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Acute heart failure (AHF) is a complex clinical syndrome characterized by fluid overload and haemodynamic abnormalities (short-term clinical

consequences) and the development of end-organ damage (long-term consequences). Current therapies for the treatment of AHF, such as

loop diuretics and vasodilators, help to relieve haemodynamic imbalance and congestion, but have not been shown to prevent (and may even

contribute to) end-organ damage, or to provide long-term clinical benefit. Serelaxin is the recombinant form of human relaxin-2, a naturally

occurring hormone involved in mediating haemodynamic changes during pregnancy. Preclinical and clinical studies have investigated the effects

mediated by serelaxin and the suitability of this agent for the treatment of patients with AHF. Data suggest that serelaxin acts via multiple path-

ways to improve haemodynamics at the vascular, cardiac, and renal level and provide effective congestion relief. In addition, this novel agent may

protect the heart, kidneys, and liver from damage by inhibiting inflammation, oxidative stress, cell death, and tissue fibrosis, and stimulating

angiogenesis. Serelaxin may therefore improve both short- and long-term outcomes in patients with AHF. In this review, we examine the unique

mechanisms underlying the potential benefits of serelaxin for the treatment of AHF, in particular, those involved in mediating end-organ

protection.
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Introduction

Heart failure (HF) is a chronic condition, punctuated by acute epi-

sodes, which affects as many as one in five people aged 70–80

years.1,2 In acute heart failure (AHF), rapid worsening of the signs

and symptoms of HF results in the requirement for urgent therapy

and, frequently, hospitalization.3 The frequency of AHF episodes in-

creases with disease progression, resulting in high rates of hospital-

ization and an increased risk of mortality.3 As such, AHF places a

significant burden on both patients and healthcare systems.4

Pathophysiologically, it is known that AHF involves both haemo-

dynamic abnormalities and end-organ damage (Figure 1).5 – 12

Haemodynamic abnormalities result in early clinical features of

congestion,2,13 –15 whereas end-organ damage may contribute to

long-term morbidity and mortality.16

Current therapies for AHF include loop diuretics and vasodila-

tors, agents which stimulate vasodilation and diuresis to relieve

haemodynamic abnormalities.4,10,17 – 19 However, none of these

agents have been shown to prevent end-organ damage, and their

use may be associated with detrimental effects on numerous organs,

thereby contributing to long-term morbidity and mortality.20 – 22

As a result, new therapies for the treatment of AHF should relieve

congestion to improve short-term clinical consequences and pro-

vide organ protection to positively impact the long-term clinical

consequences of AHF.

Human relaxin-2 is the major form of the hormone relaxin, which

has vital roles during pregnancy.23,24 Relaxin-2 binds primarily to

relaxin family peptide receptor 1 (RXFP1), located in the heart, kid-

neys, and vasculature, to activate numerous cellular pathways.16,25–27

Serelaxin has been manufactured as the recombinant form of human

relaxin-2 and is currently under investigation for the treatment of

AHF.27,28

In this review, we briefly describe the unique mechanisms under-

lying the ability of serelaxin to relieve congestion and, therefore,

mediate short-term beneficial effects in patients with AHF. We

also examine, in detail, the novel mechanisms by which serelaxin,

unlike current treatments, may limit end-organ damage and thus,

provide long-term treatment benefit in patients with AHF.
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Serelaxin for the treatment
of acute heart failure: key clinical
data

The safety and efficacy of serelaxin for the treatment of patients

with AHF has been determined in the preliminary RELAXin in Acute

Heart Failure (pre-RELAX-AHF) and RELAXin in Acute Heart Fail-

ure (RELAX-AHF) clinical trials. In the phase IIb pre-RELAX-AHF

trial, serelaxin (30 mg/kg/day 48-h infusion) resulted in a positive

effect on dyspnoea compared with placebo.29 In the phase III

RELAX-AHF trial, serelaxin (30 mg/kg/day 48-h infusion), when

compared with placebo, significantly improved the primary efficacy

endpoint of dyspnoea relief by the visual analogue scale area under

the curve to Day 5, with numerical improvement observed in the

primary endpoint of dyspnoea as assessed by the Likert scale at 6,

12, and 24 h.30 Serelaxin treatment improved signs and symptoms

of congestion and length of hospital stay compared with placebo

in the RELAX-AHF study, although, no significant improvement in

the two secondary endpoints of days alive and out of hospital, and

cardiovascular (CV) death or rehospitalization for HF or renal

failure through Day 60 was observed.30 In both studies, serelaxin

demonstrated favourable effects on longer-term clinical outcomes,

such as CV and all-cause mortality through Day 180 compared with

placebo (Figure 2).29–31 In the RELAX-AHF study, elevated levels of

troponin T, cystatin C, aspartate aminotransferase (AST), alanine

aminotransferase (ALT), and N-terminal pro-B-type natriuretic

peptide (NT-proBNP) were associated with an increased risk of

all-cause mortality through Day 180 (Figure 3).31 Serelaxin treat-

ment, when compared with placebo, was associated with lower

levels of these biomarkers, indicating that serelaxin may protect

organs from further damage following AHF hospitalization.31

Overall, serelaxin had a favourable safety and tolerability profile

compared with placebo.29,30

Although promising, pre-RELAX-AHF and RELAX-AHF studies

were not powered to detect changes in mortality, thus adequately

designed follow-up studies are needed. A second phase III

trial, RELAX-AHF-2, is ongoing and will further investigate the

safety and efficacy of serelaxin for the treatment of patients with

AHF, including the mortality benefit observed in previous clinical

trials.32

Serelaxin and correction of
haemodynamic imbalance

Observations from preclinical and clinical studies indicate that

serelaxin acts via multiple mechanisms to correct haemodynamic

Figure 1 The ‘continuum’ of pathophysiological changes associated with acute heart failure that may lead to both short- and long-term effects

on the heart and other end organs.5–12

Figure 2 Risk for all-cause mortality through Day 180 in

Pre-RELAX-AHF and RELAX-AHF.31 AHF, acute heart failure;

RELAX-AHF, RELAXin in Acute Heart Failure; Pre-RELAX-AHF,

preliminary RELAXin in Acute Heart Failure. Reproduced under

the terms of the Elsevier user license (http://www.elsevier.com/

about/open-access/open-access-policies/oa-license-policy/elsevier-

user-license) for Metra et al.31
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Figure 3 All-cause mortality through Day 180 in RELAX-AHF by markers of organ damage/dysfunction: troponin T (A); cystatin C (B); AST (C);

ALT (D), and NT-proBNP (E).31 ALT, alanine aminotransferase; AST, aspartate aminotransferase; CI, confidence interval; HR, hazard ratio;

NT-proBNP, N-terminal pro-B-type natriuretic peptide. Reproduced under the terms of the Elsevier user license (http://www.elsevier.com/

about/open-access/open-access-policies/oa-license-policy/elsevier-user-license) for Metra et al.31
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imbalance and relieve congestion, as described in Table 1.30,33 –52

For instance, serelaxin is thought to stimulate vasorelaxatory

systems and counteract vasoconstrictor systems, to mediate both

rapid and sustained vasorelaxation53 (Figure 4),28,43,54 and thus,

improve haemodynamics and alleviate congestion. Evidence

suggests that serelaxin also increases arterial compliance40,42 and

decreases systemic vascular resistance,35,36,44 – 46 which could

increase capacitance to prevent fluid redistribution to the lungs

and improve haemodynamic abnormalities, aiding decongestion in

AHF.8 Interestingly, in contrast to vasodilators such as nitroglycerin,

which primarily act via direct venodilation,55 the vasorelaxatory

action of serelaxin is thought to predominantly affect arteries.45

In addition to inducing vasorelaxation, serelaxin treatment has

been shown to reduce cardiac pressures and to preserve or

improve cardiac and renal function,30,33 –36,41,44 –52 which is likely

to help restore haemodynamics, relieve congestion (via mechanisms

which may include the prevention of fluid redistribution), and

prevent further stimulation of neurohumoral systems in AHF.2,56

In addition, the renal effects of serelaxin may be associated with

long-term renal protection, which warrants further investigation.

Serelaxin treatment and the
limitation of end-organ damage

Serelaxin interferes with the mechanisms
underlying the development of end-organ
damage
In patients with AHF, haemodynamic alterations stimulate a number

of systemic mechanisms, including the adrenergic system, vasoactive

hormones, inflammation, and oxidative stress which, in turn, alter

the local mechanisms controlling cell death, tissue repair, and vessel

function, contributing to the development of cardiac, renal, hepatic,

vascular, and other organ damage.2,6,57– 64 The available evidence

suggests that serelaxin may interfere with these systemic and local

mechanisms to limit end-organ damage.

Serelaxin and inhibition of inflammation
Damage to organs including the heart, kidneys, and liver occurs early

in AHF and has long-term consequences.16,65 Inflammatory activation

can contribute to organ injury, in addition to vascular dysfunction and

fluid overload.8,16 For instance, in patients with newly diagnosed HF,

levels of tumour necrosis factor alpha (TNF-a), interleukin (IL)-6, and

CD14 were elevated on the third day of initial hospitalization and as-

sociated with impaired function of the left atrium and more advanced

left ventricular (LV) systolic and diastolic dysfunction.66

Changes in inflammatory pathways have been determined in a

number of studies following the administration of serelaxin. In hu-

man umbilical vein endothelial cells incubated with serelaxin,

TNF-a-induced upregulation of vascular cell adhesion molecule 1

(VCAM-1) and platelet endothelial cell adhesion molecule was di-

minished, along with C-C chemokine receptor type 2 andmonocyte

chemotactic protein 1 levels, and monocyte adhesion to the cells.67

In addition, serelaxin inhibited basophil function, via nitric oxide syn-

thase activation, to reduce histamine release and prevent the rise in

intracellular calcium that stimulates granule release.68,69

In rats subjected to cardiac, renal, hepatic, or splanchnic ischae-

mia–reperfusion (IR) injury, treatment with serelaxin or porcine re-

laxin diminished myeloperoxidase activity, a marker of inflammatory

leukocyte infiltration.70–74 Serelaxin treatment decreased expres-

sion of inflammatory mediators and adhesion molecules including

intercellular adhesion molecule-1 (ICAM-1), IL-1b, IL-18, and

TNF-a in rats subjected to renal IR injury,71 while porcine relaxin

downregulated expression of adhesion molecules P-selectin,

E-selectin, VCAM, and ICAM-1 in a rat model of splanchnic IR in-

jury,70 as well as TNF-a expression in a rat model of renal IR in-

jury.75 In addition, porcine relaxin treatment was associated with a

reduction in the number of neutrophils and inhibition of mast cell

granule release in a rat model of cardiac IR injury.74 Similarly, reduc-

tions in myeloperoxidase levels and cardiac mast cell degranulation

were evident following the administration of serelaxin in a pig model

of cardiac IR injury.76,77

Inhibiting the inflammatory response in patients with AHF may

decrease fluid overload to relieve congestion and positively impact

vascular, myocardial, renal, and hepatic injury and dysfunc-

tion8,71,73,75,77 and consequently, improve long-term outcomes.

The anti-inflammatory actions of serelaxin distinguish this agent

from current AHF therapies, such as nitrates, that have not been

shown to improve long-term outcomes in patients with AHF21

and are therefore unlikely to inhibit inflammation.

Serelaxin and reduction of oxidative stress
Increased oxidative stress results from the dominance of reactive

oxygen species (ROS) such as superoxide over endogenous antioxi-

dant defence mechanisms.78 In patients with AHF, oxidative stress

can result in myocardial, renal, and hepatic injury and remodelling.16

Neurohormones contribute to the activation of ROS in AHF, while

mitochondrial calcium overload and dysfunction (via leaky type 2

ryanodine receptors) may lead to increased release of ROS in

HF78,79 and reperfusion-induced inflammation may contribute to

oxidative cardiac tissue injury.24

In vitro studies, animal models and clinical studies have investigated

the effects of animal relaxin and serelaxin on oxidative stress. In vitro,

porcine relaxin was found to reduce the production of superoxide

anions from human neutrophils.68 In rats with renal or splanchnic IR

injury, serelaxin treatment was associated with increased levels of

the antioxidant enzymes manganese and copper–zinc superoxide

dismutase71 and diminished consumption of superoxide dismutase,

lipid peroxidation, and markers of deoxyribonucleic acid (DNA)

damage including 8-hydroxy-2′-deoxyguanosine and poly-ADP-

ribosylated DNA.70 In addition, serelaxin decreased hydrogen

peroxide and thiobarbituric acid-reactive substance (TBARs) excre-

tion and consequently, oxidative stress, in rats with angiotensin

II-induced hypertension.33 In the same experimental model, serelax-

in treatment reduced nicotinamide adenine dinucleotide phosphate

(NADPH) oxidase activity (i.e. superoxide anion generation) and

excretion of TBARs and 8-isoprostane (markers of oxidative stress),

and restored nitric oxide (NO) oxidation product excretion.80 Fi-

nally, serelaxin was found to decrease levels of malondialdehyde

(MDA), a marker of oxygen-free radical-mediated cell damage, in

a porcine model of cardiac IR injury.76

In patients with AHF, serelaxin treatment (30 mg/kg/day, 48-h in-

fusion) significantly reduced levels of uric acid, a marker of oxidative
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Table 1 Effects mediated by serelaxin that may alleviate haemodynamic imbalance and relieve congestion in patients with AHF30,33–52

Effect mediated

by serelaxin

Evidence from preclinical and clinical studies following administration of serelaxina

In vitro Mice Rats Healthy subjects Patients

with CHF

Patients

with AHF

Possible clinical

consequences

Reduction of

cardiac

pressures

�SBPb33,34 (including

porcine relaxin)

�DBPc35

�PCWPc35

�SBPc35

�PAPc35

�DBPd36

�PCWPd36

�SBPd36

�PAPd36

�JVPd30

Improved haemodynamics

Relief of congestion

Prevention of further

stimulation of

neurohumoral systems

Stimulation of

vasorelaxation

Blunted responses of rat

mesenteric arteries to

vasoconstriction induced by

AVP and NE37 (rat relaxin)

Vasorelaxation of small human

resistance arteries38

�Coronary flow/�NO

generation in isolated guinea

pig hearts subject to IR injury39

(porcine relaxin)

�Arterial

compliance40
Blunted response to

vasoconstriction and �BP

induced by Ang II33,41

(including porcine relaxin)

�Wall stiffness42

�Arterial compliance42

�Rapid and sustained

BK-mediated vasorelaxation

of mesenteric arteries43

Improved haemodynamics

Relief of congestion

Possible prevention of

fluid redistribution

Reduction of SVR �SVRe44–46 �SVRf35 �SVRd36 Vasorelaxation

Improved haemodynamics

Relief of congestion

Possible prevention of

fluid redistribution

Preservation of

diuresis and

natriuresis

�Urinary excretion of sodium47

�Salt sensitivityb34

(porcine relaxin)

�Urinary flow rate47

�Renal clearance,

fractional excretion

and urinary

excretion of

sodiumg48

No effect on urinary

flow rateg48

No effect on urinary

excretion of

sodium or urinary

flow rateh49

Neutral effect

on diuretic

responsei50

Preservation of renal

function

Improved haemodynamics

Possible prevention of

fluid redistribution

Increased RBF and

preservation of

GFR

�GFR41,51,52

�RBF41,47,51,52
�RBFg48

No effect on GFRg48
�RBFh,j49

No effect on GFRh49
Preservation of renal

function

Possible long-term renal

protection

Continued
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stress, compared with placebo.31 This finding reinforces the novel

mechanism of action of serelaxin and suggests that this agent may

possess antioxidant properties, to prevent excess formation of

superoxide, which reacts with NO to form the powerful oxidant

peroxynitrite.81 Protecting against oxidative stress could prevent

apoptosis/necrosis and, consequently, protect the endothelium

and limit the end-organ damage associated with AHF.31,33,70,71 In

contrast to serelaxin, current AHF therapies, such as nitrates, do

not possess antioxidant properties and may contribute to the devel-

opment of endothelial dysfunction, via NO-mediated increases in

superoxide and thus, peroxynitrite.82–84

Serelaxin and inhibition of cell death
Cardiac wall stress as well as the stimulation of neurohormones,

oxidative stress, and release of inflammatory mediators result in

cell death via apoptosis and necrosis, and ultimately, organ damage

in patients with AHF.2,6,58–63 Previous studies have shown that anti-

apoptotic and anti-necrotic effects are associated with end-organ

preservation.75,85 Preventing organ damage by protecting cells

from apoptosis and/or necrosis is therefore likely to improve long-

term outcomes in patients with AHF;31,86 however, evidence sug-

gests that current standard of treatment does not provide such

benefit.3,21,22

In vitro, serelaxin has been shown to antagonize apoptosis in neo-

natal rat cardiomyocytes exposed to hydrogen peroxide87 and high

levels of glucose.88 Serelaxin also significantly increased cell viability

and diminished apoptosis and nitroxidative damage in both H9c2 rat

cardiomyoblasts and primary mouse cardiomyocytes subjected to

hypoxia and reoxygenation; these effects were partly due to the up-

regulation of Notch-1 signalling.89

In vivo studies have demonstrated beneficial effects of serelaxin

and animal relaxin on apoptosis and necrosis. In rat models with re-

nal injury, serelaxin treatment has been associated with reduced

DNA damage and lipid peroxidation.71 In addition, serelaxin has

been shown to protect against IR injury in the rat liver, as demon-

strated by lower MDA levels in a model of isolated reperfused rat

liver.72,73 Administration of porcine relaxin has resulted in dimin-

ished calcium overload and MDA levels74 and lower apoptotic cell

counts, as assessed by caspase-3 expression and/or terminal deox-

ynucleotidyl transferase dUTP nick-end labelling (TUNEL) in rat

models of cardiac IR injury, splanchnic IR injury, and renal IR injury,

respectively.70,75 Decreased peroxidation products, nitration pro-

ducts, and markers of DNA damage were also reported following

porcine relaxin treatment in a rat model of splanchnic IR injury,70

while rat relaxin-3 reduced MDA levels following myocardial injury

in rats.90 Similarly, in a mouse model of cardiac IR injury, treatment

with serelaxin antagonized apoptosis, as assessed by TUNEL stain-

ing.85 Finally, in pig models of cardiac IR injury, tissue calcium over-

load, tissue caspase-3 activity, TUNEL-positive cardiomyocytes, and

mitochondrial swelling in cardiomyocytes were diminished76 and

oxidative cardiac tissue injury was inhibited, as demonstrated by

decreased MDA levels.77

Serelaxin and inhibition of tissue fibrosis
Induction of fibrosis and remodelling of organs, including the heart,

kidneys, and liver, can result from neurohumoral activation, inflam-

mation, and oxidative stress in AHF.16 Increased levels of markers of
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extracellular matrix turnover, including matrix metalloproteinase

(MMP)-2, tissue inhibitor of MMP (TIMP)-1, and procollagen type

III N-terminal peptides, have been observed during the first 24 h

of hospital admission for HF decompensation.6 In addition, failing

hearts, when compared with non-failing hearts, have demonstrated

dysregulation of microRNA expression, which is thought to contrib-

ute to myocardial remodelling in HF.91

In vitro, serelaxin inhibited transforming growth factor beta

(TGF-b) and/or TIMPs in human hepatic stellate cells and human

dermal fibroblasts,92,93 and increased expression of MMPs, including

MMP-1, -2, -9, and -13, via mechanisms including theNO pathway, in

human dermal fibroblasts92,94 and rat renal myofibroblasts.94 Pro-

duction of collagen was found to decrease in rat atrial and ventricu-

lar fibroblasts95,96 and human scleroderma fibroblasts97 following

administration of serelaxin. In addition, serelaxin treatment downre-

gulated activation of human renal fibroblasts,98 rat renal fibroblast

function,99 and differentiation of rat renal fibroblasts to myofibro-

blasts,100 to inhibit renal fibrogenesis.

The potential anti-fibrotic and anti-hypertrophic actions of ser-

elaxin have also been assessed in vivo. Serelaxin treatment reduced

ventricular collagen accumulation in mice,95 cardiac fibrosis in

mouse models of myocardial infarction-induced IR injury,85 and

isoprenaline-induced cardiac injury when compared with the

angiotensin-converting enzyme inhibitor enalapril.101 In the latter

study, combined administration of enalapril and serelaxin dimin-

ished cardiac fibrosis two-fold compared with enalapril alone,

and the inhibitory effects of serelaxin were mediated by TGF-b

downregulation.101 In ageing rats and in rat models of hypertension

and diabetic cardiomyopathy, administration of serelaxin de-

creased LV and kidney collagen content,52,102,103 fibroblast differ-

entiation in the left ventricle,103 and atrial remodelling,104 as well as

cardiac hypertrophy via inhibition of extracellular signal-regulated

kinase.105 In addition, porcine relaxin diminished renal fibrosis in a

rat model of salt-sensitive hypertension34 and rat relaxin-3 amelio-

rated cardiac fibrosis in rats with isoproterenol-induced myocar-

dial injury.90

Inhibiting fibrosis and hypertrophy is likely to be beneficial in

patients with AHF, and may be associated with reduced fibrosis in

organs, including the heart, vessels, kidneys, and liver, as well as

the limitation of organ damage and improvement of long-term prog-

nosis.16,34,103 The anti-fibrotic effects of serelaxin may differentiate

this agent from current treatments for AHF, such as nitrates, that do

not protect end organs from further damage,2,21,22 and are there-

fore unlikely to inhibit tissue fibrosis.

Figure 4 Time-dependent effects of intravenously administered serelaxin on vasoactive systems that result in vasorelaxation.28,43,54 A, time

after serelaxin administration, when the hormone is detectable in the blood ranges from minutes to hours; B, time after serelaxin administration,

when the hormone is not detected in the blood ranges from 1 to several days; Ang II, angiotensin II; AVP, arginine vasopressin; BK, bradykinin;

COX2, cyclo-oxygenase 2; EDHF, endothelium-derived hyperpolarizing factor; eNOS, endothelial nitric oxide synthase; ET, endothelin; ET-BR,

endothelin receptor type B; MMP, metalloproteinase; NE, norepinephrine; nNOS, neuronal nitric oxide synthase; RXFP1, relaxin/insulin-like family

peptide receptor 1; TGF-b, transforming growth factor b; VEGF, vascular endothelial growth factor.
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Serelaxin and stimulation of angiogenesis
Using imaging techniques, significant reductions in perfused small

microvessels have been demonstrated in tissues from patients

with AHF106 compared with control subjects.107 In addition, the

peripheral tissue oxygen extraction rate (an inverse index of tissue

microvascular perfusion) is increased in patients with AHF com-

pared with those with chronic stable HF.108 Of interest, this param-

eter improved with AHF therapy, in parallel with the amelioration of

congestion and haemodynamic parameters.108 Therefore, altera-

tions in microcirculation may play an important role in organ dam-

age in AHF.

Angiogenesis can facilitate tissue repair and serelaxin may medi-

ate pro-angiogenic effects, unlike current treatments for AHF, as as-

sessed in vitro and in animal models. Serelaxin has been reported to

stimulate NO production from, and migration of, human endothelial

progenitor cells in vitro, and to increase the number of circulating hu-

man endothelial progenitor cells and stimulate vascularization in

mice.109 In addition, studies with H2 relaxin and serelaxin have ob-

served increased expression of the angiogenic cytokine vascular

endothelial growth factor (VEGF) in a cyclic adenosine monopho-

sphate (cAMP)-dependent manner,110 stimulation of angiogenesis

at ischaemic cardiac sites, and induction of expression of VEGF in

rodents and pigs.85,111,112 This induction of angiogenesis could min-

imize further organ damage and repair injury, particularly of the

myocardium, in patients with AHF.16

Serelaxin and effective protection
of end-organs

As previously mentioned, serelaxin treatment, in contrast to current

therapies, interferes with the systemic and local mechanisms under-

lying the development of organ damage, and thus, may protect end

organs in patients with AHF.3,21,22,75,85

Cardiac protection
Early cardiomyocyte injury and stress and LV dysfunction result

from AHF.95,113,114 Cardiomyocyte injury and loss can be detected

by measuring troponin T levels, which are elevated in HF,60,61 while

increased levels of NT-proBNP indicate ventricular wall stress.115 In

patients with AHF, increased levels of troponin T may be detected

upon hospital admission and in the 6–12 h following admission.86

In vitro studies, animal models and clinical studies have investigated

the cardioprotective properties of serelaxin and porcine relaxin. In

vitro, administration of porcine relaxin has been reported to diminish

IR injury in isolated reperfused guinea pig hearts, as determined by

decreased calcium overload and MDA production,39 in addition to

infarct size in a rat model of IR injury.74 Serelaxin treatment also re-

duced markers of cardiomyocyte damage, including troponin T, cre-

atine kinase-MB, and myoglobin, as well as cardiac injury in pig

models of IR injury.76,77

In patients with AHF, serelaxin (30 mg/kg/day for 20 or 48 h) de-

creased levels of troponin T and NT-proBNP.31,36 Similarly,

NT-proBNP levels were diminished following serelaxin treatment

(10–100 and 960 mg/kg/day for 24 h) in patients with chronic heart

failure (CHF).35 These data imply that the unique mechanism of ac-

tion of serelaxin may be associated with the preservation of cardiac

function in patients with AHF. Although further assessment of this

hypothesis is needed, this finding contrasts with the effects of nitrate

treatment, which is thought to contribute to cardiac injury by redu-

cing blood pressure and organ perfusion.2,22

In addition to protecting cardiomyocytes from injury and death,

serelaxin has been reported to modulate ionic currents in cardiac

cells.104,116 Although the translation of these findings into the clinic

requires further studies, it is interesting to note that recently, in the

RELAX-AHF study, serelaxin treatment reduced mortality from

other CV causes and sudden deaths, without impact on HF deaths.117

Renal protection
Renal dysfunction is common in patients with AHF62 and may be ex-

acerbated by nitrate treatment, which can cause hypotension and

subsequently, renal hypoperfusion and injury.2 Renal damage and

dysfunction is a major predictor of poor outcomes in AHF27 and

can be detected via increased levels of serum creatinine, cystatin

C, uric acid, and blood urea nitrogen (BUN), as well as reduced

estimated glomerular filtration rate (GFR).4,16,31,118 Elevated levels

of serum creatinine, cystatin C, uric acid, and BUN have been

reported in patients with AHF in the 48 h following hospital

admission.31,119

Data from preclinical and clinical studies are available concerning

the impact of serelaxin treatment on kidney function and protec-

tion. For example, in rats, serelaxin treatment increased GFR and re-

nal blood flow, and protected against renal IR injury and glomerular

dysfunction,41,47,51,52,71 whereas porcine relaxin decreased levels of

creatinine and BUN in rats subjected to renal IR injury.75

In healthy subjects, serelaxin increased renal blood flow, but did

not impact GFR,48 an effect also observed following administration

of serelaxin (30 mg/kg/day for 24 h) in patients with CHF when

comparedwith placebo, suggesting that serelaxin treatment reduces

the increase in filtration fraction to mediate beneficial renal haemo-

dynamic effects.49

In patients with AHF, serelaxin (30 mg/kg/day for 48 h) reduced

levels of cystatin C, uric acid, BUN, and serum creatinine,31 and in-

creased creatinine clearance (30 mg/kg/day for 20 h).36 Decreased

serum creatinine was also reported after infusion of serelaxin

(10–100 and 960 mg/kg/day for 24 h) in patients with CHF.35

Consequently, serelaxin may prevent worsening renal function, a

property which differentiates this novel agent from vasodilator

treatment in AHF.

Hepatic protection
Hepatic injury and cell death can occur during AHF,58,120 with

elevated markers of hepatic dysfunction, including AST and ALT,

which are also predictors of mortality and worsening HF, reported

within 48 h of hospitalization for AHF.31,121 Studies have demon-

strated that serelaxin may mediate hepatic protection, as

observed by diminished IR injury in rat liver72,73 and decreased levels

of AST and ALT in patients with AHF following serelaxin treatment

(30 mg/kg/day for 48 h).31

Vascular and other organ protection
Damage to the vasculature and other organs may occur in patients

with AHF57,122 and nitrate therapy may increase endothelial dys-

function further in these patients via increased oxidative stress.82
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Organ preservation and vasoprotective properties may distin-

guish serelaxin from classical vasodilators for the treatment of

AHF and improve outcomes in these patients.16,123 For instance,

treatment with serelaxin has been associated with improved endo-

thelial function in rat aortic endothelial cells57 and decreases in ves-

sel size, wall thickening, cross-sectional area, and collagen content in

spontaneously hypertensive rats,124 while porcine relaxin has pro-

vided endothelial protection in a rat model of splanchnic IR injury.70

Furthermore, studies in the rat brain have shown that serelaxin

treatment reduced ischaemic cell damage in brain slices, as well as

infarct size in vivo, determined 4 h following ischaemia.125–127 In add-

ition, administration of serelaxin has resulted in diminished IR injury

in rat lungs.128,129

Conclusions and perspectives

AHF poses a significant burden to patients and healthcare systems.

The precise mechanisms underlying this condition are poorly under-

stood, but it is clear that a variety of pathophysiological processes

are involved, which result in both haemodynamic abnormalities

and end-organ damage. Current therapies available for the treat-

ment of AHF moderately address the haemodynamic changes

associated with the short-term effects of this condition, to alleviate

congestion. However, no currently approved agent has demonstrated

true benefit on the long-term outcomes of AHF. As such, there is an

unmet medical need in AHF; a need for therapies that address both

the short- and long-term effects of this condition.

Preclinical and clinical data have highlighted serelaxin as a prom-

ising treatment of both the short- and long-term consequences of

AHF. In contrast to classical vasodilators, serelaxin may act at the

vascular, cardiac, and renal level to improve haemodynamics and ef-

fectively relieve congestion. Moreover, available data suggest that

serelaxin may provide organ protection via inhibition of

inflammation, oxidative stress, cell death, and tissue fibrosis, and in-

duction of angiogenesis (Figure 5),24,31,33,71–74,76,77,80,90 to improve

the long-term prognosis of these patients, as observed in clinical

trials to date.

Additional clinical data are required to confirm the potential ben-

efits of serelaxin for the treatment of AHF. A second phase III study,

RELAX-AHF 2, began in September 2013 and will further assess the

effects of serelaxin on CV mortality in patients with AHF.32 Future

experimental research efforts should aim to establish animal models

of AHF, in which the mechanisms underlying the efficacy of serelaxin

for the treatment of this condition could be studied. Meanwhile, fur-

ther preclinical studies are required to investigate the pharmacoki-

netic and pharmacodynamic properties of serelaxin in this patient

population.
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