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S U M M A R Y

In the conventional frequency-domain waveform inversion, either multifrequency simulta-

neous inversion or sequential single-frequency inversion has been implemented. However,

most conventional frequency-domain waveform inversion methods fail to recover background

velocity when low-frequency information is missing. Recently, new waveform inversion tech-

niques in the Laplace and Laplace–Fourier domain have been proposed to recover background

velocity structure from data with insufficient low-frequency information. In such techniques,

however, all frequencies are inverted simultaneously, and this requires large computational

resources and long computation times.

In this paper, we propose a sequentially ordered single-frequency 2-D acoustic waveform

inversion using the logarithmic objective function in the Laplace–Fourier domain. Our algo-

rithm sequentially inverts single-frequency data in the Laplace–Fourier domain, thus reducing

computational resources. Unlike most conventional waveform inversion methods requiring

an initial velocity model close to the true model, we propose a one-step waveform inversion

method in seeking to find a final velocity structure from the simple initial model through a

hybrid combination of the Laplace domain inversion and the Fourier domain inversion.

We adopt and evaluate the multiloop algorithm by modifying the double-loop algorithm

commonly used in the conventional frequency-domain waveform inversion. Using the mul-

tiloop algorithm repeating loop over frequencies, the quality of the inversion results can be

improved and the decision problem of the number of iterations for each frequency can be

overcome effectively. Because the sequential order of the Laplace–Fourier frequencies in a

2-D plane should be assigned for inverting Laplace–Fourier frequency data consecutively, we

present three different sequential orders of Laplace–Fourier frequencies while considering

the multiscale and layer-stripping approach, and we compare the inversion results from the

numerical experiments.

We applied the sequentially ordered single-frequency 2-D acoustic waveform inversion in

the full Laplace–Fourier domain to the synthetic seismic data produced from complex structure

model and field data. A realistic model could be recovered in an efficient and robust manner,

even using the two-layer homogeneous velocity model as an initial model. The inverted velocity

model from the field data was validated by examining the migrated image from the pre-stack

depth migration and the flattening of the common-image gathers or by comparing the synthetic

shot gather with the real shot gather. The proposed one-step waveform inversion algorithm

can be easily extended to the sequential inversion of 3-D acoustic or elastic data in the full

Laplace–Fourier domain.

Key words: Inverse theory; Seismic tomography; Computational seismology; Acoustic

properties.
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I N T RO D U C T I O N

The non-linear waveform inversion seeks to derive subsurface phys-

ical properties such as velocity, density, Q values, by iteratively

minimizing the differences between observed data and synthetic
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936 C. Shin et al.

data, usually in a least squares sense. Since Lailly (1983) and

Tarantola (1984) recognized that the model could be updated

through an efficient calculation of the gradient by back-propagating

the residuals, a considerable amount of research on the non-linear

waveform inversion has been carried out (Tarantola 1986; Mora

1987; Pratt & Worthington 1990; Bunks et al. 1995; Pratt et al.

1998; Shin & Min 2006). Waveform inversion can be implemented

either in the time domain or in the frequency domain. Time-domain

waveform inversion has rarely been applied to field data due to the

large computation resources and long time required for multiple

sources and receivers, and difficulty of the unknown source wavelet

estimation (Mora 1987; Shipp & Singh 2002; Sheen et al. 2006).

In contrast, 2-D frequency-domain waveform inversion might be

more practical because multiple shot acquisition can be simulated

efficiently and the unknown source wavelet can be estimated simul-

taneously during waveform inversion (Marfurt 1984; Pratt 1999;

Shin & Min 2006).

In frequency-domain waveform inversion, three inversion ap-

proaches have been tried: a multifrequency simultaneous inversion

(Lee & Kim 2003; Shin & Min 2006; Hu et al. 2007), a sequen-

tial single-frequency inversion (Yokota & Matsushima 2004; Sirgue

& Pratt 2004; Operto et al. 2006; Ben-Hadj-Ali et al. 2008) and a

combination of both approaches (Pratt 1999; Brenders & Pratt 2007;

Bleibinhaus et al. 2008; Jaiswal et al. 2008). In the multifrequency

simultaneous inversion, just as all time samples are inverted simul-

taneously in the time domain, all frequencies are inverted simulta-

neously (Lee & Kim 2003; Shin & Min 2006; Hu et al. 2007). Note

that not all of the discrete frequencies need to be inverted, and that

a coarse frequency-sampling interval can be used in the frequency-

domain inversion. However, the simultaneous inversion process re-

quires large computational resources, such as a high-performance

parallel or a massively parallel system, to handle the large number

of shots or frequencies effectively. In addition, to balance the con-

tributions from the different frequency components, proper scaling

of the steepest-descent direction or data-weighting scheme should

be applied (Hu et al. 2007; Jang et al. 2009). Based on the facts that

(1) a finite region in the wavenumber domain can be obtained from

a single-frequency component, depending on the acquisition geom-

etry and (2) the inherent nonlinearity of the waveform inversion

problem can be mitigated when the low-frequency data are inverted

initially because the low-frequency data are less nonlinear with the

model than high-frequency data, a sequential single-frequency in-

version has been attempted that successively inverts from low- to

high-frequency data (Wu & Toksöz 1987; Yokota & Matsushima

2004; Sirgue & Pratt 2004; Operto et al. 2006; Ben-Hadj-Ali et al.

2008). Moreover, a sequential single-frequency inversion requires

less computational resources than the multifrequency simultaneous

inversion and a proper scaling or data-weighting problem is not an is-

sue. In an approach that combines the multifrequency simultaneous

inversion and the sequentially ordered single-frequency inversion,

contiguous or overlapping groups of increasingly higher frequen-

cies are inverted sequentially, and all frequencies in each group

are inverted simultaneously (Pratt 1999; Brenders & Pratt 2007;

Bleibinhaus et al. 2008; Jaiswal et al. 2008). From the viewpoint of

computational resources, a sequentially ordered single-frequency

inversion is most efficient.

When we use a local descent approach and the initial model is

far from the true model, the gradient will converge, not to the

global minimum, but to the nearest local minimum. Especially

in the case when low-frequency information is missing in the

seismic data, we cannot recover low wavenumbers or long wave-

lengths of the background velocity. Therefore, previous waveform

inversion researches have been carried out as a two-step process:

(1) estimation of the macromodel sufficiently close enough to the

true model and (2) addition of short-wavelength characteristics.

Most commonly, a traveltime tomography result from the first pro-

cess or a smoothed version of the true velocity model is used as

a starting model for the waveform inversion as a second process

(Sirgue & Pratt 2004; Operto et al. 2006; Brenders & Pratt 2007;

Ben-Hadj-Ali et al. 2008; Bleibinhaus et al. 2008; Jaiswal et al.

2008). Recently, a novel waveform inversion technique, waveform

inversion in the Laplace and Laplace–Fourier domain, was pro-

posed to recover a background velocity model even from data suf-

fering from a lack of low-frequency information (Shin & Cha 2008,

2009). Waveform inversion in the Laplace and Laplace–Fourier

domain tries to invert Laplace-transformed wavefields, which are

zero- or low-frequency components of damped wavefields using

several damping constants. The objective function in the Laplace do-

main is smoother and has fewer local minima than the conventional

frequency-domain waveform inversion (Shin & Ha 2008). Although

this does not guarantee the convergence to a global minimum, many

numerical experiments of the Laplace-domain waveform inversion

have produced a smooth velocity model in a robust manner, even

from simple starting models such as the two-layer velocity model or

the linearly increasing velocity model (Shin & Cha 2008, 2009; Shin

& Ha 2008). However, the Laplace- and Laplace–Fourier domain

waveform inversions have been implemented as a simultaneous in-

version for several Laplace damping constants and frequencies, thus

requiring large computational resources. In addition, the final ve-

locity model was still produced from the two-step process (Shin &

Cha 2009).

In this paper, we propose a one-step waveform inversion algo-

rithm, a sequentially ordered single-frequency 2-D acoustic wave-

form inversion using the logarithmic objective function in the

Laplace–Fourier domain. Our algorithm sequentially inverts single-

frequency data in the Laplace–Fourier domain and seeks to find a

final velocity structure from a simple initial model through a hy-

brid combination of both the Laplace domain inversion and the

Fourier domain inversion. We first review the wavefields in the

Laplace–Fourier domain and single-frequency logarithmic wave-

form inverse theory. Then, we demonstrate that the multiloop se-

quential inversion can improve the quality of the inversion results

and effectively overcome the decision problem of the number of

iterations for each frequency. We present the inversion results for

three different sequential orders of Laplace–Fourier frequencies.

Finally, we demonstrate our algorithm by applying it to synthetic

seismic data produced from the complex structure model and the

field data.

T H E O RY

Review of the wavefields in the Laplace–Fourier domain

A time-domain wavefield can be decomposed as a series of sinu-

soidal waves by the Fourier transform. The Fourier transform is

given by the expression

ũ(ω) =
∫ ∞

0

u(t)e−iωt dt, (1)

where ω is an angular frequency, u(t) is a time-domain wavefield

and i is
√

−1.

Similarly, a time-domain wavefield can be transformed to a

Laplace-transformed wavefield by the Laplace Transform, which
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Sequential Laplace–Fourier domain inversion 937

is given by the expression

ũ(σ ) =
∫ ∞

0

u(t)e−σ t dt, (2)

where σ is the positive Laplace damping constant or Laplace fre-

quency.

If we introduce a complex-valued angular frequency in eq. (1) or a

complex-valued damping factor in eq. (2), a time-domain wavefield

can be decomposed as a series of damped sinusoidal waves by the

Laplace–Fourier Transform, which is given by the expression

ũ(s) = ũ(σ, ω) =
∫ ∞

0

u(t)e−σ t e−iωt dt . (3)

We will refer to a complex-valued damping factor as a

Laplace–Fourier frequency to differentiate it from frequencies

used in conventional frequency-domain waveform inversions. Ob-

served data in the time domain can be transformed to those in the

Laplace–Fourier domain by the numerical integration method (Shin

& Cha 2008).

To understand the conventional frequency-domain wavefield, the

Laplace-domain wavefield and the Laplace–Fourier domain wave-

field, we transformed a synthetic seismogram of the BP model

(Billette & Brandsberg-Dahl 2005) shown in Fig. 1(a) to each do-

main. Fig. 1(b) shows the Laplace–Fourier wavefield domain. The

horizontal axis is the temporal frequency axis and the vertical axis

is the Laplace damping constant or Laplace frequency axis. Figs

1(c) and (d) show the amplitude and phase spectra of the 1, 2 and

5 Hz components for the Laplace damping constant 0.01, which

are used for the conventional frequency-domain wavefield. The am-

plitude and phase spectra are highly variable with the offset. Figs

1(e) and (f) show the amplitude and phase spectra of the 0.01, 1,

2 and 5 Hz components for the Laplace damping constant 3. We

note that the amplitude and phase spectra for the larger damping

constant (Figs 1e and f) are obviously smoother than the smaller

damping constant (Figs 1c and 1d). The amplitude spectra decrease

exponentially with the offset, and the smaller variations are added as

the frequency increases. Figs 1(g) and (h) show the amplitude and

phase spectra of 0.01 Hz for different damping constants, which

are used for the Laplace-domain waveform inversion. Note that

the amplitude spectra decrease exponentially with the offset and

that they decrease more rapidly as the Laplace damping constant

becomes larger. The phase spectrum is about zero because the fre-

quency is almost zero. Considering these characteristics of Laplace-

transformed wavefields with amplitudes that are too small and the

advantage of the natural separation of amplitude and phase spectra

of the logarithmic waveform inversion, the logarithmic objective

function is suitable for waveform inversion (Shin & Min 2006; Shin

& Cha 2008). Figs 1(i) and (j) show the amplitude and phase spec-

tra of 2.0 Hz for different damping constants. The behaviour of the

amplitude spectra of 2 Hz is similar to that of 0.01 Hz, but small

variations are added. The phase spectrum becomes smoother as the

damping constant becomes larger. Note that the variation of the

phase spectrum for the large damping constant is related to the first

arrival times.

Forward modelling in the Laplace–Fourier domain

The discretized equation for the acoustic wave equation using the

finite-element approach can be written as

Mü(t) + Cu̇(t) + Ku(t) = f(t), (4)

where M is the mass matrix, C is the damping matrix,K is the

stiffness matrix, u(t) is a discretized wavefield in the time domain

and f(t)is a discretized source vector (Marfurt 1984).

In the Laplace–Fourier domain, eq. (4) can be expressed as

s2Mũ(s) + sCũ(s) + Kũ(s) = f̃(s), (5)

where

ũ(s) =
∫ ∞

0

u(t)e−st dt, (6)

f̃(s) =
∫ ∞

0

f(t)e−st dt (7)

and s is a complex-valued damping factor or Laplace–Fourier fre-

quency, σ + iω and σ is a positive Laplace damping factor.

For simplicity, eq. (5) can be rewritten as

Sũ(s) = f̃(s), (8)

where the complex impedance matrix, S, is given by K+sC+s2M.

The complex impedance matrix depends on the model parameters.

If we consider the constant-density, isotropic, 2-D acoustic wave

propagation, the model parameter will be the 2-D velocity.

In the same manner as the conventional forward modelling

in the frequency domain, the forward modelled data in the

Laplace–Fourier domain can be computed by an LU factorization

of the complex impedance matrix and forward and backward sub-

stitutions for multiple source vectors.

Single-frequency logarithmic waveform inversion theory

In the single-frequency Laplace–Fourier domain waveform inver-

sion algorithm, the residual at the jth receiver for the ith source

for a single complex-valued frequency or single complex-valued

Laplace damping factor can be defined as the logarithmic ratio be-

tween synthetic data in a given model, ũi j , and observed data, d̃i j ,

in the Laplace–Fourier domain (Shin & Min 2006). Thus,

δri j = ln(̃ui j ) − ln(̃di j ) = ln

(
ũi j

d̃i j

)
. (9)

We are trying to find a solution by minimizing, in a least squares

sense, the objective function defined as

E(p) =
1

2

ns∑

i=1

nr∑

j=1

δri jδr∗
i j , (10)

where the superscript ∗ represents complex conjugation, and ns and

nr are the number of sources and receivers, respectively.

To iteratively update model parameters using the steepest descent

method, we calculate the steepest descent direction by taking partial

derivatives of eq. (10) with respect to the model parameter, pk . Thus,

∇k E =
∂ E

∂pk

=
ns∑

i=1

(vk)T
(
S−1

)T
ri , (11)

where

vk = −
∂S

∂pk

ũi , (12)
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938 C. Shin et al.

Figure 1. The Laplace–Fourier transformed wavefields for (a) the synthetic shot gather of the BP model. (b) The Laplace–Fourier wavefield domain. Amplitude

(c, e, g and i) and phase (d, f, h and j) spectra of the Laplace–Fourier transform with different Laplace–Fourier frequencies: (c,d) for σ = 0.01, (e,f) for σ = 3,

(g,h) for f = 0.01Hz and (i,j) for f = 2Hz; (c) and (d) are used for conventional frequency-domain waveform inversion; (g) and (h) are used for Laplace

domain waveform inversion.
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Sequential Laplace–Fourier domain inversion 939

ri =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ln
(
ũi1/̃di1

)∗
/̃ui1

ln
(
ũi2/̃di2

)∗
/̃ui2

...

ln
(
ũinr /̃dinr

)∗
/̃uinr

0

...

0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (13)

In eq. (11), T represents the matrix or vector transpose and vk is

the virtual source, which is the secondary source for computing the

partial derivative of the wavefield (Pratt et al. 1998; Shin et al. 2001;

Shin & Min 2006). The steepest descent direction can be obtained

by back-propagating the residuals and computing the scalar product

of the back-propagated wavefield and virtual sources (Pratt et al.

1998).

By following the suggestion of Shin et al. (2001), the steepest

descent direction is scaled by the diagonal of the pseudo-Hessian

matrix, which is computed by the virtual source vectors. The nor-

malized model update at each complex-valued frequency at the lth

iteration can be expressed as

�pl
k = NRM

⎧
⎪⎪⎨
⎪⎪⎩

ns∑
i=1

(vk)T S−1ri

ns∑
i=1

(v∗
k )T vk + λ

⎫
⎪⎪⎬
⎪⎪⎭

, (14)

where λ is a Lagrangian multiplier to avoid a singularity problem,

and NRM is the normalizing operation using the maximum absolute

value of the scaled steepest descent vector. Finally, by multiplying

the normalized model update by the step length α, the model pa-

rameter at each iteration is updated by

pl+1
k = pl

k − α�pl
k

= pl
k − αNRM

⎧
⎪⎪⎨
⎪⎪⎩

ns∑
i=1

(vk)T S−1ri

ns∑
i=1

(v∗
k )T vk + λ

⎫
⎪⎪⎬
⎪⎪⎭

. (15)

In the iterative waveform inversion, to compute forward-modelled

data accurately, the source wavelet should be estimated at each step

of iteration. In this paper, the source wavelet estimation was carried

out using the full Newton method proposed by Shin et al. (2007).

M U LT I L O O P I M P L E M E N TAT I O N

O F T H E S E Q U E N T I A L LY O R D E R E D

S I N G L E - F R E Q U E N C Y WAV E F O R M

I N V E R S I O N

Conventional frequency-domain waveform inversion

The sequentially ordered single-frequency waveform inversion in

the conventional frequency domain has been implemented mostly as

a double-loop algorithm (Yokota & Matsushima 2004). In a single-

frequency loop, a specific number of iterations are performed per

frequency. After each single-frequency loop, the frequency is suc-

cessively changed for the next loop. If the number of iterations per

frequency is niter and the number of frequencies is nf , we will ob-

tain the final inversion result after niter × nf iterations. However,

it is difficult to determine how many iterations we must perform

at each frequency. Usually, we judge the stopping point from the

monotonously decreasing features of the misfit function for each

frequency. Sometimes we perform several runs of waveform inver-

sion using different numbers of iterations per frequency. We then

compare the final models from the highest frequency or the synthetic

data with the field data, and choose the models that are reasonable.

In this paper, we adopt the multiloop implementation for the

sequentially ordered single-frequency logarithmic waveform inver-

sion (Fig. 2). The inner loop, as a single-frequency loop, is over

iterations per frequency. The middle loop is over frequencies. The

double-loop in the conventional waveform inversion consists of

these two loops, and the number of total iterations will be niter × nf .

The outer loop indicates the iterations of the middle loop. There-

fore, after finishing the middle loop over the frequencies once, we

will go back to the first frequency and restart the inversion using the

inverted velocity model at the last frequency as a starting model.

If we iterate the middle loop nloop times, we will get the final in-

version result after niter × nf × nloop iterations. We will show the

numerical examples of the multiloop algorithm of the conventional

frequency-domain waveform inversion in the following chapter.

Applying the multiloop implementation to the waveform

inversion in the Laplace and Laplace–Fourier domains

The multiloop implementation can be applied to the sequen-

tially ordered single-frequency inversion in the Laplace and

Laplace–Fourier domain waveform inversion. The main differences

are the composition of the frequencies used, the corresponding

wavefields and the sequential order (Fig. 3). First, the frequen-

cies used in the conventional frequency-domain waveform inver-

sion are normally complex-valued frequencies with small damping

constants. Next, the frequencies used in the Laplace-domain wave-

form inversion are complex-valued damping constants or frequen-

cies with zero or very small frequencies, but with several damping

constants (Shin & Cha 2008; Fig. 3a). Finally, the frequencies used

in the Laplace–Fourier domain waveform inversion are complex-

valued frequencies with several low frequencies and several damp-

ing constants (Shin & Cha 2009; Fig. 3a).

The waveform inversion in the Laplace domain can be regarded

as single-frequency, zero-frequency or dc inversion, but with sev-

eral different damping constants. The Laplace damping constant

controls the depth window of the inverted area. When the damp-

ing constant is large, shallow parts of the model are inverted. On

the other hand, when the damping constant is small, shallow and

deep parts of the model are inverted. When we try to sequentially

invert the wavefields with different damping constants, it seems

reasonable to sequentially invert large to small damping constants.

However, although we do not show the results here, two sequential

inversions from large to small damping constants, or from small to

large damping constants, produce similar results because we adopt

the multiloop implementation.

The waveform inversion in the Laplace–Fourier domain can be

regarded as a waveform inversion of multiple frequencies and mul-

tiple damping constants. The wavefield domain, then, is a 2-D plane

and we have to assign a sequential order of complex-valued frequen-

cies in the 2-D plane to perform the sequential inversion. Following

the conventional multiscale inversion approach, we can perform

a series of single-frequency inversions from low to high frequen-

cies. However, each single-frequency inversion can be performed

as two kinds of a series of single Laplace damping constant inver-

sions: (1) a large to small damping constant or (2) a small to large

damping constant. We can also perform a series of multiscale inver-

sions in a layer-stripping manner. We sequentially invert low to high

C© 2010 The Authors, GJI, 181, 935–950
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940 C. Shin et al.

Figure 2. A flowchart (a), a diagram (b) and a simple program structure (c) of the multiloop algorithm of the sequentially ordered single-frequency logarithmic

waveform inversion. The inner loop as a single-frequency loop is over iterations per frequency. The middle loop is over frequencies. The outer loop indicates

the iterations of the middle loop. In the multiloop algorithm, the inverted model at the last frequency of the previous loop is used as a starting model for the

waveform inversion at the first frequency of the next loop.

frequencies at the largest damping constant and iterate sequential in-

versions at successively lower damping constants. Three sequential

orders that we can suppose are shown in Figs 3(b), (c) and (d).

One-step sequential waveform inversion in the full

Laplace–Fourier domain

So far we have presented the sequentially ordered single-

frequency inversion in the conventional frequency domain and

Laplace–Fourier domain separately. Unlike the conventional wave-

form inversion algorithm performed as a two-step process,

we will combine the Laplace-domain waveform inversion, the

Laplace–Fourier domain waveform inversion and the conventional

frequency-domain waveform inversion into a one-step process of

waveform inversion in the full Laplace–Fourier domain. Although

we have to choose from several sequential orders for waveform

inversion shown in Fig. 3, we propose one sequential order of

complex-valued frequencies for the sequential single-frequency

waveform inversion in the full-Laplace domain inversion (Fig. 4).

In this sequential order, we already include multiloop implemen-

tation of the conventional frequency-domain waveform inversion

with small damping factors of 0.75, 0.5 and 0.15. Depending on the

model complexity and the number of iterations per frequency, then,

the inversion results might converge to the global minimum at just

one loop or within a few loops. Please note that there might be other

sequential orders for the waveform inversion that produce similar or

better results. We will present the numerical examples of the sequen-

tially ordered single-frequency inversion in the full Laplace–Fourier

domain applied to the BP model and the field data.

S Y N T H E T I C E X A M P L E S

SEG overthrust model (conventional frequency domain)

To examine the necessity and validity of the multiloop implemen-

tation of the sequentially ordered single-frequency waveform inver-

sion, we conducted numerical experiments. Our test model was the

SEG overthrust model (Aminzadeh et al. 1997) shown in Fig. 5.

We simulated the observed data using a fourth order in space and

second order in time finite-difference modelling code. The record-

ing time was 16 s. The number of shots was 199 and the shotpoint

interval was 100 m. The number of receivers was 801 and the re-

ceiver interval was 25 m. The grid interval of the model was 25 m.

The initial model for the inversion was the homogeneous velocity

model with a velocity of 4.0 km s−1. We sequentially inverted 49

frequencies ranging from 0.25 to 12.25 Hz with a 0.25 Hz interval.
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Sequential Laplace–Fourier domain inversion 941

Figure 3. (a) Wavefield domains of the Laplace and Laplace–Fourier domain waveform inversion, (b–d) the three different sequential orders of the

Laplace–Fourier domain waveform inversion: (b) the downward inversion path, (c) the upward inversion path and (d) the layer stripping inversion path.

Figure 4. Wavefield domain and sequential orders of the sequentially or-

dered single-frequency waveform inversion in the full Laplace–Fourier

domain.

The number of iterations was 25 for each frequency. At the first

iteration for each frequency, the source wavelet was estimated, but

the velocity was not updated. At the other 24 iterations, the velocity

and the source wavelet were estimated and updated simultaneously.

The step length was fixed as 25 m s−1 and the velocities were forced

Figure 5. The true SEG overthrust velocity model.

to be between 2.3 and 6 km s−1. Although the optimum step length

may be found by appropriate analysis of the objective function, such

as line-search techniques, we simply limited the maximum model

update without the additional computation for choosing the step

length. The inverted velocity models after 0.25, 2, 6 and 12.25 Hz

are shown in Fig. 6. As the higher frequencies were inverted, the

higher wavenumbers of the model were recovered. Note, how-

ever, that the high-velocity layer at the lower part of model, which

was partially recovered at 2 and 6 Hz, was somewhat degraded at

12.25 Hz. This seems to be caused by individual matching at each

frequency, and the best model at some frequencies may not be the

best model at other frequencies. Therefore, the additional waveform

inversion needs to be re-initiated from the first or lowest frequency

using the final model at the highest frequency of the previous loop

as a starting model.

Next, we will compare the inversion results with different num-

bers of iterations for each frequency and different outer loops, but
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942 C. Shin et al.

Figure 6. Inverted velocity models of the sequentially ordered single-

frequency waveform inversion in the conventional frequency domain us-

ing a homogeneous velocity model of 4.0 km s−1: (a) 0.25 Hz, (b) 2 Hz,

(c) 6 Hz and (d) 12.25 Hz for the SEG overthrust synthetic data.

with the same number of iterations for entire frequencies. We per-

formed four runs of the waveform inversion using 1, 3, 6 and 12

iterations per frequency, respectively (Fig. 7). The middle loop was

over 49 frequencies. Figs 7(a)–(d) show the inversion results after

12 loops, 4 loops, 2 loops and 1 loop, respectively (Table 1). For

example, 12 loops means repeating the middle loop 12 times. The

number of total iterations per frequency is equal to 12 (number

of iterations per frequency × number of loops, niter × nloop). The

waveform inversion using one iteration per frequency produced the

poorest results, even with the largest number of outer loops. How-

ever, the inversion results obtained using three and six iterations per

frequency were better than that using 12 iterations and after only

one loop, because the waveform inversions over entire frequencies

were iteratively carried out several times. Fig. 8 shows the inversion

results after 60, 20, 10 and 5 outer loops, using the same iterations

per frequency (Table 1). The number of total iterations per fre-

quency is equal to 60. The waveform inversion obtained using one

iteration per frequency still produced the poorest results, even with

the largest number of loops. Although the result obtained using 12

iterations per frequency looks slightly better, all of the other results

seem to be acceptable. From these numerical experiments, we can

Figure 7. Comparison of the inverted velocity models of the conventional

frequency-domain waveform inversion for the SEG overthrust synthetic data

with different numbers of iterations for each frequency and different loops:

(a) 1 and 12, (b) 3 and 4, (c) 6 and 2 and (d) 12 and 1. The number of total

iterations of each frequency is equal to 12.

conclude that the multiloop implementation improves the waveform

inversion results, and the number of iterations per frequency is less

important than the conventional double-loop implementation of the

sequential waveform inversion. Moreover, because we can examine

and compare the final results at the last frequency of each loop, we

can perform additional quality control of the inversion results.

BP model (Laplace and Laplace–Fourier domain)

Now we present the simultaneous inversion and sequential inversion

results in the Laplace and Laplace–Fourier domains following three

sequential orders (Figs 3b–d). Our test model was the BP model

(Billette & Brandsberg-Dahl 2005) shown in Fig. 9(a). We simu-

lated the observed data using a fourth order in space and second

order in time finite-difference modelling code. The recording time

was 20 s and the sampling interval was 4 ms. The number of shots

was 418 and the shotpoint interval was 200 m. The number of re-

ceivers was 301 and the receiver interval was 50 m. The acquisition

geometry simulated the conventional marine acquisition towing the

streamer. The length of the streamer was 15 km and the nearest
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Sequential Laplace–Fourier domain inversion 943

Table 1. Summary of the number of iterations per frequency, the number of frequencies and the number of loops for Figs 7 and 8.

Frequencies ( f ) and Number of iterations at a Number of loops Number of total

Figure number number of frequencies single-frequency loop iterations per frequency

(n f ) (niter) (nloop) (niter × nloop)

Fig. 7(a) 1 12 12

Fig. 7(b) 0.25–12.25 Hz, 0.25 Hz 3 4

Fig. 7(c) interval, 49 frequencies 6 2

Fig. 7(d) 12 1

Fig. 8(a) 1 60 60

Fig. 8(b) 0.25–12.25 Hz, 0.25 Hz 3 20

Fig. 8(c) interval, 49 frequencies 6 10

Fig. 8(d) 12 5

Figure 8. Comparison of the inverted velocity models of the conventional

frequency-domain waveform inversion for the SEG overthrust synthetic data

with different numbers of iterations for each frequency and different loops:

(a) 1 and 60, (b) 3 and 20, (c) 6 and 10 and (d) 12 and 5. The number of

total iterations of each frequency is equal to 60.

offset was 0. The first derivative of the Gaussian function was used

for the source wavelet. The two-layer homogeneous velocity model,

with a velocity of 4.1 km s−1 (Fig. 9b), and the linearly increasing

velocity model, varying from 1.5 to 4.5 km s−1 (Fig. 9c), were used

as starting models. The velocity of the sea water layer was fixed

Figure 9. (a) The true BP velocity model, (b) the two-layer homogenous

initial velocity model with a velocity of 4.1 km s−1 and (c) the linearly

increasing velocity model varying from 1.5 to 4.5 km s−1.

at 1.5 km s−1. The grid interval of the model for inversion was

50 m. Seven Laplace damping constants ranging from 1 to 13

with an interval of 2, and seven frequencies ranging from 0.01 to

1.51 Hz with an interval of 0.25 Hz, were used. Therefore, a total

of 49 complex-valued damping constants were used. The number

of iterations for each frequency was seven. At the first iteration of

each frequency, the source wavelet was estimated, but the velocity

was not updated. The step length was fixed at 50 m s−1 and the

velocities were forced to be between 1.3 and 4.8 km s−1.

The inversion result using the Laplace-domain simultaneous

waveform inversion at the 210th iteration is shown in Fig. 10(a).
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944 C. Shin et al.

Figure 10. Inverted velocity models of the simultaneous (a and b) and se-

quential (c–e) inversion in the Laplace–Fourier domain for the BP synthetic

data: (a) Laplace domain simultaneous inversion; (b) Laplace–Fourier do-

main simultaneous inversion from (a); (c–e) downward path, upward path

and layer stripping path of the sequentially ordered single-frequency inver-

sion in the Laplace–Fourier domain, respectively.

We performed a waveform inversion on a Linux PC cluster,

with each node comprising two quad-core Intel Xeon 2.5 GHz

processors; each node had eight cores. In our MPI (message pass-

ing interface) environment, each core of the eight-core nodes was

assigned a single MPI process. At each iteration, each CPU core in-

verted a single Laplace damping constant, and a total of seven cores

were used for seven Laplace damping constants, ranging from 1

to 13 with an interval of 2. The Fourier temporal frequency was

0.01 Hz. The total computation time for completing 210 iterations

was 369 min. A smooth background velocity model, including a

linearly increasing velocity trend and high-velocity salt domes, was

recovered well from the two-layer homogeneous velocity model

(Fig. 9b). Using this result as a starting model, we performed the

simultaneous waveform inversion in the Laplace–Fourier domain.

From the inversion results at the 500th iteration, shown in Fig. 10(b),

it is evident that the medium-wavelength velocity model was recov-

ered well. A total of 42 CPU cores were used for 42 complex-valued

damping constants (seven Laplace damping constants ranging from

1 to 13 with an interval of 2, and six frequencies ranging from 0.26

to 1.51 Hz with an interval of 0.25 Hz). The total core time for

completing 500 iterations was 907 min.

The inversion results from the sequentially ordered single-

frequency inversion in the Laplace–Fourier domain following the

three sequential orders after the 10th loop are shown in Figs

10(c)–(e). Note that the inversion results are almost similar. A total

of nine CPU cores were used. At each iteration, the multiple shots

were grouped into nine groups, and a single CPU core inverted

each group of shots. The total computation time for completing 10

loops was 1100 min. In our experiments, we used the full size of the

domain for every group of shots and all CPU cores calculated the

same LU factorization. However, if we used different subdomains

with smaller sizes for each group of shots, the computation time

would be reduced significantly.

From these numerical experiments, we can conclude that

the sequentially ordered single-frequency inversion in the

Laplace–Fourier domain can produce similar results to the simulta-

neous waveform inversion, but that less computational resources are

required. As the number of frequencies used for waveform inver-

sion in the Laplace–Fourier domain is increased, the computation

efficiency is also increased. Because the multiloop implementation

is adopted, the number of iterations per frequency is less important,

and we can easily perform quality control of the inversion results.

BP model (one-step waveform inversion in the full

Laplace–Fourier domain)

To validate the proposed one-step waveform inversion algorithm in

the full Laplace–Fourier domain, we applied it to a synthetic data set

generated from the BP model. The main targets of the model were

a complex rugose multivalued salty body, the subsalt slow-velocity

anomalies in the left part of the model, a deeply rooted salt body in

the central part and the extra-salt and localized shallow anomalies

in the right part (Billette & Brandsberg-Dahl 2005). The details of

the synthetic data set are described in the previous section.

First, we performed the sequentially ordered single-frequency

waveform inversion in the conventional frequency domain. Twenty-

four frequencies ranging from 0.25 to 6.00 Hz, with a 0.25 Hz

interval, were used. The number of iterations for each frequency was

seven. At the first iteration for each frequency, the source wavelet

was estimated, but the velocity was not updated. The step length

was fixed as 50 m s−1 and the velocities were forced to be between

1.3 and 4.8 km s−1. The final inversion result, using the linearly

increasing velocity model (Fig. 9c) as a starting model at the 10th

iteration, is shown in Fig. 11(a). Although the salt body in the left

part, the top area of the salt body in the central part and some shallow

anomalies were partially recovered, the overall inversion result was

unsatisfactory.

Next, we performed the sequentially ordered single-frequency

waveform inversion in the full Laplace–Fourier domain. A total
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Sequential Laplace–Fourier domain inversion 945

Figure 11. Inverted velocity models for the BP synthetic data using the

sequentially ordered single-frequency inversion (a) in the conventional fre-

quency domain using the linearly increasing velocity model after the 10th

loop and (b–d) in the Laplace–Fourier domain using the two-layer homoge-

neous velocity model after (b) the first loop, (c) the first loop and (d) the

fourth loop, respectively. The number of iterations for each frequency is (a

and b) 6 and (c and d) 2.

of 247 complex-valued frequencies were used for the inversion:

(1) seven damping constants ranging from 1 to 13 with an inter-

val of 2 and 25 frequencies ranging from 0.01 to 6.01 Hz with a

0.25 Hz interval (7 × 25 = 175 complex-valued frequencies) and

(2) 24 frequencies ranging from 0.25 to 6.00 Hz with a 0.25 Hz

interval with three small damping factors of 0.75, 0.5 and 0.15

(3 × 24 = 72 complex-valued frequencies). The sequential order of

complex-valued frequencies for the inversion is shown in Fig. 4. The

initial velocity model is the two-layer homogeneous velocity model

shown in Fig. 9(b). The inversion result obtained using six iterations

for velocity update per frequency after the first loop is shown in

Fig. 11(b). Several salt bodies, subsalt low-velocity anomalies and

localized shallow anomalies were well recovered even after the first

loop and when using the two-layer homogeneous velocity model as

a starting model.

To understand the behaviour of the proposed algorithm using

different iterations per frequency, we performed another run of

the proposed waveform inversion using two iterations for veloc-

ity update per frequency. The inverted velocity models after the

first and fourth loop are shown in Figs 11(c) and (d), respectively.

Fig. 11(c) obviously indicates that the recovery of the velocity

structures after the first loop was incomplete, which might have

been caused by the insufficient number of iterations per frequency.

However, we can observe that the velocity structures were improved

considerably after the fourth loop, although some artefacts appeared

around the salt body in the right part (Fig. 11d).

These numerical experiments demonstrate that the number of

iterations per frequency in our algorithm is less important than in

the conventional double-loop algorithm. The successful recovery

of the target features even when using the two-layer homogeneous

velocity model shows the robustness of our algorithm.

R E A L DATA C A S E S T U D I E S

Field data set (the Gulf of Mexico)

In this section, we apply our algorithm to real data to examine the

field applicability. The field data are the data set acquired from

the Gulf of Mexico. The number of shots was 399 and the shot-

point interval was 50 m. The number of channels was 408 and

the receiver interval was 25 m. The recording length was 12 s and

the sampling interval was 4 ms. The offset range was 137 m to

10.321 km. The water depth ranged from 420 to 910 m. An ex-

ample of the raw shot gather is shown in Fig. 12(a). First arrivals,

such as direct wave and refractions wave, are clearly seen. Although

we do not show the frequency spectrum here, the frequency band

below 4 Hz seemed to be unreliable. A damped shot gather with a

damping constant of 1.0 is shown in Fig. 12(b). Late arrivals were

almost damped and early arrivals such as direct wave, refraction

wave and shallow reflections were dominant. Fig. 12(c) shows the

amplitude spectra of the Laplace–Fourier transformed wavefield of

0.01 Hz with different damping constants. At a very small damp-

ing constant (σ = 0.01), the amplitude spectra were highly variable

with the offset. At the Laplace damping constant of 1, the amplitude

spectra were still highly variable with offset, even though most of

the late arrivals are damped. However, as we can see in the synthetic

example shown in Fig. 1, the tendency of the amplitude spectra to

decrease exponentially with offset is apparent when the Laplace

damping constant is larger. Considering the small amplitude values

of the Laplace-transformed wavefields, we can understand that the

logarithmic waveform inversion is suitable for the Laplace domain

waveform inversion (Shin & Cha 2008, 2009).

First, we applied a sequentially ordered single-frequency inver-

sion in the conventional frequency domain. The starting model

was the linearly increasing velocity model varying from 1.5 to

2.85 km s−1, but the velocity of the sea water layer was fixed as

1.5 km s−1. The grid interval for inversion was 18 m. Sixty fre-

quencies were used, ranging from 0.25 to 15.00 Hz with a 0.25 Hz

interval. The number of iterations for each frequency was seven.

At the first iteration of each frequency, the source wavelet was esti-

mated, but the velocity was not updated. The step length was fixed

as 25 m s−1 and the velocities were forced to be between 1.3 and

4.8 km s−1. The final inversion result at the eighth loop is shown in

Fig. 14(a). The velocity of the shallow sedimentary structures was

recovered to some extent, but the velocity of the salt structure in the

central part was not recovered at all.

Next, we carried out the sequentially ordered single-frequency

waveform inversion in the full Laplace–Fourier domain. The start-

ing model was a two-layer velocity model in which the first layer was
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946 C. Shin et al.

Figure 12. Real data example (Gulf of Mexico): an example of (a) raw shot gather acquired in the Gulf of Mexico and (b) damped shot gather with a damping

constant of 1.0. (c) shows the amplitude spectra of the Laplace–Fourier transformed wavefields with different Laplace damping constants at 0.01 Hz.

the sea water and the second layer was the homogeneous model with

a velocity of 3.3 km s−1. A total of 237 complex-valued frequencies

were used for the inversion: (1) 6 damping constants ranging from

2 to 12 with an interval of 2 and 17 frequencies ranging from 0.01

to 4.01 Hz with a 0.25 Hz interval (6 × 17 = 102 complex-valued

frequencies) and (2) 45 frequencies ranging from 4.00 to 15.00 Hz

with a 0.25 Hz interval and with three small damping factors of

0.75, 0.5 and 0.15 (3 × 45 = 135 complex-valued frequencies). A

strategy choosing complex-valued frequencies and sequential or-

ders for inversion is shown in Figs 4 and 13. We first performed the

sequential inversion in the Laplace domain using six damping fac-

tors and 0.01 Hz, three times, to get a more reasonable background

model. We then performed the sequential inversion using the above

237 complex-valued frequencies (Fig. 13). The number of iterations

needed for the velocity update for each frequency was six, except

for the first iteration for the source wavelet estimation.

The intermediate velocity model from the Laplace-domain wave-

form inversion (six damping constants, six iterations, three outer

loops) is shown Fig. 14(b). The long-wavelength velocity model

was recovered from the two-lay homogeneous velocity model. The

final result after the first loop is shown in Fig. 14(c). The high

velocity of the main salt body in the central part was clearly recov-

ered. This was impossible in the conventional frequency-domain

waveform inversion. To assess the reliability of the inverted veloc-

ity model, we performed the pre-stack reverse-time depth migra-

tion in the frequency domain. Fig. 15(a) shows the migrated image

from the pre-stack reverse-time depth migration using the two-layer

initial velocity model, whereas Fig. 15(b) shows the correspond-

ing migrated image using the inverted velocity structure. The salt

boundaries, shallow-layered sedimentary structures and faults are

imaged clearly. We compared the common-image gathers from the

reverse-time migration using the initial velocity model and the in-

verted velocity structure at a distance of 4.14 and 14.58 km (Fig. 16).

Figs 16(a) and (b) show the common-image gathers using the initial

velocity structure, whereas Figs 16(c) and (d) show the common-

image gathers using the inverted velocity model. Judging from the

fact that most reflection events in the common-image gathers using

the inverted velocity structure are flattened, the inverted velocity

structure seems to be reasonable. These results demonstrate that the

proposed waveform inversion technique can be applied to field data

suffering from a lack of meaningful low-frequency information.

Field data set (Korean continental shelf)

We applied our algorithm to real data acquired from the offshore

Korea. The number of shots was 522 and the shotpoint interval was
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Sequential Laplace–Fourier domain inversion 947

do loop = 1, loopn

do freq = 0.01                          (1 frequency) 

        do sigma =12, 2, -2              (6 damping constants, fn =6)

       do iter =1,7                        (7 iterations, itern =7)

 single-frequency waveform inverse  

in the Laplace domain 

      enddo 

       enddo 

     enddo 

enddo                                                   Fig. 14b (nloop = 3) 

do loop = 1, loopn

do freq = 0.01, 4.01, 0.25    (17 frequencies) 

        do sigma =12, 2, -2           (6 damping constants, fn = 6x17= 102) 

       do iter =1,7                   (7 iterations, itern =7)

 single-frequency waveform inverse  

in the Laplace-Fourier frequency domain 

           enddo 

   enddo 

enddo

do sigma[] = { 0.75, 0.5, 0.15}   (3 damping constants) 

        do freq = 4.00,15.00,0.25        (45 frequencies, fn = 3x45 = 135) 

do iter =1,7                          (7 iterations, itern =7)

single-frequency waveform inverse  

in the frequency domain 

           enddo 

       enddo 

enddo

enddo                                                    Fig. 14c (nloop = 1) 

Figure 13. A strategy choosing complex-valued frequencies and sequential

orders for a sequentially ordered single-frequency waveform inversion in

the Laplace–Fourier domain for the field data set from the Gulf of Mexico.

50 m. The number of channels was 160 and the receiver interval was

12.5 m. The offset ranged from 150 m to 2.1375 km. The recording

length was 9 s and the sampling interval was 2 ms. Fig. 17(a) shows

the near trace gather after low-pass filtering up to 50 Hz and gain

correction. We can see the strong multiples and the shallow sed-

imentary layers, including faults and folding structures. Although

the recording time was sufficiently long, the streamer length was

too short to obtain the deep velocity model from the Laplace and

Laplace–Fourier domain waveform inversion. We aimed to evaluate

our algorithm by trying to invert the short-offset field data using the

simple velocity model. The initial model was a two-layer velocity

model, in which the first layer was the sea water and the second

layer was the homogeneous model with a velocity of 2.5 km s−1.

We confined the maximum recovering depth to 1.25 km. The grid

interval for the waveform inversion was 12.5 m. The number of

iterations needed for the velocity update for each frequency was

three. The step length was fixed as 10 m s−1 and the velocities were

forced to be between 1.3 and 3.3 km s−1.

The strategy for choosing the sequential order of complex-valued

frequencies for inversion was similar to that shown in Fig. 13, but

the composition of the complex-valued frequencies was different. A

total of 327 complex-valued frequencies were used for the inversion:

(1) 7 damping constants ranging from 3 to 21 with an interval of

3 and 12 temporal frequencies ranging from 0.01 to 2.76 Hz with

a 0.25 Hz interval (7 × 12 = 84 complex-valued frequencies) and

(2) 81 frequencies ranging from 5.25 to 25.25 Hz with a 0.25 Hz

interval with three small damping factors of 0.75, 0.5 and 0.15 (3 ×
81 = 243 complex-valued frequencies). The final inverted velocity

model from the waveform inversion is shown in Fig. 17(b). The

Figure 14. Real data example (Gulf of Mexico): inverted velocity models

from the sequentially ordered single-frequency inversion (a) in the conven-

tional frequency domain using the linearly increasing velocity model after

the eighth loop, (b) in the Laplace domain using the two-layer homoge-

neous velocity model after the third loop and (c) in the Laplace–Fourier

domain using the two-layer homogeneous velocity model after the first loop,

respectively.

large-scale velocity structures, the small-wavelength features and

the relatively high-velocity zone between horizontal distances 0 and

8 km were recovered well from the two-layer initial velocity model.

To assess the validity of the inverted velocity model, we compared

the real seismogram, band-pass filtered from 5.25 to 25.25 Hz,

with the synthetic seismogram generated from the inverted velocity

model when the source was located at 22.8125 km (Fig. 18). The real

data seemed comparable to the synthetic seismogram from the final

velocity model but some discrepancies could be found. The possible

causes of the inconsistency may have been the 2-D, constant-density,

acoustic approximation to 3-D heterogeneous earth, the short-offset

data or the low signal-to-noise ratio. We compared the migrated

images from the Kirchhoff pre-stack depth migration using the

two-layer initial velocity model and the inverted velocity structure

(Fig. 19). The shallow reflectors are unclear on the migrated image

from the initial velocity model shown in Fig. 19(a), whereas the

reflectors are well focused on the migrated images from the inverted

velocity model shown in Fig. 19(b), and the overall quality of the

migrated image appears to be much improved. This second real
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Figure 15. Reverse-time migrated images from (a) the initial velocity model

and (b) the inverted velocity structure for the field data set from the Gulf of

Mexico.

data example shows the field applicability and performance of the

proposed algorithm.

C O N C LU S I O N S

We have presented a sequentially ordered 2-D acoustic waveform

inversion algorithm in the full Laplace–Fourier domain. This algo-

rithm has combined all Laplace, Laplace–Fourier and conventional

frequency domain waveform inversions into a one-step process.

Our algorithm has the advantages of both the sequential inversion

technique and the Laplace–Fourier domain waveform inversion al-

gorithm, including computational efficiency, stability, robustness

and low dependence on the initial model. Our algorithm also seeks

to find a final velocity structure from simple starting models, such

as the two-layer homogeneous velocity model or the linearly in-

creasing velocity model.

The sequentially ordered single-frequency waveform inversion in

the conventional frequency domain has been implemented mostly

as a double-loop algorithm. However, it was difficult to determine

how many iterations we needed to perform at each frequency and

to assign a proper stopping criteria. To overcome these difficulties,

we adopted a multiloop implementation for the sequentially ordered

single-frequency logarithmic waveform inversion, where the addi-

tional waveform inversion is iteratively re-initiated from the first

or lowest frequency using the final model at the highest frequency

of the previous loop as a starting model. From the numerical ex-

periments using the SEG overthrust model, we have shown that the

multiloop implementation improved the waveform inversion results,

and that the number of iterations per frequency was less important

than the conventional double-loop implementation of the sequential

waveform inversion.

The multiloop implementation of the sequentially ordered single-

frequency inversion was applied to the sequentially ordered single-

frequency inversion in the Laplace and Laplace–Fourier domain

waveform inversions. The main differences were the composition

of the frequencies used, the corresponding wavefields and the se-

quential order. Because the Laplace–Fourier wavefield domain is a

2-D plane, we had to assign a sequential order of complex-valued

frequencies in a 2-D plane for sequential inversion. Thus, we have

presented three sequential orders that consider the conventional

multiscale inversion approach and the layer-stripping approach.

From the numerical experiments using the BP model, three

types of sequentially ordered single-frequency inversions in the

Laplace–Fourier domain produced similar results to the simulta-

neous waveform inversion, but less computational resources were

required.

Based on these numerical experiments, we combined the Laplace-

domain waveform inversion, the Laplace–Fourier waveform

inversion and the conventional frequency-domain waveform in-

version into a one-step process of waveform inversion in the full

Laplace–Fourier domain. Our one-step waveform inversion, the se-

quentially ordered single-frequency 2-D acoustic waveform inver-

sion in the full Laplace–Fourier domain, was applied to the synthetic

data set from the BP model and field data. Although the inversion

results from the conventional frequency-domain inversion using

the linearly increasing velocity model as a starting model were

insufficient, our algorithm recovered reasonably complex velocity

structures, even using the two-layer homogeneous velocity model

as a starting model. The inversion results derived from the field data

were validated by examining the migrated image from the pre-stack

depth migration and the flattening of the common-image gathers,

Figure 16. Comparison of the common-image gathers from the pre-stack reverse-time migration using (a and b) the initial velocity model and (c and d) the

inverted velocity structure; (a) and (c) are the common-image gathers at a distance of 4.14 km and (b) and (d) are the common-image gathers at a distance of

14.58 km, respectively.
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Figure 17. Real data example (Korean continental shelf): (a) the near trace

gather, and (b) the inverted velocity model from the sequentially ordered

single-frequency inversion in the Laplace–Fourier domain using the two-

layer homogeneous velocity model.

Figure 18. Comparison of (a) field seismogram with (b) synthetic seis-

mogram generated from the inverted velocity structure when the source is

located at 22.8125 km.

or they were validated by comparing the synthetic shot gather with

the real shot gather.

However, it is important to recognize that the inverted velocity

model from the field data could still represent a local minimum that

might be caused by the limitations of the acoustic approximation

to wave propagation through the real earth, the constant-density

approximation, the 2-D approximation to a 3-D wavefield or the

low signal-to-noise ratio. Therefore, the extension of our sequen-

tial inversion algorithm to 2-D acoustic joint inversion for velocity

and density, 2-D elastic waveform inversion and 3-D acoustic- and

elastic-waveform inversion should be studied. Moreover, the opti-

mum selection of the complex-valued damping constants still needs

to be investigated.
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