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Abstract: We analyse soft supersymmetry breaking in type IIB de Sitter string vacua

after moduli stabilisation, focussing on models in which the Standard Model is sequestered

from the supersymmetry breaking sources and the spectrum of soft-terms is hierarchically

smaller than the gravitino mass m3/2. Due to this feature, these models are compatible

with gauge coupling unification and TeV scale supersymmetry with no cosmological moduli

problem. We determine the influence on soft-terms of concrete realisations of de Sitter

vacua constructed from supersymmetric effective actions. One of these scenarios provides

the first study of soft-terms for consistent string models embedded in a compact Calabi-Yau

manifold with all moduli stabilised. Depending on the moduli dependence of the Kähler

metric for matter fields and on the mechanism responsible to obtain a de Sitter vacuum, we

find two scenarios for phenomenology: (i) a split-supersymmetry scenario where gaugino

masses are suppressed with respect to scalar masses: M1/2 ∼ m3/2ǫ ≪ m0 ∼ m3/2

√
ǫ ≪

m3/2 for ǫ ∼ m3/2/MP ≪ 1; (ii) a typical MSSM scenario where all soft-terms are of the

same order: M1/2 ∼ m0 ∼ m3/2ǫ ≪ m3/2. Background fluxes determine the numerical

coefficients of the soft-terms allowing for small variations of parameters as is necessary to

confront data and to interpolate between different scenarios. We comment on different

stringy origins of the µ-term and potential sources of desequestering.
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1 Introduction

The simplest models of low energy supersymmetry (SUSY) as a solution to the hierarchy

problem are in tension with the latest LHC results (see e.g. [1] and references therein) which

are moving the bounds for sparticle masses beyond the TeV scale. We are then either in a

situation where we accept two to three orders of magnitude of tuning as still ‘natural’, or we

are at a very particular corner in the Minimal Supersymmetric Standard Model (MSSM)

parameter space with less fine-tuning (e.g. natural SUSY [2–4], compressed spectra [5, 6],

RPV models [7, 8]), or we need alternatives to the conventional MSSM. Given this, there

are various avenues to explore for addressing the electroweak hierarchy problem:

1. The simplest MSSM models (e.g. CMSSM) need to be modified at low energies to ac-

count for particular corners in the MSSM parameter space with reduced fine-tuning.

Or, one step further, extensions of the MSSM including extra matter and/or inter-

actions at the TeV scale may relax the tuning of the MSSM (see e.g. [9]).

2. The MSSM is the correct description for beyond the Standard Model (SM) physics but

the hierarchy problem is addressed by different amounts of fine-tuning through the

multiverse just like the cosmological constant problem [10], where we can distinguish

the following classes:

(a) The simplest models of low energy SUSY are realised with some two to three

orders magnitude of fine-tuning.

(b) One just keeps the appealing features of low-energy SUSY of realising the cor-

rect dark matter density and gauge coupling unification whereas the hierarchy

problem is no longer addressed. This proposal is commonly referred to as split

SUSY [11] where gauginos are at the TeV scale while the scalar superpartners

are hierarchically heavier.

(c) Dark matter and gauge coupling unification are achieved by other mechanisms

and the SUSY particles are at a scale far above the electroweak scale such as an

intermediate scale.

3. One can consider alternative solutions to the hierarchy problem such as composite

models or extra-dimensional models.

Each of these scenarios has its own virtues and demerits. The first one aims at avoiding

fine-tuning in the parameter space of the MSSM, but without a principle on why to favour

a particular extension in a UV theory, it is in some sense a tuning in theory space which

is as appealing as fine-tuning in parameter space, the others simply accept some sort of

tuning.1 Given this state of affairs, we are left with the unpleasant situation that at present

the best argument in favour of low-energy SUSY is that other alternatives, like large extra

dimensions or composite models, are looking even worse.

1Particular interesting corners of parameter space for soft-terms can be obtained by invoking princi-

ples such as precision gauge coupling unification [12] or by identifying pattern in underlying UV theories

(e.g. realisation of natural SUSY and compressed spectra in the heterotic mini-landscape [13, 14]).

– 2 –



J
H
E
P
1
1
(
2
0
1
4
)
0
7
1

This is a golden opportunity for string theoretical scenarios to play a role. Being the

only explicit scenarios that provide a UV completion of the SM, they should be able to

address the problems of the scenarios mentioned above, provide guidance towards their

explicit realisation and maybe even suggest other alternative avenues.

Consistent string theories are typically supersymmetric. Unfortunately, low-energy

SUSY or the MSSM are not a prediction of string theory and its potential discovery or lack

of will not directly test string theory. Moreover for a high string scale of order 1016GeV

(as hinted by standard MSSM unification and recent inflationary observations [15]), ob-

taining at the same time low-energy SUSY can be a challenge for model building. Another

important feature is the string landscape which can potentially have an impact on the

hierarchy problem. These are very important issues which can impact LHC and future

collider observations. They need to be addressed systematically and within a complete

string framework. This is the subject of the present article.

Fortunately progress in the understanding of SUSY breaking in string compactifications

is maturing right on time to play a role. Several scenarios in which most of the string moduli

have been stabilised with SUSY breaking and computable soft-terms have emerged [16–23].

Some of them are also consistent with cosmological constraints such as the cosmological

moduli problem (CMP) and the realisation of de Sitter (dS) vacua. In particular, the

LARGE Volume Scenario (LVS) [24], on which we focus in this article, allows for several

of the above SUSY breaking scenarios in which soft-terms can be explicitly computed.

Moreover, LVS is an ideal framework to build globally consistent MSSM-like chiral models

for explicit Calabi-Yau (CY) compactifications with all closed string moduli stabilised [25–

28]. It is also possible to obtain dS vacua from supersymmetric effective actions [26, 29]

and the string landscape allows for a controllable fine-tuning of the cosmological constant

and potentially the electroweak hierarchy problem.

1.1 SUSY breaking in LVS

Let us briefly summarise the main properties of LVS relevant for soft SUSY breaking:

• Closed string moduli stabilisation: complex structure moduli and the dilaton are fixed

by three-form fluxes at a supersymmetric minimum. The degeneracy associated with

the flux quanta leads to a landscape of vacua. The non-vanishing value of the flux

superpotential W0 at the minimum breaks SUSY. Perturbative and non-perturbative

corrections to the tree-level effective action fix the Kähler moduli at sizes larger than

the string scale (as required to control the α′ and gs expansions). The Einstein-frame

volume V is exponentially large in string units: V ∼ e1/gs (gs is the string coupling).

• Hierarchy of scales: LVS leads to a hierarchy of scales for masses and soft-terms [30].

In Planck units (MP is the reduced Planck mass), the string scale is (see appendix A

of [30] for the derivation of the exact prefactors)

Ms =
g
1/4
s MP√
4πV

, (1.1)
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the Kaluza-Klein scale is

MKK ≃ MP√
4πV2/3

, (1.2)

and the gravitino mass is2

m3/2 = eK/2|W | =
(

g2s
2
√
2π

)

W0MP

V + . . . , (1.3)

where the dots indicate suppressed corrections in the inverse volume expansion. Most

of the moduli receive a mass of order m3/2 except for the volume mode whose mass is

mV ≃ m3/2/
√
V. Hence there is a natural hierarchy of scales Ms ≫MKK ≫ m3/2 ≫

mV for the flux superpotential W0 taking generic values between 1− 100.

• Bottom-up model building: the D-brane configuration of the visible sector is localised

in a particular corner of the bulk geometry, allowing for a realisation of the bottom-up

approach to string model building [31]. The structure of soft-terms does not depend

on the gauge theory realised in the visible sector but only on the type of D-brane

configuration (e.g. branes at singularities, D7-branes in the geometric regime) as in

the modular approach to string model building. The realisation of the visible sector

on a cycle different from the one supporting non-perturbative effects allows to achieve

compatibility of chirality and moduli stabilisation [25, 32].

• SUSY breaking: assuming a D-brane configuration that leads to the MSSM, the ef-

fective field theory allows to analyse the structure of soft-masses. In particular, the

pattern of soft masses depends on the location and type of the MSSM D-brane con-

struction in the CY orientifold compactification. If the MSSM is located at a divisor

geometrically separated from the main sources of SUSY breaking in the bulk, e.g. on

a shrinking divisor, there can be a hierarchical suppression of the soft masses below

the gravitino mass and the lightest modulus [33]. If the dominant source of SUSY

breaking is in the proximity of the visible sector brane configuration (as it happens if

the F-term of the modulus of the cycle wrapped by the SM brane breaks SUSY), the

soft masses are of order the gravitino mass with only mild suppressions [30, 34–36].

Generically moduli masses tend to be of order the gravitino mass. In view of the CMP

which sets a lower bound on moduli masses of order 50TeV [37–39], it is often desirable to

have soft masses well below the gravitino/moduli masses although achieving this requires

a special mechanism at play. We will refer to models which have hierarchically suppressed

soft masses (not just by loop factors) as sequestered models.3 Depending on the location

of SM particles and the value of the CY volume, we distinguish three interesting LVS

scenarios for SUSY breaking:

1. Unsequestered GUT scale string models: motivated by unification, if one takes

the string scale to be close to the GUT scale 1014 − 1016GeV, where the range in

the volume captures the uncertainty about high-scale threshold corrections, then the

2We set the VEV of the Kähler potential for complex structure moduli such that eKcs/2 = 1.
3A similar suppression appears also in the context of realisations of the KKLT scenario [16].
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volume is of order V ≃ 103 − 107 for gs ≃ 0.1. This implies a large gravitino mass,

m3/2 ≃ 1010−1014GeV, i.e. unobservable sparticles, unless the flux superpotential is

tuned to extremely small values (tuning of up toW0 ∼ 10−10) to get TeV soft-terms.4

So the generic situation without tuning W0 is that soft-terms are at an intermediate

scale, roughly in the range 1010 − 1014GeV which is the option 2c) described earlier.

This scenario is safe from the CMP. The string landscape can in principle address

the hierarchy problem.

2. Unsequestered intermediate scale strings: requiring TeV scale soft-terms in an

unsequestered setting leads to a volume of order V ≃ 1014 for W0 ∼ 10, implying an

intermediate string scale, Ms ≃ 5 · 1010GeV. This scenario addresses the hierarchy

problem, although unification has to work differently from the MSSM (see [27, 40, 41]

for concrete string examples with intermediate scale unification). Its spectrum of soft-

terms at the electroweak scale has been studied in [42]. It suffers from the CMP since

the volume modulus mass is slightly below 1MeV.

3. Sequestered high scale string models: there can be special situations in which

the soft-terms are hierarchically smaller than the gravitino mass, referred to as se-

questered scenarios [33]. In LVS this happens in configurations in which the SM

degrees of freedom are localised in the extra dimensions, such as in models where

the visible sector arises from open strings on D3-branes at a singularity. In partic-

ular, in this setup the F-term of the SM cycle vanishes and the dominant F-terms

are associated with other moduli (the volume modulus, the dilaton and other Kähler

and complex structure moduli). However the dominant F-terms couple very weakly

to the visible sector because of their bulk separation, and this produces a hierarchy

between the soft-terms and the gravitino mass. Typically gaugino masses are of order

M1/2 ≃ m3/2/V , whereas scalar masses can be as suppressed as the gaugino masses

or hierarchically larger by a power V1/2 (leading to a split SUSY scenario in this last

case). This makes these models very attractive for phenomenology since they feature

TeV scale soft-terms and no CMP for V ≃ 107 andW0 ≃ 50 which giveM1/2 ≃ 1TeV,

m3/2 ≃ 1010GeV andmV ≃ 5·106GeV. The unification scale in these models is set by

the winding scale MW = 2π
√
πgsMP /V1/3 [43, 44] which turns out to be of the same

order of the standard GUT scale. The appearance of this hierarchical suppression

of soft masses is subject to the structure of the effective supergravity. Changes to

the EFT at loop or non-perturbative level (see for instance [34, 35, 45–47]) can lead

to desequestering. In appendix B we comment more explicitly on possible sources

for desequestering and focus for the remainder of this paper on constructions where

these desequestering effects can be absent.

1.2 Overview

In this paper our focus shall be on the last of the three scenarios described above: se-

questered models. In [33] it was realised that soft-terms can potentially be sensitive to the

4TeV scale soft masses in this scenario would lead to light moduli which suffer from the CMP since

mV ≃ 10GeV.
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mechanism responsible for achieving a dS minimum. Lack of a controlled understanding of

the way to get dS vacua made it difficult to present a complete analysis of the SUSY phe-

nomenology. Recently there has been progress in obtaining dS vacua from supersymmetric

effective actions [26–29, 48]. In this paper we work out this dependence on the uplifting

mechanism in sequestered models. As previously, we assume an MSSM spectrum from the

local D-brane configuration for simplicity. To perform the lengthy soft-term computations

we have developed a code called LargeVol.5
We explicitly compute all soft-terms for sequestered scenarios identifying different cases

depending on the mechanism to obtain dS vacua and the moduli-dependence of the Kähler

metric for matter fields. Broadly, we find two classes of models: scenarios in which all soft-

terms are of order m3/2/V and scenarios where gaugino masses and A-terms are of this

order but scalar masses are of order m3/2/V1/2. In both cases the numerical coefficients of

the soft-terms are determined by background fluxes and therefore can be tuned by scanning

through the landscape. This provides an explicit mechanism for the (small) tuning that

might be necessary to confront LHC data. In the first class of models the spectrum is

similar to standard MSSM spectra with soft-terms of the same order but with the potential

of extra non-universal flux dependent contribution. The second one gives a universal mini

split scenario with negligible non-universalities. We leave a detailed study of the LHC

phenomenology of these models to a companion article [49].

The rest of this paper is organised as follows. Section 2 contains the detailed setup that

leads to sequestered LVS models and a presentation of two mechanisms to obtain dS vacua.

We then compute the leading order expressions of the associated F-terms and soft-masses

for these scenarios in section 3 before concluding in section 4. Finally in appendix A we

present subleading corrections to F-terms while in appendix B we comment on possible

sources of desequestering.

2 Sequestered LVS scenarios

2.1 General setup

Let us outline a setup in type IIB CY flux compactifications with O3/O7-planes that leads

to moduli stabilisation à la LVS and a visible sector sequestered from SUSY breaking:

• The simplest LVS vacua can be obtained for a CY with negative Euler number and

at least one blow-up of a point-like singularity [50]. For these manifolds the volume V
is of Swiss-cheese type

V = αbτ
3/2
b −

∑

i

αiτ
3/2
i , (2.1)

5
LargeVol is a Mathematica Package useful to analyse the phenomenology of various type IIB supergrav-

ity theories. It computes and minimises the scalar potential following the LVS mechanism for moduli fixing.

LargeVol can calculate F-terms and soft-terms generated via both supergravity and anomaly mediation.

– 6 –
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where τb denotes the overall big four-cycle volume and the τi denote blow-up moduli.

The numerical coefficients αb,i are determined by the CY triple intersection numbers

and in what follows.6

• The visible sector can be realised with appropriate D-brane configurations on blow-up

moduli. Concrete D-brane realisations with D3/D7 branes at del Pezzo singularities

can lead to interesting gauge/matter extensions of the MSSM. As we will discuss in

section 2.2.1, the size of the associated four-cycle can shrink to zero value due to D-

term stabilisation. Because of this shrinking, the F-term of the corresponding blow-up

Kähler modulus is vanishing at leading order giving rise to a sequestered scenario.

• In order to realise a dS vacuum one introduces further ingredients in the compacti-

fication. Here we concentrate on two options: (i) Hidden sector matter fields on the

large cycle which acquire non-zero F-terms because of D-term fixing [26]; (ii) E(-1) in-

stantons at a second singularity whose blow-up mode develops non-vanishing F-terms

due to new dilaton-dependent non-perturbative effects [29]. These mechanisms will

be discussed later in this section.

This setup has been realised in concrete CY orientifold compactifications with D3(/D7)

branes at singularities [26–28] that satisfy all global consistency conditions (e.g. tadpole

cancellation). The minimal setup that allows this realisation includes at least four Kähler

moduli: a ‘big’ four-cycle Tb controlling the size of the CY volume, a ‘small’ blow up mode

Ts supporting non-perturbative effects, the visible sector cycle TSM and its orientifold image

G. These last two moduli are associated to two del Pezzo divisors which collapse to zero

size due to D-term fixing7 and are exchanged by the orientifold involution. This setup

leads to h1,1+ = 3 and h1,1− = 1 with the following Kähler moduli:

Tb = τb + iψb , Ts = τs + iψs , TSM = τSM + iψSM , G = b+ ic , (2.2)

where τb, τs and τSM → 0 are divisor volumes, the ψ’s are axions given by the reduction

of C4 on each of the relevant four-cycles, whereas b and c are respectively the reduction of

B2 and C2 on the two-cycle dual to the shrinking one. The CY volume V is a function of

the Kähler moduli which takes the same form as in (2.1).

2.1.1 N = 1 supergravity effective field theory

In this section we review the low energy effective action relevant for our construction in

the language of 4D N = 1 supergravity. We take the superpotential of the following form

W =Wflux(U, S) +As(U, S) e
−asTs +WdS +Wmatter . (2.3)

Wflux is the standard flux-generated superpotential [51]. The second term incorporates non-

perturbative effects on the ‘small’ blow-up cycle which can arise from gaugino condensation

6It is possible to implement LVS in CYs which have a more general volume form [50] but this does not

alter the structure of soft-masses and so we do not consider these cases.
7The positivity of soft scalar masses for visible sector fields fixes all remaining flat-directions after D-term

stabilisation [26].
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or ED3-instantons. The type of D-brane configuration determines the coefficient as and the

prefactor As(U, S) depends on both complex structure moduli U and the dilaton S whose

real part s sets the string coupling: 〈s〉 = g−1
s .8 The term WdS involves the contribution

from the mechanism used to obtain a dS vacuum (see section 2.3) while Wmatter is the

visible sector superpotential

Wmatter = µ(M)HuHd +
1

6
Yαβγ(M)CαCβCγ + · · · , (2.4)

where we denoted the moduli as M and the MSSM superfields as Cα. Moreover, the

dots refer to higher dimensional operators. We also separated the two Higgs doublets Hu

and Hd from the rest of matter fields in the moduli-dependent µ-term. Because of the

holomorphicity of W and the perturbative shift symmetry of the axionic components of

the Kähler moduli, the Yukawa couplings and the µ-term can depend only on S and U at

the perturbative level with the T -moduli appearing only non-perturbatively. We discuss

this dependence in more detail in section 3 and appendix B.

As motivated in [33, 53], we assume the following form of the Kähler potential which

describes the regime for the visible sector near the singularity

K = −2 ln

(

V +
ξ̂

2

)

− ln(2s) + λSM

τ2
SM

V + λb
b2

V +KdS +Kcs(U) +Kmatter , (2.5)

where ξ̂ ≡ ξs3/2, the λ’s are O(1) coefficients, Kcs(U) is the tree-level Kähler potential for

complex structure moduli and KdS encodes the dependence on the sector responsible for

obtaining a dS vacuum (see section 2.3). The matter Kähler potentialKmatter is taken to be

Kmatter = K̃α(M,M)C
α
Cα + [Z(M,M)HuHd + h.c.] . (2.6)

We assume at this stage that the matter metric is flavour diagonal beyond the leading

order structure which was highlighted in [54].9 The only exception is that we allow for the

Higgs bilinear to appear in Kmatter which we parameterise with the function Z. Note that

K̃α is the matter metric for the visible sector which we will parameterise as [33]

K̃α =
fα(U, S)

V2/3

(

1− cs
ξ̂

V + K̃dS + cSMτ
p
SM + cbb

p

)

, p > 0 , (2.7)

where we have used K̃dS to parameterise the dependence on the dS mechanism (details will

be given in section 3.2). The c’s are taken as constants for simplicity while p is taken to

be positive in order to have a well-behaved metric in the singular limit b, τSM → 0. As they

can in principle depend on U and S, we comment in due course on the influence on the

soft-terms of such a dependence. The appearance of the Higgs bilinear and its potential

8The dependence on S and U -moduli is structurally different, i.e. the dependence on the dilaton is

generated when including the backreaction of sources and warping on the geometry [52].
9Subleading flavour off-diagonal entries which can in principle appear [55] are taken to be absent. This

is motivated by the appearance of additional anomalous U(1) symmetries in D-brane models, in particular

also in the context of del Pezzo singularities [41].
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parametrisation are discussed in section 3.3.4 when we analyse the µ-term in this scenario.

In general the functions fα(U, S) could be non-universal. Such non-universality can have

interesting phenomenological implications (e.g. mass hierarchies among families of sfermion

masses needed for a realisation of natural SUSY). As we are interested in soft-terms arising

for D-branes at singularities, we take the gauge kinetic function to be

fa = δaS + κa TSM , (2.8)

where δa are universal constants for Zn singularities but can be non-universal for more

general singularities.

2.2 Moduli stabilisation

As outlined earlier in this section, we stabilise the moduli following the LVS procedure.

The complex structure moduli and the dilaton are fixed at tree-level by background fluxes

while the Kähler moduli are fixed using higher order corrections to the effective action [28].

2.2.1 D-term stabilisation

The Kähler moduli where the visible sector D-brane configuration is located are stabilised

using D-terms which are the leading order contribution to the potential. Remaining flat

directions are stabilised using subleading F-term contributions. To set the notation, let us

review D-term stabilisation [26]. The moduli TSM and G are charged under two anomalous

U(1) symmetries with charges q1 and q2. The corresponding D-term potential reads

VD =
1

2Re(f1)

(

∑

α

q1α
∂K

∂Cα
Cα − ξ1

)2

+
1

2Re(f2)

(

∑

α

q2α
∂K

∂Cα
Cα − ξ2

)2

, (2.9)

where f1 and f2 are the gauge kinetic functions of the two U(1)s. The Fayet-Iliopoulos (FI)

terms are given by (see appendix of [56] for the exact numerical factors)

ξ1 = − q1
4π

∂K

∂TSM

= −q1λSM

4π

τSM
V , (2.10)

ξ2 = − q2
4π

∂K

∂G
= −q2λb

4π

b

V . (2.11)

The vanishing D-term condition fixes therefore τSM and b in terms of visible sector matter

fields. The remaining flat directions are fixed by subleading F-term contributions which

give vanishing VEVs to the Cα if they develop non-tachyonic soft masses from SUSY

breaking [26].10 Hence the D-term potential (2.9) vanishes in the vacuum since it is fixed

to a supersymmetric minimum at ξ1 = ξ2 = 0. This corresponds to the singular limit

τSM = b = 0. In turn, the axions ψSM and c are eaten up by the two U(1) gauge bosons in

the process of anomaly cancellation.

10If the soft scalar masses of some Cα are tachyonic, they develop non-zero VEVs (which could be

phenomenologically allowed for some SM singlets) that, in turn, induce non-zero FI-terms [28]. However

τSM and b would still be fixed in the singular regime since their VEVs would be volume-suppressed [28].
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2.2.2 F-term stabilisation

Analysing the F-term scalar potential in an inverse volume expansion, one finds that the

leading contribution scales as V−2. This is generated by the flux superpotential Wflux and

is positive semi-definite

VO(V−2) =
1

2sV2

[

4s2|DSWflux|2 +KUUDUWfluxDUW flux

]∣

∣

∣

ξ=0
, (2.12)

where the subscript ξ = 0 denotes that α′ corrections can be neglected at this level of

approximation. This potential fixes the dilaton and the complex structure moduli at a

supersymmetric minimum located at

DSWflux|ξ=0 = 0 , DUWflux

∣

∣

ξ=0
= 0 , 〈Wflux〉 ≡W0 . (2.13)

The Kähler moduli are stabilised using α′ corrections to K (2.5) and non-perturbative

corrections to W (2.3) which give rise to O(V−3) contributions to the scalar potential11

VO(V−3) =
1

2s

[

8

3
(asAs)

2√τs
e−2asτs

V − 4asAsW0τs
e−asτs

V2
+

3ξ̂W 2
0

4V3

]

. (2.14)

This potential admits an AdS global minimum which breaks SUSY. Minimisation with

respect to τs yields

e−asτs =
3
√
τsW0

4asAsV
(1− 4ǫs)

(1− ǫs)
with ǫs ≡

1

4asτs
∼ O

(

1

lnV

)

≪ 1 . (2.15)

On the other hand, minimisation with respect to τb gives

τ3/2s =
ξ̂

2
[1 + fdS(ǫs)] , (2.16)

where fdS is a subdominant function of ǫs which depends on the particular mechanism used

to obtain a dS vacuum (see appendix A). The relation (2.16) implies that at the minimum

(neglecting fdS)

ξ̂ ≃ 1

4 (asǫs)
3/2

∼ O
[

(lnV)3/2
]

≫ 1 . (2.17)

Given that the potential (2.14) depends on S and U (via As(U, S) and s-dependent α′

effects), the minimum (2.13) is slightly shifted from its supersymmetric locus. This shift

is fundamental for the soft-term computation in sequestered scenarios since non-vanishing

F-terms of U and S at subleading order can actually provide the main contribution to

soft-terms [33].

11We have already fixed the axion ψs at as〈ψs〉 = π. The axion ψb associated to the large cycle can

develop a potential only via Tb-dependent non-perturbative effects.
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2.2.3 Shift in the dilaton and complex structure minimum

Let us try to estimate the shift of S and U from their supersymmetric minimum (2.13)

because of α′ and non-perturbative effects. The Kähler covariant derivative of the total

superpotential evaluated at the minimum (2.15) and (2.16) reads (we neglect O(ǫs) effects)

DSW ≃ DSWflux|ξ=0 −
3ξ̂W0

4sV [1 + ǫss∂s lnAs(U, S)] . (2.18)

Since we do not know the functional dependence of As(U, S) and since theWdS term in (2.3)

can also potentially shift the dilaton minimum, it is not possible for us to compute this

shift explicitly. We will parameterise it by using the parameter ωS(U, S) defined as

DSW = −3ωS(U, S)

4

ξ̂W0

sV . (2.19)

The dependence of As(U, S) on the complex structure moduli is also responsible for shift-

ing the U -moduli from their supersymmetric minimum. After imposing the minimisation

conditions, the total DUW looks like (denoting u ≡ Re(U))

DUW ≃ DUWflux|ξ=0 −
3ξ̂W0

4V ǫs∂u [Kcs(U) + lnAs(U, S)] , (2.20)

and so we can parameterise this shift by ωUi(U, S) as

DUiW = −3ωUi(U, S)

4

ξ̂W0

sV ⇒ DUiW =
ωUi(U, S)

ωS(U, S)
DSW ∼ O(V−1) , (2.21)

where both ωS and ωUi are expected to be O(1) functions of S and U . Note that both

functions ωS,Ui depend also on the dS mechanism.

2.3 Scenarios for de Sitter vacua

In this section we review two mechanisms which can lead to dS vacua in LVS.

2.3.1 Case 1: dS vacua from hidden matter fields

In the LVS setting, dS vacua can arise if some hidden matter fields acquire non-vanishing

F-terms which provide a positive definite contribution to the scalar potential [26]. The

models constructed in [26] provide globally consistent explicit examples of string models

with a semi-realistic visible sector, moduli stabilisation and a positive cosmological constant

(see figure 1 for a pictorial sketch of this setup).

Generically, the choice of B2 which cancels the Freed-Witten anomaly on the small

cycle Ts, leads to non-vanishing gauge fluxes on the big cycle Tb. As a consequence, Tb
acquires a non-zero U(1)-charge qb generating a moduli-dependent FI-term. The D-term

potential becomes (focusing for simplicity on a single matter field φdS with Kähler metric

KdS = s−1|φdS|2 [57, 58] and U(1)-charge qφ)

VD =
1

2Re(fb)

(qφ
s
|φdS|2 − ξb

)2
, (2.22)
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sector

visible
sector

0

singularity singularity

E3/D7
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effects
small
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cycle

SMb,

s

b

dS

0SMb,

Figure 1. Pictorial sketch of our CY setup for dS vacua from hidden matter fields.

where fb = Tb (neglecting S-dependent flux corrections) and the FI-term is given by

ξb = − qb
4π

∂K

∂Tb
=

3qb
8π

1

V2/3
, (2.23)

Therefore the total scalar potential takes the form

Vtot = VD + VF =
1

2V2/3

(

qφ
s
|φdS|2 −

3qb
8πV2/3

)2

+
1

s
m2

3/2|φdS|2 + VO(V−3) , (2.24)

where m3/2 is the gravitino mass as in eq. (1.3) and VO(V−3) is given in (2.14). If the two

U(1)-charges qφ and qb have the same sign, φdS develops a non-vanishing VEV

qφ
s
|φdS|2 = ξb −

m2
3/2V2/3

qφ
. (2.25)

Substituting this VEV in (2.24) we obtain

Vtot = VD,0 +
3qb

16πqφ

W 2
0

sV8/3
+ VO(V−3) , (2.26)

where the new positive contribution can lead to an LVS dS vacuum while the D-term

potential gives rise only to a subleading effect of order

VD,0 =
m4

3/2V2/3

2q2φ
∼ O

(

V−10/3
)

. (2.27)

Following [26], we can minimise the total scalar potential (2.26) with respect to τs and V ,
finding the following value of the vacuum energy (neglecting the subleading effect of VD,0)

〈Vtot〉 ≃
3W 2

0

8sa
3/2
s 〈V〉3

[

δ V1/3 −
√

ln

(〈V〉
W0

)

]

, (2.28)
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Figure 2. Pictorial view of our CY setup for dS vacua from non-perturbative effects at singularities.

where

δ =
1

18π

qb a
3/2
s

qφ
≃ 0.02

(

qb a
3/2
s

qφ

)

. (2.29)

A cancellation of the vacuum energy at O(V−3) requires therefore to tune W0 so that (a

subleading tuning is needed to cancel also VD,0)

[

ln

(〈V〉
W0

)]3/2

= δ3 〈V〉 ∼ 5 · 10−6 〈V〉 ⇔ |φdS|2 =
27s

4a
3/2
s V

√

ln

(〈V〉
W0

)

∼ 1

V√ǫs
.

(2.30)

For natural O(1) values of all underlying parameters, this relation gives a minimum for V
at order 106 − 107 (see [26]).

2.3.2 Case 2: dS vacua from non-perturbative effects at singularities

Reference [29] provided a novel method for obtaining LVS dS vacua (see figure 2 for a

pictorial sketch of this setup). The additional contribution to the scalar potential needed to

achieve a positive cosmological constant arises from non-perturbative effects at singularities

(like gaugino condensation on spacetime filling D3-branes or E(-1) instantons). These

effects generate a new contribution to the superpotential (2.3) of the form

WdS = AdS(U, S) e
−adS(S+κdSTdS) . (2.31)
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Because of the presence of an additional Kähler modulus, the Kähler potential (2.5) has

to be supplemented with

KdS = λdS

τ2
dS

V , (2.32)

with τdS = Re(TdS). This blow-up mode can be fixed in the singular regime by minimis-

ing the hidden sector D-term potential (focusing for simplicity on canonically normalised

hidden fields φh,i with charges qh,i under an anomalous U(1))

VD =
1

2Re(fh)

(

∑

i

qh,i|φh,i|2 − ξh

)2

, (2.33)

where fh = S (neglecting TdS-dependent corrections) and the FI-term is given by (qdS is

the U(1)-charge of TdS and from now on we set λdS = 1 for simplicity)

ξh = −qdS
4π

∂K

∂TdS

= −qdS
4π

τdS
V . (2.34)

In fact, the total scalar potential takes the leading order form (after fixing the axionic

phase of TdS) [29]

Vtot =
1

2s

(

∑

i

qh,i|φh,i|2 +
qdS
4π

τdS
V

)2

+
(κdSadSAdS)

2

s

e−2adS(s+κdSτdS)

V + VO(V−3) , (2.35)

where the second term comes from the new superpotential (2.31) and VO(V−3) is given

in (2.14). Minimisation with respect to τdS gives

qdS
4π

τdS
V = −

∑

i

qh,i|φh,i|2 +
adSκdS

qdS
(κdSadSAdS)

2 e−2adSs . (2.36)

Assuming that model-dependent contributions from F-terms of hidden matter fields fix

some φh,i at non-zero VEVs such that 〈∑i qhid,i|φhid,i|2〉 = 0 but AdS 6= 0,12 and substitut-

ing the VEV (2.36) in (2.35) we obtain at leading order

Vtot = VD,0 +
(κdSadSAdS)

2

s

e−2adSs

V + VO(V−3) . (2.37)

Given that the dilaton is fixed by a ratio of flux quanta, the extra positive-definite contri-

bution can easily be tuned to obtain a dS minimum. Following [29], a cancellation of the

vacuum energy at O(V−3) requires to tune 3-form fluxes such that

(

κdSadSAdS

W0

)2

e−2adSs =
9

32

ǫsξ̂

V2
. (2.38)

On the other hand, the D-term potential gives rise only to a subleading effect of order

VD,0 =
1

2s

(

adSκdS

qdS

)2

(κdSadSAdS)
4 e−4adSs ∼ O

(

V−4
)

. (2.39)

12In order to make WdS gauge invariant, AdS has to depend on the φh,i which can develop non-zero VEVs

for appropriate hidden field F-term contributions, giving AdS 6= 0 with τdS in the singular regime [29].
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3 F-terms and soft-terms

In this section we list the leading order contributions to the F-terms relevant for the

computation of all soft-terms (see appendix A for the structure of subleading corrections

to the F-terms). After defining our parametrisation for the Kähler matter metric in local

and ultra-local scenarios, we then calculate the soft-terms.

3.1 Summary of F-terms

The general supergravity expression for an F-term is [59, 60]

F I = eK/2KIJDJW . (3.1)

The exact expressions for the F-terms are rather complicated. Considerable simplifications

occur if we perform an expansion in V−1 and ǫs. We also factor out the gravitino mass

which is given by the following expression

m3/2 = eK/2|W | =
(

g2sMP

2
√
2π

)

W0

V

[

1− ξ̂

2V
(

1 + 3ydSǫs +O(ǫ2s)
)

+O
(

1

V2

)

]

, (3.2)

where ydS = 1 for the dS case 1 of section 2.3.1 while ydS = 1 +
√
2a

3/4
s

κdSadS
for the dS case

2 of section 2.3.2. The leading order F-terms for Tb and Ts turn out to be (we show the

first subleading correction only for F Tb since its dominant term does not contribute to the

soft-term because of the no-scale structure)

F Tb

τb
≃ −2m3/2

(

1 +
xdS

a
3/2
s V√ǫs

)

,
F Ts

τs
≃ −6m3/2ǫs , (3.3)

where xdS = −45/16 for the dS case 1 of section 2.3.1 while xdS ∼ O(1/V) for the dS case 2

of section 2.3.2 (see appendix A). Because of the shift from their supersymmetric minimum,

also S and U develop non-vanishing F-terms whose leading order expressions are

FS

s
≃ 3ω′

S(U, S)

8a
3/2
s

m3/2

Vǫ3/2s

, FUi ≃ −K
UiUj

2s2

ωUj
(U, S)

ω′
S(U, S)

FS ≡ βUi(U, S)FS , (3.4)

where ω′
S(U, S) ≡ 3 − 2ωS(U, S) with ωS as defined in (2.19) and βUi are unknown O(1)

functions of U and S. Additional non-zero F-terms are associated to fields responsible to

achieve a dS solution. For the dS case 1 of section 2.3.1 there is an F-term associated to φdS

FφdS

φdS

≃ m3/2 , (3.5)

with φdS given in (2.30) (up to an irrelevant phase). On the other hand, in the dS case 2 of

section 2.3.2 the blow-up mode TdS has a non-vanishing F-term (using the condition (2.38))

F TdS ≃ 3

4
√
2a

3/4
s

m3/2

ǫ
1/4
s

. (3.6)
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Finally, the F-terms associated to the MSSM cycles TSM and G vanish:

FG = F TSM = 0 . (3.7)

This result is crucial for sequestering since the dominant F-terms are then associated with

moduli which couple weakly to the visible sector via Planck-suppressed interactions.13

3.2 Local and ultra-local scenarios

Our analysis of soft-terms will distinguish between two classes of models: local and ultra-

local. To motivate this classification we discuss the constraints (along the lines of [57])

that locality imposes on the moduli dependence of the physical Yukawa couplings Ŷαβγ

Ŷαβγ = eK/2 Yαβγ(U, S)
√

K̃αK̃βK̃γ

, (3.8)

where Yαβγ(U, S) are the holomorphic Yukawas which do not depend on the Kähler moduli

due to the holomorphicity of W and the perturbative shift symmetry of the T -axions. The

Kähler potential K is given in (2.5) whereas the matter metrics K̃α, K̃β and K̃γ are given

in (2.7). Since the physical Yukawas are determined by local interactions of open string

degrees of freedom, one expects at leading order that their strength is insensitive to the

overall volume of the compactification. Thus for (3.8) to yield a result independent of V
one needs at leading order in an inverse volume expansion (for τSM = b = Cα = 0)

K̃α = hα(U, S) e
K/3 ≃ hα(U, S) e

Kcs/3

(2s)1/3V2/3

(

1− ξ̂

3V +
1

3
KdS

)

, (3.9)

where hα(U, S) is an unknown function of U and S and in the approximation we focus on

the first subleading order corrections, e.g. neglecting higher order corrections of O
(

1/V8/3
)

.

Note that this result has the same volume scaling of our formula for the matter metric (2.7)

which for τSM = b = 0 reduces to

K̃α =
fα(U, S)

V2/3

(

1− cs
ξ̂

V + K̃dS

)

≡ fα(U, S)K̃ . (3.10)

As found in [33], our soft-term computation is sensitive to the form of K̃α− beyond leading

order in a V−1 expansion. There is no reason to expect that (3.9) still holds beyond leading

order since we cannot use locality to fix the form of K̃α (although there is some evidence

from perturbative string computations [46]). It was noted in [33] that the relation (3.9)

has interesting implications for the soft-terms. Guided by this, we organise our analysis of

models into two classes of phenomenological models:

• Local : we call a scenario ‘local’ if (3.9) holds only to leading order in V−1;

• Ultra-local : we call a scenario ‘ultra-local’ if (3.9) holds exactly.

13TSM and G can develop non-zero F-terms only in the presence of tachyonic scalar masses [28]. However,

also in this case, their contribution to soft-terms turns out to be negligible.
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If we parameterise K̃dS as K̃dS = cdSKdS, comparing (3.9) with (3.10), we find that in the

ultra-local case

fα(U, S) =
hα(U, S) e

Kcs/3

(2s)1/3
and cs = cdS =

1

3
. (3.11)

Subleading deviations from the approximation in (3.9) can be accounted for by small

changes in cs and cdS at the appropriate subleading order.

3.3 Soft-terms

We now proceed to compute all soft-terms distinguishing between ultra-local and local

scenarios. Throughout this section we work to leading order in V−1 and ǫs.

3.3.1 Gaugino masses

The general expression for gaugino masses in gravity mediation is

Ma =
1

2Re (fa)
F I∂Ifa , (3.12)

where fa = δaS + κa TSM is the gauge kinetic function as in (2.8). As F TSM = 0, we obtain

universal gaugino masses, M1 = M2 = M3 = M1/2, which are generated by the dilaton

F-term. Potential non-universalities can arise through anomaly mediated contributions

which turn out to be subleading (see appendix B.2 for more details). The leading order

expression for the gaugino masses is

M1/2 =
FS

2s
≃ 3ω′

S(U, S)

16a
3/2
s

m3/2

Vǫ3/2s

∼ O
(

m3/2
(lnV)3/2

V

)

≪ m3/2 . (3.13)

Note that this leading order result depends on the shift of the dilaton minimum induced

by α′ and non-perturbative effects (see section 2.2.3). In this paper we neglect possible

phases of gaugino masses. We will return to this question in the context of the low-energy

analysis of soft-terms [49].

3.3.2 Scalar masses

Scalar masses in gravity mediation receive both F- and D-term contributions. Let us study

them separately, presenting their leading order expressions.

F-term contributions. Assuming a diagonal Kähler matter metric as in (2.6), the gen-

eral expression for the F-term contributions to scalar masses in gravity mediation is [60]

m2
α

∣

∣

F
= m2

3/2 − F IF
J
∂I∂J ln K̃α . (3.14)

Local limit : in the local limit we obtain universal scalar masses, m2
α = m2

0 ∀α, where

m2
0

∣

∣

F
≃ m2

3/2 −
(

F Tb

2

)2

∂2τb ln K̃ ≃ 5
(

cs − 1
3

)

ω′
S

m3/2M1/2 ∼ O
(

m2
3/2

(lnV)3/2
V

)

. (3.15)
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The dominant contribution to this expression comes from the F-term of Tb. More precisely,

the leading term of F Tb in (3.3) together with the leading term of K̃ in (3.10) give a contri-

bution which cancels against m2
3/2 in (3.15) because of the underlying no-scale structure.

The first non-vanishing term in (3.15) originates from the leading term of F Tb together

with the first subleading correction to K̃. On the other hand, the subleading correction to

F Tb in (3.3) yields a contribution suppressed by ǫs, and so turns out to be negligible.

Scalar masses are universal since they get generated by the F-term of Tb. Non-universal

effects can arise from FS and FUi but they are volume suppressed since they would give

contributions of order m2
3/2/V2. If cs > 1/3, the scalar masses are non-tachyonic.

Ultra-local limit : an interesting feature of (3.15) is that it vanishes if one takes the

ultra-local limit cs = 1/3.14 In fact, there is a general argument [33] which guarantees the

vanishing of m2
0 at O(V−3). Using (3.9) (the defining property of ultra-local models) in the

general expression for the F-term contributions to scalar masses (3.14) we find

m2
α

∣

∣

F
= −1

3
VF,0 − F IF

J
∂I∂J lnhα(U, S) , (3.16)

where we used the fact that VF = KIJF
IF

J − 3m2
3/2. Recalling that V0 = VF,0 + VD,0

and setting the cosmological constant to zero (in the dS constructions of section 2.3 we

showed how to cancel V0 at O(V−3) but this can in principle be done at any order in the

V−1 expansion), VF,0 can be traded for VD,0, and we so shall include it in our analysis of

D-term contributions to scalar masses.

On the other hand, if the functions hα(S,U) are not constants, there is a non-vanishing

contribution from the F-terms of the dilaton and the complex structure moduli at O(V−2).

Using (3.4), the S and U -dependent contribution to scalar masses turns out to be

m2
α

∣

∣

F
= −M2

1/2s
2
(

∂2s + βUi∂ui∂s + βUiβUj∂ui∂uj

)

lnhα(U, S) ∼ O
(

M2
1/2

)

, (3.17)

where M1/2 is the gaugino mass in (3.13). Note that this contribution is generically non-

universal and might also give rise to tachyonic scalars depending on the explicit functional

dependence of the functions hα(U, S).

D-term contributions. Assuming a diagonal Kähler matter metric as in (2.6), the

general expression for the D-term contributions to scalar masses in gravity mediation is [61]

m2
α

∣

∣

D
= K̃−1

α

∑

i

g2iDi∂
2
ααDi − VD,0 . (3.18)

Given that this result depends on the value of the D-term potential at the minimum, this

contribution depends on the way to achieve a dS vacuum. As explained in section 2.2.1, the

VEV of the D-term potential associated to visible sector U(1)s is vanishing in the absence

of tachyonic scalars.15

14We neglect potential higher order corrections at this stage.
15Even in the presence of tachyonic scalars, the contribution to scalar masses from visible sector D-terms

turns out to be a negligible effect since visible matter fields, τSM and b would still be stabilised at zero at

leading order.
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dS case 1 : in the dS case 1 of section 2.3.1 the relevant D-term is the one associated

with the anomalous U(1) living on the big cycle. As can be seen from (2.27), VD,0 scales

as V−10/3 which is subdominant with respect to the first term in (3.18) that gives

m2
0

∣

∣

D
=

qb
2fα(U, S)

DdS1
∂τbK̃α =

m2
3/2

3s
|φdS|2 =

6ǫs
ω′
S

m3/2M1/2 ∼ O
(

m2
3/2

√
lnV
V

)

, (3.19)

once we impose the condition (2.30) to have a vanishing cosmological constant at O(V−3).

In the local limit, this result is suppressed with respect to the F-term contribution (3.15)

by a factor of ǫs. On the other hand, in the ultra-local limit, this D-term contribution

dominates over the F-term one given in (3.17) which scales as m2
3/2ǫ

2. Hence it leads to

universal and non-tachyonic scalar masses.

dS case 2 : in the dS case 2 of section 2.3.2 the relevant D-term is the one associated

with the anomalous U(1) which belongs to the hidden sector responsible for achieving a dS

vacuum. In this case both terms in (3.18) have the same scaling since

m2
0

∣

∣

D
=

qdSV2/3

2sfα(U, S)
DdS2

∂τdSK̃α − VD,0 =
cdS
s
DdS2

qdS
τdS
V − VD,0 = (2cdS − 1)VD,0 . (3.20)

As can be seen from (2.39), VD,0 scales as V−4. Hence in the local limit the D-term

contribution is subleading with respect to the F-term one given in (3.15) which scales as

V−3. In the ultra-local limit the F-term contribution to scalar masses is given by (3.16).

Adding −VF,0/3 = VD,0/3 to (3.20) we find that the total D-term contribution to scalar

masses vanishes in the ultra-local limit once we impose cdS = 1/3 as in (3.11) since

m2
0

∣

∣

D
= 2

(

cdS −
1

3

)

VD,0 = 0 for cdS =
1

3
. (3.21)

Hence scalar masses get generated by F-terms also in the ultra-local limit. Their expression

is given in (3.17) and scales as V−4.

Summary. Let us summarise our results for soft scalar masses. The expression for m2
0

in the local limit does not depend on the way to obtain a dS vacuum since in each case

it is given by the F-term contribution (3.15) that scales as V−3. Scalar masses are non-

tachyonic if cs > 1/3 and universal. On the other hand, the result for the ultra-local limit

depends on the dS mechanism. In the dS case 1 of section 2.3.1, scalar masses get generated

by the D-term contribution (3.19) which has again an overall V−3 scaling but with an ǫs
suppression with respect to the local case. Scalar masses turn out to be non-tachyonic

and universal. On the contrary, in the dS case 2 of section 2.3.2, the main contribution

to scalar masses comes from F-terms and it is given by (3.17) which scales as V−4. This

result could potentially lead to tachyonic and non-universal scalar masses depending on

the exact functional dependence of the functions hα(U, S).

3.3.3 A-terms

For the current discussion, we assume that the Yukawa couplings Yαβγ receive no non-

perturbative contributions from the Kähler moduli and are hence only functions of the
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complex structure moduli and the dilaton Yαβγ = Yαβγ(U, S). The trilinear A-terms in

gravity mediation receive both F- and D-term contributions. The D-term contributions

turn out to be zero for vanishing VEVs of visible sector matter fields [61]. On the other

hand, the general formula for the F-term contribution is [60]

Aαβγ = F I∂I

[

K + ln

(

Yαβγ(U, S)

K̃αK̃βK̃γ

)]

= F I∂I

[

K − 3 ln K̃ + ln

(

Yαβγ(U, S)

fαfβfγ

)]

, (3.22)

where the holomorphic Yukawas Yαβγ(U, S) do not depend on the Kähler moduli because

of their axionic shift symmetry. Let us present the expression for Aαβγ at leading order in

V−1 and ǫs.

Local limit : in the local limit we find

Aαβγ = −
[

1− sβUi∂uiKcs −
6

ω′
S

(

cs −
1

3

)

− s∂s,u ln

(

Yαβγ
fαfβfγ

)]

M1/2 ∼ O
(

M1/2

)

,

(3.23)

with ∂s,u ≡ ∂s+β
Ui∂ui . Note that there is a cancellation at O(V−1) between K and 3 ln K̃

in (3.22). The dominant contributions to (3.23) come from the F-terms of Tb, S and U .

Ultra-local limit : in the ultra-local limit defined by (3.9), the contribution to Aαβγ

from F Tb vanishes, as can be seen at leading order in (3.23) by setting cs = 1/3 and

fα = hα e
Kcs/3(2s)−1/3. In this limit, the general expression (3.22) simplifies to

Aαβγ = s∂s,u ln

(

Yαβγ(U, S)

hαhβhγ

)

M1/2 ∼ O
(

M1/2

)

. (3.24)

3.3.4 µ̂ and Bµ̂ terms

Let us discuss different effects that can contribute to the superpotential and Kähler poten-

tial Higgs bi-linear terms. Whether they are present or not is model dependent and a con-

crete realisation or combination of various mechanisms might not be possible. The following

list should be understood as a list of possible effects that can lead to a non-vanishing µ-

term. The canonically normalised µ̂ and Bµ̂-terms receive contributions from both Kähler

potential and superpotential effects. Let us discuss these two different effects separately.

Kähler potential contributions. Non-zero µ̂ and Bµ̂ get generated from a non-

vanishing prefactor Z in the matter Kähler potential (2.6) [62, 63]. Their general expression

in gravity mediation is [60, 61]

µ̂ =

(

m3/2Z − F
I
∂IZ

)

(

K̃HuK̃Hd

)−1/2
and Bµ̂ = Bµ̂|F + Bµ̂|D , (3.25)

where

Bµ̂|F =

{

2m2
3/2Z −m3/2F

I
∂IZ +m3/2F

I
[

∂IZ − Z∂I ln
(

K̃HuK̃Hd

)]

−F IF
J
[

∂I∂JZ − ∂IZ∂J ln
(

K̃HuK̃Hd

)]

}

(

K̃HuK̃Hd

)−1/2
, (3.26)

Bµ̂|D =
(

K̃HuK̃Hd

)−1/2
(

∑

i

g2iDi∂Hu∂Hd
Di − VD,0Z

)

. (3.27)
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Motivated by the fact that we are at the singular regime, we take Z of the same form as

the matter metric (2.7) with fα(U, S) replaced by a different unknown function of S and

U which we denote γ(U, S). We stress that Z = γ(U, S)K̃ is just the simplest ansatz for Z

given our present knowledge but its form could in general be different from K̃α.
16

Let us compute the leading expressions (in an expansion in V−1 and ǫs) for both µ̂

and Bµ̂ in the local and ultra-local limit.

Local limit : in the local limit we find

µ̂ =
γ

√

fHufHd

[

6

3ω′
S

(

cs −
1

3

)

− s∂s,u ln γ

]

M1/2 ∼ O
(

M1/2

)

, (3.28)

where again there is a cancellation at O(V−1) between the term proportional to m3/2

in (3.25) and the leading order contribution from F
T b∂T b

Z. The dominant contributions

to (3.28) come from the F-terms of Tb, S and U . On the other hand, the Bµ̂-term behaves

as the soft scalar masses since both F- and D-term contributions can be rewritten as

Bµ̂|F,D =
γ

√

fHufHd

m2
0

∣

∣

F,D
. (3.29)

Recalling our results for m2
0, we realise that in the local limit the leading contribution to

Bµ̂ comes from F-terms and scales as m2
0

∣

∣

F
in (3.15). Hence the final result for Bµ̂ is

Bµ̂ =
γ

√

fHufHd

5
(

cs − 1
3

)

ω′
S

m3/2M1/2 ∼ O
(

m2
3/2

(lnV)3/2
V

)

. (3.30)

Ultra-local limit : similarly to the ultra-local limit for K̃α defined by (3.9), we can define

also an ultra-local limit for Z = γ(U, S)K̃ as Z ≡ z(U, S) eK/3 which implies

γ(U, S) =
z(U, S) eKcs/3

(2s)1/3
and cs = cdS =

1

3
. (3.31)

In this limit the F-term of Tb does not contribute to µ̂ whose expression simplifies to

µ̂ = −z s∂s,u ln γ√

hHuhHd

M1/2 ∼ O
(

M1/2

)

. (3.32)

In this ultra-local case the expression (3.26) for Bµ̂|F gives

Bµ̂|F =
z

√

hHuhHd

[

σ(U, S)M2
1/2 −

1

3
VF,0

]

, (3.33)

where σ(U, S) is a complicated O(1) function of S and U which looks like

σ(U, S) =
1

9

(

1− sβUi∂uiKcs

)

[1− 3s∂s,u ln (hHuhHd
)]

+s∂s,u ln (hHuhHd
) s∂s,u ln z−s2

[

∂s ln z ∂s,u ln ∂sz+β
Ui∂ui ln z ∂s,u ln ∂uiz

]

.

Recalling that V0 = VF,0 + VD,0 = 0, VF,0 can be traded for VD,0, and so we shall include

it in our analysis of D-term contributions to Bµ̂.

16However in models with a shift-symmetric Higgs sector fHu
= fHd

= γ [64–68].
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1. In the dS case 1 of section 2.3.1, the D-term generated Bµ̂ is

Bµ̂|D =
z

√

hHuhHd

m2
0

∣

∣

D
=

z
√

hHuhHd

6ǫs
ω′
S

m3/2M1/2 ∼ O
(

m2
3/2

√
lnV
V

)

, (3.34)

where we used the result in (3.19). This term dominates over the F-term contribution

given in (3.33).

2. In the dS case 2 of section 2.3.2, the D-term generated Bµ̂ is vanishing since

Bµ̂|D =
z

√

hHuhHd

m2
0

∣

∣

D
=

z
√

hHuhHd

2

(

cdS −
1

3

)

VD,0 = 0 for cdS =
1

3
,

(3.35)

where we used the result in (3.21). Thus in this case Bµ̂ is generated purely by F-

terms and it is given by (3.33) without the term proportional to VF,0 that we included

in the D-term contribution. Hence the final result for Bµ̂ is

Bµ̂ =
z

√

hHuhHd

σ(U, S)M2
1/2 ∼ O

(

M2
1/2

)

. (3.36)

Superpotential contributions. Let us discuss the contributions to µ̂ and Bµ̂ from

µ 6= 0 in Wmatter given by (2.4). Their general expression in gravity mediation reads [60]

µ̂ = µ eK/2
(

K̃HuK̃Hd

)−1/2
, (3.37)

Bµ̂ = µ eK/2
[

F I
(

KI + ∂I lnµ− ∂I ln
(

K̃HuK̃Hd

))

−m3/2

] (

K̃HuK̃Hd

)−1/2
.(3.38)

Non-perturbative effects: non-perturbative effects can generate in the low-energy action

an effective µ-term of the form (up to prefactors)

W ⊃ e−aTHuHd ⇒ µeff = e−aT , (3.39)

if the cycle τ = Re(T ) is in the geometric regime [69] or

W ⊃ e−b(S+κT )HuHd ⇒ µeff = e−b(S+κT ) , (3.40)

if the cycle τ = Re(T ) is in the singular regime, i.e. τ → 0 [70]. Note that there are two

distinct classes of non-perturbative contributions leading to the above EFT coupling: if the

Higgs bi-linear is forbidden by anomalous U(1) symmetries, charged instanton contributions

for instance via ED3 can realise such a coupling [69, 70]. Alternatively, if the Higgs-bilinear

is forbidden by an approximate global symmetry of the local model, this global symmetry

is broken by compactification effects. For the latter case, ref. [47] studied the topological

conditions under which non-perturbative effects of the form (3.39) and (3.40) contribute

to the effective action. If T is a bulk cycle, the coupling (3.39) is always generated but in

our case it would be negligible since this effect would be proportional to e−V2/3
. On the

other hand, if T is the blow-up of a local singularity, the couplings (3.39) and (3.40) get

generated only if this divisor shares a homologous two-cycle with the blow-up mode TSM
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of the MSSM singularity. This condition is not satisfied if either T or TSM is a very simple

divisor like a dP0 which has been used in the explicit global models of [26] and [28].

If in both cases the appropriate conditions are satisfied, both (3.39) and (3.40) would

lead to a non-vanishing contribution which can be parameterised as follows

µ̂ ≃ cµ(U, S)

Vn+ 1
3

and Bµ̂ ≃ cB(U, S)

Vn+ 4
3

, (3.41)

where in (3.39) we have set T = Ts and a = nas with n > 0, while in (3.40) we have

parameterised b = nas recalling that s ≃ τs from (2.16). cµ and cB are constants which

absorb the dependence on the prefactor of the instanton contribution, the complex structure

moduli and the dilaton. Note that for different values of n non-perturbative effects could

generate µ̂ and Bµ̂ in the complete range interesting for MSSM phenomenology regardless

of the size of the other soft-terms. However these effects can be in competition with Kähler

potential contributions for n ≥ 5/3.

Background fluxes: primitive (1, 2) IASD fluxes can generate µ̂ for D3-branes at sin-

gularities [71–73]. However, given that their contribution is proportional to the F-terms of

the complex structure moduli, this effect has already been included in the contributions

from the Kähler potential. In other words, direct computations of soft terms by reducing

the D3-brane action in a fluxed background show that µ = 0 [73].

Anomalous U(1) symmetries. A term proportional to HuHd in K or W could be

forbidden in the presence of an anomalous U(1) symmetry. In this case, the only way to

generate a Higgs bilinear would be to multiply this term by an operator involving a U(1)-

charged field which makes the whole contribution gauge invariant. As already discussed

above, the only closed string moduli that can lead to such an effect are Kähler moduli.

Alternatively, the U(1)-charged field could be an open string mode Φ appearing

in K and W in a gauge invariant combination of the form (Λ denotes the appropriate

moduli-dependent cut-off)

K ⊃
(

Φ

Λ

)m

HuHd , W ⊃ Φm

Λm−1
HuHd . (3.42)

Thus the field Φ has to be an MSSM singlet since a Higgs bilinear gets generated only

when Φ develops a non-zero VEV breaking the U(1) symmetry. However, as can be

seen from eqs. (2.9) and (2.10), D-term stabilisation fixes the VEV of Φ in terms of τSM:

|Φ|2 ∝ τSM/V , and so the couplings in (3.42) would give rise to effective µ and Z-terms

which depend only on closed string moduli

Zeff ∝ 1

Λm

(τSM
V
)m/2

, µeff ∝ 1

Λm−1

(τSM
V
)m/2

. (3.43)

Once the cut-off Λ is explicitly written in terms of T -moduli, one could plug (3.43) into

the standard supergravity formulae to work out the final contribution to µ̂ and Bµ̂. The

result will depend on the VEV and the F-term of TSM. As discussed in [28], Φ needs

to receive tachyonic contribution from soft terms in order for TSM to develop a non-zero

VEV. If this condition is satisfied, τSM ∼ V−1 implying F TSM ∼ V−2 for the local case
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and τSM ∼ V−3 implying F TSM ∼ V−4 for the ultra-local case. This effect corresponds to

switching on an FI-term, and so to breaking the anomalous U(1) by moving slightly away

from the singularity. However in both cases the VEV of τSM is smaller than unity, and so

we are still consistently in the singular regime.

Given that all these results are clearly model-dependent and require physics beyond

the MSSM, at this stage we do not pursue these options in more detail and leave them for

future work. Let us just mention that the only case where the effective µ-term in (3.43)

does not depend on Λ is for m = 1. In this situation µ̂ would scale as V−4/3 in the

local case and as V−7/3 in the ultra-local case. If instead Φ does not receive tachyonic

contributions from soft terms, another option would be to consider models where Φ

develops a non-zero VEV because of radiative effects.

3.4 Summary of soft-terms

Let us summarise our results for the soft-terms in the two cases to obtain dS vacua (see

also table 1). Given that in each case the gaugino masses turn out to have the same value,

we will use M1/2 as a useful parameter which can be rewritten as

M1/2 = c1/2m3/2

m3/2

MP

[

ln

(

MP

m3/2

)]3/2

≪ m3/2 , (3.44)

where c1/2 is a flux-dependent tunable coefficient. We will state our results for the model-

independent case where µ̂ and Bµ̂ are generated from moduli induced Kähler potential

contributions. If these contributions are absent (for example if these terms are forbidden

by anomalous U(1) symmetries), then µ̂ and Bµ̂ can take different values because of model-

dependent contributions from either K or W as discussed in section 3.3.4. Let us discuss

the local and ultra-local limits separately.

Local limit : in the local limit, the soft-terms turn out to be the same in both dS

mechanisms (all the c’s are flux-dependent parameters)

m2
0 = c0m3/2M1/2 , Aαβγ = (cA)αβγ M1/2 , µ̂ = cµM1/2 , Bµ̂ = cBm

2
0 . (3.45)

Ultra-local limit : in the ultra-local limit, the soft-terms take different forms in the two

dS cases (again all the c’s are flux-dependent coefficients which are distinct in different

scenarios)

1. dS vacua from hidden matter fields

m2
0 = c0

m3/2M1/2

ln
(

MP /m3/2

) , Aαβγ = (cA)αβγ M1/2 , µ̂ = cµM1/2 , Bµ̂ = cBm
2
0 ;

(3.46)

2. dS vacua from non-perturbative effects at singularities

mα = (c0)αM1/2 , Aαβγ = (cA)αβγ M1/2 , µ̂ = cµM1/2 , Bµ̂ = cBM
2
1/2 . (3.47)
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Soft term Local Models Ultra Local dS1 Ultra Local dS2

M1/2 c1/2m3/2
m3/2

MP

[

ln
(

MP
m3/2

)]3/2

m2
α c0m3/2M1/2 c0

m3/2M1/2

ln(MP /m3/2)
(c0)αM

2
1/2

Aαβγ (cA)αβγ M1/2

µ̂
cµM1/2 (contribution from K)

cµMP

[

m3/2

MP

]n+1/3
(contribution from W )

Bµ̂
cBm

2
0 (contribution from K)

cBm3/2

[

m3/2

MP

]n+1/3
(contribution from W )

Table 1. Summary of soft-terms for different sequestered scenarios for the two dS mechanisms

discussed in the text: hidden sector matter (dS1) and non-perturbative effects at singularities (dS2).

All soft terms are hierarchically smaller than m3/2. Gaugino masses, A-terms and the µ̂-term take

the same value in each case whereas scalar masses and hence the Bµ̂-term are model-dependent.

The coefficients c are flux dependent and can generically take different values in each scenario

presented here while n is a positive model-dependent parameter (see section 3.3.4). They can be

tuned to compare with data. Local and ultra-local 1 cases give a split SUSY spectrum while ultra

local 2 implies a standard MSSM spectrum with soft-masses of the same order and possible small

non-universalities due to the flux dependent parameters c.

Clearly, the local limit and the dS case 1 for the ultra-local limit correspond to typical (mini)

split SUSY scenarios whereas the dS case 2 for the ultra-local limit reproduces a standard

MSSM picture with universal gaugino masses and soft masses all of the same order. If

the flux dependent coefficients for the scalar masses are universal (c0)α = c0, a standard

CMSSM scenario emerges. Non-universalities in the flux dependent coefficients can lead to

interesting soft-term patterns such as in NUHM or natural SUSY scenarios. We will study

in detail the LHC phenomenology of these different scenarios in a subsequent paper [49].

For illustrative purposes, we just mention here two simple benchmark models for the

dS case 2 in the ultra-local limit. Setting all the β’s to zero, we find

Benchmark model 1: hα = z = 1

mα ≃ 0 ∀α , Aαβγ = (cA)αβγ M1/2 , µ̂ =
M1/2

3
, Bµ̂ = µ̂2 , (3.48)

where (cA)αβγ = s∂s lnYαβγ . This reproduces a typical gaugino mediation scenario [74, 75].

Benchmark model 2: fα = γ = 1

mα = m0 =
M1/2√

3
∀α , A = −

√
3m0 , µ̂ ≃ m0

ln
(

MP /m3/2

) , Bµ̂ = m2
0 , (3.49)

if the holomorphic Yukawas do not depend on S. This leads to a typical natural SUSY

scenario for example if we allow mHu to be slightly larger than m0 together with a light

third generation [76]. This can be done by considering the more general case with non-

zero β’s and allowing for a U -dependence in fα. The ln
(

MP /m3/2

)

suppression of µ̂ with

respect to m0 comes from subleading contributions to µ̂ from F Ts .
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4 Conclusions

In this paper we have analysed soft-terms for LVS sequestered models with dS moduli

stabilisation. These models are particularly attractive for phenomenological reasons: the

string scale is around the GUT scale, soft masses are at the TeV scale and the lightest

modulus is much heavier than the bound imposed by the cosmological moduli problem.

The volume of the compactification is of order V ∼ 107 in string units and the visible sector

can be localised on D3-branes at a singularity.

The pattern of soft terms for these models has been previously studied in [33]. In this

paper we have deepened the analysis of [33] by studying the effect on soft terms of the sector

responsible to realise a dS vacuum, and by classifying in a systematic way any possible cor-

rection to the leading no-scale structure of soft terms. In particular, given that soft terms

depend on the moduli-dependence of the Kähler metric for matter fields K̃α, we defined

two possible limits for K̃α: Local scenarios where K̃α is such that the visible sector Yukawa

couplings Yαβγ do not depend on V only at leading order in an inverse volume expansion,

and Ultra-local scenarios where Yαβγ are exactly independent on V at all orders.17 More-

over, due to the present lack of explicit string computations of K̃α, we parameterised its

dependence on the dilaton and complex structure moduli as an unknown function fα(U, S).

The computation of soft terms has produced a wide range of phenomenological pos-

sibilities depending on the exact moduli-dependence of the matter Kähler metric and the

way to achieve a dS vacuum. We considered two dS realisations based on supersymmetric

effective actions: dS case 1 where hidden sector matter fields living on a bulk cycle de-

velop non-vanishing F-terms because of D-term fixing, and dS case 2 where the blow-up

mode of a singularity different from the visible sector one develops non-zero F-terms due

to non-perturbative effects. Broadly speaking, we found two classes of models:

1. Split SUSY : local models and ultra-local models in the dS case 1 yield gaugino masses

and A-terms which are suppressed with respect to scalar masses: M1/2 ∼ m3/2ǫ ≪
m0 ∼ m3/2

√
ǫ ≪ m3/2 for ǫ ∼ m3/2/MP ≪ 1. For volumes of order of 107 in

string units these models provide a version of the split SUSY scenario with a ‘largish’

splitting between gauginos and scalars (according to current experimental bounds).

Non-universalities are present but suppressed by inverse powers of the volume.

2. Standard MSSM : for ultra-local models in the dS case 2, all soft-terms are of the

same order: M1/2 ∼ m0 ∼ m3/2ǫ ≪ m3/2. Therefore these models include the

CMSSM parameter space and its possible generalisations since each soft-term comes

along with a tunable flux-dependent coefficient. Moreover, depending on the exact

functional dependence of the Kähler metric for matter fields, these models can also

feature non-universalities which are constrained by the experimental bounds on

flavour changing neutral currents.

Let us stress again that the exact numerical coefficients of the soft terms are functions

of the dilaton and complex structure moduli which are fixed in terms of flux quanta. Hence

17Evidence in favour of ultralocality has been obtained from explicit string computations in toroidal

orbifolds [46]. The case of realistic CY compactifications remains to be explored.
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soft terms vary as one scans through the string landscape. This crucial property of our

scenarios gives supersymmetric models the freedom to perform any tuning which is needed

for phenomenological reasons. In particular, it is low energy SUSY that addresses the

hierarchy problem by stabilising the Higgs mass at the weak scale, while scanning through

the landscape provides small variations in the size of soft terms as necessary to reproduce

all the detailed features of experimental data. This tuning at low energies can be viewed

as a choice of parameters in the high scale theory. There is a large freedom of choice in

the high scale theory which is however not arbitrary since this freedom is provided by the

theory itself (by having a computable landscape of vacua).

Note that in the ultra-local case the two ways to achieve a dS vacuum give rise to a

different pattern of soft terms. This can intuitively be understood as follows: the depth of

the LVS AdS vacuum is of order m2
3/2ǫ, and so any extra term which yields a dS solution

has to be of this order of magnitude. In turn, if the field φ responsible for dS uplifting is

not decoupled from the visible sector, scalar masses of order m3/2

√
ǫ are expected to arise

because of this new contribution to the scalar potential. This is actually what happens in

the dS case 1 since φ lives on a bulk cycle, and so it is not decoupled from the visible sector.

On the other hand, in the dS case 2 φ lives on a singularity which is geometrically separated

from the one supporting the visible sector. This gives rise to an effective decoupling between

φ and the visible sector, resulting in suppressed scalar masses.

We would also like to emphasise that our analysis for the dS case 1, together with [26]

(which provided visible sector models embedded in moduli stabilised compact CYs), pro-

vides a very comprehensive study of SUSY breaking in string theory.

The soft terms which are more complicated to estimate are the µ̂ and Bµ̂-terms since

they receive contributions from both the Kähler potential and the superpotential. More-

over, these contributions could generically be forbidden in models with branes at singular-

ities because of the presence of anomalous U(1) symmetries. In this case, effective µ̂ and

Bµ̂-terms could still be generated due to non-perturbative corrections (e.g. D-brane instan-

tons) or matter fields which develop non-vanishing VEVs. However in this last case, besides

the need to go beyond the MSSM by including additional matter fields, any prediction for

µ̂ and Bµ̂-terms would necessarily be model-dependent.

Overall, we are living exciting times with plenty of feedback from experiments. A

detailed study of the phenomenology of the general sequestered scenarios mentioned above

will be presented in a follow-up article [49].
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A Subleading corrections to F-terms

In this appendix we first describe the shift of the LVS minimum after including an extra

term responsible to achieve a dS vacuum, and then provide subleading corrections to F-

terms. As described in section 2.3, the mechanism which realises a dS vacuum gives rise

effectively to an extra term of the form

VdS =
r

Vm
with r > 0 and m < 3 . (A.1)

We are interested in minimising the combined system

V = VO(V−3) + VdS , (A.2)

with the additional constraint of vanishing vacuum energy. This constraint relates the

coefficient r with the tunable flux parameters in the LVS potential such as W0 or gs. A

concrete dS scenario, such as the ones in section 2.3, typically fixes r by construction with

only moderate tuning. However the real tuning can be achieved by simply tuning the flux

superpotential and the string coupling in agreement with the flux landscape.

The expressions for the moduli VEVs are largely independent on the way to get dS

vacua. In fact, the relation (2.15) is generic whereas the expression (2.16) for the VEV of

τs depends on the way to get a dS vacuum. The exact minimum for τs is given by

τ3/2s =
ξ̂

2

(1− ǫs)
2

(1− 4ǫs)

1

1 + 2m
m−3ǫs

=
ξ̂

2
[1 + fdS(ǫs)] , (A.3)

and so the function fdS is fdS = 18ǫs+297ǫ2s in the case of dS vacua from hidden matter fields

(m = 8/3), while fdS = 3ǫs + 12ǫ2s for the case of non-perturbative effects at singularities

(m = 1). Note that as a consequence of the shift in τs, also the overall volume in (2.15) is

shifted and, as the shift is in the exponential, this shift can be parametrically large.

Equipped with the minimum, we can evaluate the F-terms. To simplify the notation

we factor out an overall factor of the gravitino mass m3/2 which is given by (3.2). The

F-terms turn out to have the following expressions:

F Tb

τb
= −2m3/2

[

1 +
9ξ̂ǫs
4V

m− 1

m− 3 + 2mǫs
+O

(

1

V2

)

]

, (A.4)

F Ts

τs
= −2m3/2

[

3ǫs
(1− ǫs)

− ξ̂

2V

(

1− 9ǫs
2

m− 1

m− 3
+O

(

ǫ2s
)

)

]

, (A.5)

FS

s
=

3ω′
S

8a
3/2
s

m3/2

Vǫ3/2s

[1 +O (ǫs)] , (A.6)

FU = −K
UiUj

2s2

ωUj

ω′
S

FS ≡ βUi FS , (A.7)

FφdS = φdSm3/2

[

1 +O
(

1

V

)]

, (A.8)

F TdS =
3

4
√
2a

3/4
s

m3/2

ǫ
1/4
s

[1 +O (ǫs)] . (A.9)

– 28 –



J
H
E
P
1
1
(
2
0
1
4
)
0
7
1

B Possible sources of desequestering

There is a general belief that in any supergravity theory once SUSY is broken all sparticles

should get a mass at least of the order of the scale determined by the split in the gravity

multiplet. In particular, all soft masses are expected to be of order the gravitino mass.

Furthermore, if for some reason some of the sparticle masses are found to be smaller

than m3/2 at tree level, since SUSY no longer protects these masses against quantum

corrections, they should be lifted to a loop factor times m3/2. So soft masses are expected

to be at most one order of magnitude lighter than the gravitino mass but not much

smaller.18 Effects which tend to push the soft masses to the scale of the gravitino mass are

referred to as sources of desequestering. In this appendix we will argue that our models

can be stable against desequestering effects.

B.1 Loop corrections

For sequestered string scenarios, it is natural to expect that loop corrections bring soft

masses to a magnitude of order a loop factor times m3/2. However there can be exceptions

since the couplings can be Planck suppressed. A detailed calculation of loop corrections to

the mass of bulk scalars like the volume modulus (its tree level mass mV ∼ m3/2/V1/2 is

hierarchically smaller than m3/2) was presented in [79].

The size of loop corrections can be estimated by realising that, if SUSY is broken, loop

corrections to the mass should be given by the heaviest particles circulating in the loop

(or the cut-off scale) which is the Kaluza-Klein scale MKK ∼ MP /V2/3. In the absence

of SUSY there is a need of a SUSY breaking insertion (a spurion field representing the

relevant F-term) in the loop and the correction to the mass is at most

δm = αloop

MKKm3/2

MP
∼ αloop

W0

V5/3
≪ αloopm3/2 , (B.1)

with αloop ∼ g2/(16π2) a loop factor. Note that the ratio δm/m ∼ αloopV−1/6 is very small

and therefore the volume modulus mass is stable against loop corrections.

For matter fields located at the SM brane, loop corrections should be even further

suppressed. The effective field theory on the brane is supersymmetric and feels the effects

of SUSY breaking in the bulk only via Planck suppressed couplings. Therefore masses

as small as Msoft ∼ W0/V2 are still stable under standard loop corrections (since volume

suppressed brane-bulk couplings imply δMsoft ≪ δm).

Over the years explicit calculations have been performed estimating loop corrections

to soft masses in no-scale and general gravity mediated models. See for example [80, 81] in

which loop corrections to scalar and gaugino masses were estimated in supergravity and M-

theory frameworks with results of order δm ∼ αloopm
2
3/2/MP ∼ αloopMP /V2. More recently,

explicit calculations for gravitino loop contributions to gaugino masses was performed

in [82]. The diagrams are quadratically divergent and proportional to the gravitino mass:

δM1/2 =
m3/2

16π2

(

Λ2

M2
P

+ . . .

)

, (B.2)

18This separation between m3/2 and soft masses occurs for example in the case of mirage (mixed moduli

and anomaly) mediation [77, 78].
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where Λ is the cut-off scale and the dots represent subleading logarithmically divergent

terms. In string theory we expect that Λ ≤ Ms ∼ MP /V1/2 which then corrects the

gaugino masses to order δM1/2 ≤ αloopMP /V2 which is smaller than the sequestered

gaugino masses M1/2 ∼MP /V2.

This behaviour of sequestered models motivated the work of Randall and Sundrum

to introduce anomaly mediation. However, as we will illustrate below, the approximate

no-scale structure of LVS makes anomaly mediated corrections to soft-terms subleading

(they vanish identically for no-scale models) in generic points of parameter space.

B.2 Anomaly mediated contributions

In this appendix we examine anomaly mediated contributions to soft-terms and compute

their strength in the dS constructions discussed in section 2.3. The anomaly mediated

gaugino masses [83] are given by19

Manom
1/2 =

g2

16π2

[

(TR − 3TG)m3/2 + (TG − TR)F
I∂IK +

2TR
dR

F I∂I ln det K̃αβ

]

, (B.3)

where TG,R are the Dynkin indices of the adjoint representation and the matter repre-

sentation R of dimension dR (summation over all matter representations is understood).

Assuming that the Kähler metric for matter fields can be written as K̃αβ = δαβfαK̃, the

expression (B.3) reduces to

Manom
1/2 =

g2

16π2

[

(TR−3TG)m3/2+(TG−TR)F I∂IK+
2TR

K̃
F I∂IK̃+

2TR
dR

dR
∑

α=1

F I∂I ln fα

]

.

(B.4)

In the local case, we find that the leading order anomaly mediated contribution can be

written in terms of the modulus dominated gaugino mass M1/2 given in (3.13)

Manom
1/2 =

g2

16π2

[

(TR−TG)
(

1−sβUi∂uiKcs

)

− 4TR
ω′
S

(

cs−
1

3

)

+
2sTR
dR

dR
∑

α=1

∂s,u ln fα

]

M1/2,

(B.5)

with ω′
S as defined below (3.4). For the ultra-local case we find instead

Manom
1/2 =

g2

16π2

[

(

TR
3

− TG

)

(

1− sβUi∂uiKcs

)

+
2sTR
dR

dR
∑

α=1

∂s,u lnhα

]

M1/2 . (B.6)

Therefore in both cases the anomaly mediated contribution is loop suppressed with respect

to the moduli mediated one. This result is the consequence of the approximate no-scale

structure of LVS models.

A more careful analysis is needed for a very particular point in the underlying param-

eter space: ω′
S → 0, i.e. in the very tuned situation where the F-term of the dilaton is

vanishing at leading order because of a special compensation between the contribution to

19Note that there is a certain discussion on the validity of this formula [84]. For the purpose of this paper

we assume that the standard derivation from field theory or string theory [85] is valid.
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FS from DSW and DTb
W . In this case the leading contribution to gaugino masses given

in (3.13) is zero and the first non-vanishing moduli mediated contribution can be estimated

to scale as Mnew
1/2 ∼ m3/2

√
lnV/V . On the other hand, the anomaly mediated contribution

scales as Manom
1/2 ∼ cMnew

1/2 where c = c′
(

g2

16π2

)

lnV and c′ denotes a numerical factor aris-

ing from evaluating (B.6) exactly. For g ≃ 0.1 and V ≃ 5 · 106 (the value needed to get

Mnew
1/2 approximately around the TeV-scale), c is roughly of order c′ × 10−3. Depending on

the exact value of c′, which is beyond the scope of this analysis, we can achieve competing

contributions from moduli mediation and anomaly mediation.

B.3 Moduli redefinitions

Desequestering can also potentially occur due to moduli redefinitions which might be nec-

essary order by order in perturbation theory. This desequestering effect can for example

arise due to a shift of the local cycle τSM → τSM +α lnV which has the effect of making the

soft-terms of the same order as the gravitino mass [34, 35].

Such moduli redefinitions depend on the structure of the D-brane configuration. In

particular, it has been argued that redefinitions are absent for configurations involving only

D3-branes at orbifold singularities but are present for D3-branes at orientifold singularities

and in cases with both D3- and D7-branes (see [34]).

We emphasise that desequestering occurs only if the moduli redefinition leads to a

change in the functional form of the Kähler potential. Arguments suggesting a change in

the functional form were presented in [34] but an explicit computation of such a change

is still not available in the literature. Some recent explicit computations of the Kähler

potential [86, 87] have shown that perturbative corrections can be such that, along with

a field redefinition, there is also an additional term generated in the Kähler potential. In

these cases, however, the two effects conspire to leave the functional form of the Kähler

potential invariant. More detailed studies of perturbative corrections to the Kähler poten-

tial are crucial to get a comprehensive understanding of the relationship between moduli

redefinitions and desequestering.

B.4 Superpotential desequestering

Apart from potentially destroying the hierarchy between soft masses andm3/2, various sub-

leading effects can have important phenomenological consequences. Interesting constraints

arise from non-perturbative terms in the superpotential involving visible sector fields [45].

Superpotential terms of the type

Ŵ =
(

µ̂HuHd + λ̂uijQ
iujHu + λ̂dijQ

idjHd + λ̂uijL
iejHd

)

e−asTs , (B.7)

would lead to flavour violation and CP-violation via A-terms with a strength sensitive to

the hierarchy between soft masses and m3/2. For M
2
soft ∼ m2

3/2/Vn the strength of CP and

flavour violation induced by A-terms would be

δ ∼ Vn10−16
( v

100 GeV

)

, (B.8)
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with v equal to the Higgs VEV. CP violation and FCNC bounds then require V < 105. This

gives a slight tension with our results but there can be several ways around this issue. The

estimate (B.8) is based on effective field theory arguments; it assumes generic order one

coefficients for the superpotential terms in (B.7). A string computation of the coefficients

was done in [47]. This indicates that the coefficients are suppressed unless the SM cycle and

the cycle on which the instanton is supported share a homologous two-cycle. The presence

of flavour symmetries [41, 53, 88, 89] in the visible sector can also alleviate this tension.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[31] G. Aldazabal, L.E. Ibáñez, F. Quevedo and A.M. Uranga, D-branes at singularities: a bottom

up approach to the string embedding of the standard model, JHEP 08 (2000) 002

[hep-th/0005067] [INSPIRE].

– 33 –

http://dx.doi.org/10.1103/PhysRevLett.112.241101
http://arxiv.org/abs/1403.3985
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.3985
http://dx.doi.org/10.1016/j.nuclphysb.2005.04.032
http://arxiv.org/abs/hep-th/0503216
http://inspirehep.net/search?p=find+EPRINT+hep-th/0503216
http://dx.doi.org/10.1016/S0370-2693(97)01212-4
http://arxiv.org/abs/hep-th/9707143
http://inspirehep.net/search?p=find+EPRINT+hep-th/9707143
http://dx.doi.org/10.1088/1126-6708/2006/06/029
http://arxiv.org/abs/hep-th/0605141
http://inspirehep.net/search?p=find+EPRINT+hep-th/0605141
http://dx.doi.org/10.1088/1126-6708/2007/01/032
http://arxiv.org/abs/hep-th/0610129
http://inspirehep.net/search?p=find+EPRINT+hep-th/0610129
http://dx.doi.org/10.1103/PhysRevD.77.106007
http://arxiv.org/abs/0802.1137
http://inspirehep.net/search?p=find+EPRINT+arXiv:0802.1137
http://dx.doi.org/10.1007/JHEP03(2010)078
http://arxiv.org/abs/0912.2950
http://inspirehep.net/search?p=find+EPRINT+arXiv:0912.2950
http://dx.doi.org/10.1007/JHEP10(2013)199
http://arxiv.org/abs/1304.1809
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.1809
http://dx.doi.org/10.1103/PhysRevD.78.065038
http://arxiv.org/abs/0801.0478
http://inspirehep.net/search?p=find+EPRINT+arXiv:0801.0478
http://dx.doi.org/10.1088/1126-6708/2005/03/007
http://arxiv.org/abs/hep-th/0502058
http://inspirehep.net/search?p=find+EPRINT+hep-th/0502058
http://dx.doi.org/10.1007/JHEP02(2012)062
http://arxiv.org/abs/1110.3333
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.3333
http://dx.doi.org/10.1007/JHEP09(2012)019
http://arxiv.org/abs/1206.5237
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.5237
http://dx.doi.org/10.1007/JHEP07(2013)150
http://arxiv.org/abs/1304.0022
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.0022
http://dx.doi.org/10.1007/JHEP05(2014)001
http://arxiv.org/abs/1312.0014
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.0014
http://dx.doi.org/10.1007/JHEP06(2012)011
http://arxiv.org/abs/1203.1750
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.1750
http://dx.doi.org/10.1088/1126-6708/2005/08/007
http://arxiv.org/abs/hep-th/0505076
http://inspirehep.net/search?p=find+EPRINT+hep-th/0505076
http://dx.doi.org/10.1088/1126-6708/2000/08/002
http://arxiv.org/abs/hep-th/0005067
http://inspirehep.net/search?p=find+EPRINT+hep-th/0005067


J
H
E
P
1
1
(
2
0
1
4
)
0
7
1

[32] R. Blumenhagen, S. Moster and E. Plauschinn, Moduli stabilisation versus chirality for

MSSM like type IIB orientifolds, JHEP 01 (2008) 058 [arXiv:0711.3389] [INSPIRE].

[33] R. Blumenhagen, J.P. Conlon, S. Krippendorf, S. Moster and F. Quevedo, SUSY breaking in

local string/F-theory models, JHEP 09 (2009) 007 [arXiv:0906.3297] [INSPIRE].

[34] J.P. Conlon and F.G. Pedro, Moduli redefinitions and moduli stabilisation,

JHEP 06 (2010) 082 [arXiv:1003.0388] [INSPIRE].

[35] K. Choi, H.P. Nilles, C.S. Shin and M. Trapletti, Sparticle spectrum of large volume

compactification, JHEP 02 (2011) 047 [arXiv:1011.0999] [INSPIRE].

[36] C.S. Shin, Anomalous U(1) mediation in large volume compactification, JHEP 01 (2012) 084

[arXiv:1108.5740] [INSPIRE].

[37] G.D. Coughlan, W. Fischler, E.W. Kolb, S. Raby and G.G. Ross, Cosmological problems for

the Polonyi potential, Phys. Lett. B 131 (1983) 59 [INSPIRE].

[38] T. Banks, D.B. Kaplan and A.E. Nelson, Cosmological implications of dynamical

supersymmetry breaking, Phys. Rev. D 49 (1994) 779 [hep-ph/9308292] [INSPIRE].

[39] B. de Carlos, J.A. Casas, F. Quevedo and E. Roulet, Model independent properties and

cosmological implications of the dilaton and moduli sectors of 4D strings,

Phys. Lett. B 318 (1993) 447 [hep-ph/9308325] [INSPIRE].
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[72] P.G. Camara, L.E. Ibáñez and A.M. Uranga, Flux induced SUSY breaking soft terms,

Nucl. Phys. B 689 (2004) 195 [hep-th/0311241] [INSPIRE].

[73] M. Graña, T.W. Grimm, H. Jockers and J. Louis, Soft supersymmetry breaking in

Calabi-Yau orientifolds with D-branes and fluxes, Nucl. Phys. B 690 (2004) 21

[hep-th/0312232] [INSPIRE].

[74] M. Schmaltz and W. Skiba, Minimal gaugino mediation, Phys. Rev. D 62 (2000) 095005

[hep-ph/0001172] [INSPIRE].

[75] T.T. Yanagida and N. Yokozaki, Focus point in gaugino mediation — reconsideration of the

fine-tuning problem, Phys. Lett. B 722 (2013) 355 [arXiv:1301.1137] [INSPIRE].

[76] H. Baer, V. Barger, P. Huang and X. Tata, Natural supersymmetry: LHC, dark matter and

ILC searches, JHEP 05 (2012) 109 [arXiv:1203.5539] [INSPIRE].

[77] O. Loaiza-Brito, J. Martin, H.P. Nilles and M. Ratz, log(MPl/m3/2),

AIP Conf. Proc. 805 (2006) 198 [hep-th/0509158] [INSPIRE].

[78] K. Choi, K.S. Jeong, T. Kobayashi and K.-I. Okumura, Little SUSY hierarchy in mixed

modulus-anomaly mediation, Phys. Lett. B 633 (2006) 355 [hep-ph/0508029] [INSPIRE].

[79] C.P. Burgess, A. Maharana and F. Quevedo, Über-naturalness: unexpectedly light scalars
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