker and sequential standard static space-times. These results can be
obtained by direct applications of the results presented in Section 2.

4.1. Sequential Generalized Robertson-Walker Space-times

Proposition 4.1. Let M̄ =
(
I × f M2

)
×h M3 be a sequential generalized Robertson-Walker space-time with metric

1 =
(
−dt2

⊕ f 212

)
⊕ h213 and also let Xi,Yi ∈ X(Mi) for any i = 2, 3. Then

1. ∇̄∂t∂t = 0

2. ∇̄∂t Xi = ∇̄Xi∂t =
˙f

f Xi, i = 2, 3

3. ∇̄X2 Y2 = ∇2
X2

Y2 − f ˙f12 (X2,Y2) ∂t

4. ∇̄X2 X3 = ∇̄X3 X2 = X2 (ln h) X3

5. ∇̄X3 Y3 = ∇3
X3

Y3 − h13 (X3,Y3) gradh

Proposition 4.2. Let M̄ =
(
I × f M2

)
×h M3 be a sequential generalized Robertson-Walker space-time with metric

1̄ =
(
−dt2

⊕ f 212

)
⊕ h213 and also let Xi,Yi,Zi ∈ X(Mi). Then

1. R̄(∂t, ∂t) ∂t =R̄(∂t, ∂t) Z j =R̄(Xi,Yi) Z j =R̄(∂t,Y2) Z3 = 0, i , j
2. R̄(X2,Y2) Z2 = R2 (X2,Y2) Z2 + ˙f 2 [

12 (X2,Y2) Y2 − 12 (Z2,Y2) X2
]
,

3. R̄(∂t,Y2) ∂t =
f̈
f Y2,

4. R̄(∂t,Y3) ∂t =
1
f̄
∂2h
∂t2 Y3, i, j = 1, 2

5. R̄(∂t,Y2) Z2 = f f̈12 (Y2,Z2) ∂t

6. R̄(X2,Y3) Z2 =
−1
h

Hh (X2,Z2) Y3,

7. R̄(∂t,Y3) Z3 = h13 (Y3,Z3)∇∂t gradh,
8. R̄(X2,Y3) Z3 = h13 (Y3,Z3)∇X2 gradh
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9. R̄(X3,Y3) Z3 = R3 (X3,Y3) Z3 −
∥∥∥gradh

∥∥∥2 [
13 (X3,Y3) Y3 − 13 (Z3,Y3) X3

]
Now we consider the Ricci curvature R̄ic of a sequential generalized Robertson-Walker space-time of

the form M̄ =
(
I × f M2

)
×h M3.

Proposition 4.3. Let M̄ =
(
I × f M2

)
×h M3 be a sequential GRW space-time with metric 1̄ =

(
−dt2

⊕ f 212

)
⊕ h213

and also let Xi,Yi,Zi ∈ X(Mi). Then

1. R̄ic(∂t, ∂t) =
n2

f
f̈ +

n3

h
∂2h
∂t2

2. R̄ic(X2,Y2) =Ric2 (X2,Y2) − 12 (X2,Y2) f ] −
n3

h
Hh (X2,Y2)

3. R̄ic(X3,Y3) =Ric3 (X3,Y3) − 13 (X3,Y3) h]

4. R̄ic
(
Xi,Y j

)
= 0, i , j

where f ] = − f f̈ − (n2 − 1) ˙f 2 and h] = h∆h + (n3 − 1)
∥∥∥gradh

∥∥∥2

A sequential GRW space-time M̄ =
(
I × f M2

)
×h M3 is Einstein if

R̄ic (X,Y) = µ1̄ (X,Y)

We have the following cases. The first case is

R̄ic (∂t, ∂t) = µ1̄ (∂t, ∂t)

n2

f
f̈ +

n3

h
∂2h
∂t2 = −µ

and the second case is

Ric2 (X2,Y2) − 12 (X2,Y2) f ] −
n3

h
Hh (X2,Y2) = µ f 212 (X2,Y2)

and so

Ric2 (X2,Y2) =
n3

h
Hh (X2,Y2) +

(
µ f 2 + f ]

)
12 (X2,Y2)

and finally we have

Ric3 (X3,Y3) =
(
µh2 + h]

)
13 (X3,Y3)

Theorem 4.4. Let M̄ =
(
I × f M2

)
×h M3 be an Einstein sequential GRW space-time with metric 1̄ =

(
−dt2

⊕ f 212

)
⊕

h213. Then,

1. µ = −

(
n2

f
f̈ +

n3

h
∂2h
∂t2

)
2.

(
M2, 12

)
is Einstein with factor

(
µ f 2 + f ]

)
if Hh (X2,Y2) = 0 for any X2,Y2 ∈ X(M2) and

3.
(
M3, 13

)
is Einstein with factor

(
µh2 + h]

)
.

Corollary 4.5. Let M̄ =
(
I × f M2

)
×h M3 be an Einstein sequential GRW space-time with metric 1̄ =

(
−dt2

⊕ f 212

)
⊕

h213 and factor µ. Then

1.
(
M̄, 1̄

)
is Ricci flat if n2h f̈ + n3 f ∂

2h
∂t2 = 0,

2.
(
M2, 12

)
is Ricci flat if µ f 2 + f ] = 0 and Hh (X2,Y2) = 0 for any X2,Y2 ∈ X(M2) and
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3.
(
M3, 13

)
is Ricci flat if µh2 + h] = 0.

The converse of the above theorem is considered in the following result.

Theorem 4.6. Let M̄ =
(
I × f M2

)
×h M3 be a sequential GRW space-time with metric 1̄ =

(
−dt2

⊕ f 212

)
⊕ h213.

Then
(
M̄, 1̄

)
is Einstein with factor µ if

1. Hh (X2,Y2) = 0 for any X2,Y2 ∈ X(M2),
2.

(
Mi, 1i

)
is Einstein with factor µi, i = 2, 3,

3. µ2 + f f̈ + (n2 − 1) ˙f 2 = µ f 2

4. µ3 + h
∂2h
∂t2 −

(n3 − 1)
∥∥∥gradh

∥∥∥2
= µh2

5.
n2

f
f̈ +

n3

h
∂2h
∂t2 = −µ

4.2. Sequential Standard Static Space-times

Theorem 4.7. Let M̄ =
(
M1 × f M2

)
×h I be a sequential standard static space-time with metric 1̄ =

(
11 ⊕ f 212

)
⊕

h2
(
−dt2

)
and also let Xi,Yi ∈ X(Mi). Then

1. ∇̄X1 Y1 = ∇1
X1

Y1

2. ∇̄X1 X2 = ∇̄X2 X1 = X1
(
ln f

)
X2

3. ∇̄X2 Y2 = ∇2
X2

Y2 − f12 (X2,Y2) grad1 f
4. ∇̄Xi∂t = ∇̄∂t Xi = Xi (ln h) ∂t, i = 1, 2
5. ∇̄∂t∂t = hgradh

Theorem 4.8. Let M̄ =
(
M1 × f M2

)
×h I be a sequential standard static space-time with metric 1̄ =

(
11 ⊕ f 212

)
⊕

h2
(
−dt2

)
and also let Xi,Yi,Zi ∈ X(Mi). Then

1. R̄(X1,Y1) Z1 = R1 (X1,Y1) Z1

2. R̄(X2,Y2) Z2 = R2 (X2,Y2) Z2 −
∥∥∥grad1 f

∥∥∥2 [
12 (X2,Y2) Y2 − 12 (Z2,Y2) X2

]
3. R̄(X1,Y2) Z1 =

−1
f

H f
1 (X1,Z1) Y2

4. R̄(X1,Y2) Z2 = f12 (Y2,Z2)∇1
X1

grad1 f
5. R̄(X1,Y2) ∂t =R̄(∂t, ∂t) ∂t =R̄(Xi,Yi) Z j = 0, i , j

6. R̄(Xi, ∂t) Z j =
−1
h

Hh
(
Xi,Z j

)
∂t, i, j = 1, 2

7. R̄(Xi, ∂t) ∂t = −h∇Xi gradh, i = 1, 2

Now consider the Ricci curvature R̄ic of a sequential standard static space-time of the form
(
M1 × f M2

)
×h

I.

Theorem 4.9. Let M̄ =
(
M1 × f M2

)
×h I be a sequential standard static space-time with metric 1̄ =

(
11 ⊕ f 212

)
⊕

h2
(
−dt2

)
and also let Xi,Yi ∈ X(Mi). Then

1. R̄ic(X1,Y1) =Ric1 (X1,Y1) −
n2

f
H f

1 (X1,Y1) −
1
h

Hh (X1,Y1)

2. R̄ic(X2,Y2) =Ric2 (X2,Y2) − 12 (X2,Y2) f ] −
1
h

Hh (X2,Y2)

3. R̄ic(∂t, ∂t) = h∆h
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4. R̄ic
(
Xi,Y j

)
= 0, i , j

where f ] = f∆1 f + (n2 − 1)
∥∥∥grad1 f

∥∥∥2
.

A sequential standard static space-time
(
M1 × f M2

)
×h I is Einstein with factor µ if

R̄ic (X,Y) = µ1̄ (X,Y) (11)

In this case

µ = −
∆h
h

But taking the trace of equation (11) we get that

µ =
r

n1 + n2 + 1

where r is the scalar curvature i.e.

r = −
∆h
h

(n1 + n2 + 1)

Moreover,

Ric1 (X1,Y1) −
n2

f
H f

1 (X1,Y1) −
1
h

Hh (X1,Y1) = µ11 (X1,Y1)

and

Ric2 (X2,Y2) − 12 (X2,Y2) f ] −
1
h

Hh (X2,Y2) = µ f 212 (X2,Y2)

Corollary 4.10. Let M̄ =
(
M1 × f M2

)
×h I be an Einstein sequential standard static space-time with metric 1̄ =(

11 ⊕ f 212

)
⊕ h2

(
−dt2

)
. Then the scalar curvature r of M̄ is given by

r = −
∆h
h

(n1 + n2 + 1)

Corollary 4.11. Let M̄ =
(
M1 × f M2

)
×h I be an Einstein sequential standard static space-time with metric 1̄ =(

11 ⊕ f 212

)
⊕ h2

(
−dt2

)
. Then

1.
(
M1, 11

)
is Einstein with factor µ if n2hH f

1 (X1,Y1) − f Hh (X1,Y1) = 0,
2.

(
M2, 12

)
is Einstein with factor µ f 2 + f ] if Hh (X2,Y2) = 0
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