
Sereum: Protecting Existing Smart Contracts Against
Re-Entrancy Attacks

Michael Rodler1, Wenting Li2, Ghassan O. Karame2, Lucas Davi1
1University of Duisburg-Essen, Germany

{michael.rodler,lucas.davi}@uni-due.de
2NEC Laboratories Europe, Germany

wenting.li@neclab.eu

ghassan@karame.org

Abstract—Recently, a number of existing blockchain systems
have witnessed major bugs and vulnerabilities within smart con-
tracts. Although the literature features a number of proposals for
securing smart contracts, these proposals mostly focus on proving
the correctness or absence of a certain type of vulnerability within
a contract, but cannot protect deployed (legacy) contracts from
being exploited. In this paper, we address this problem in the
context of re-entrancy exploits and propose a novel smart contract
security technology, dubbed Sereum (Secure Ethereum), which
protects existing, deployed contracts against re-entrancy attacks
in a backwards compatible way based on run-time monitoring
and validation. Sereum does neither require any modification
nor any semantic knowledge of existing contracts. By means of
implementation and evaluation using the Ethereum blockchain,
we show that Sereum covers the actual execution flow of a
smart contract to accurately detect and prevent attacks with a
false positive rate as small as 0.06% and with negligible run-
time overhead. As a by-product, we develop three advanced re-
entrancy attacks to demonstrate the limitations of existing offline
vulnerability analysis tools.

I. INTRODUCTION

The massive adoption of Bitcoin has fueled innovation, and
there are currently more than 500 alternative blockchains—
most of which are simple variants of Bitcoin [9]. Bitcoin
unveiled a key-enabling technology and a hidden potential,
the blockchain. Indeed, the blockchain allows transactions, and
any other data, to be securely stored and verified without
the need of any centralized authority. Currently, a number
of blockchains, such as Ethereum, provide means to execute
programs on the blockchain. These programs are referred to as
smart contracts and allow nearly arbitrary (Turing-complete)
business logic to be implemented. In Ethereum, smart con-
tracts are, besides the Ether cryptocurrency, a crucial part of
the blockchain. Ethereum allows to attach a smart contract
program to an address. When a transaction involves such an
address, the nodes in the Ethereum network will execute the
contract, which can trigger further transactions, update state
on the blockchain, or simply abort the transaction.

In blockchain systems, such as Ethereum, smart contracts
are capable of owning and autonomously transferring currency
to other parties. As such, it is vital that smart contracts
execute correctly and satisfy the intention of all stakeholders.
Recently, the blockchain community has witnessed a number
of major bugs and vulnerabilities within smart contracts. In
some cases, vulnerabilities allowed an attacker to maliciously
extract currency from a contract. For instance, the infamous
attack on the “TheDAO” smart contract resulted in a loss of
over 50 million US Dollars worth of Ether at the time the attack
occurred [35]. The DAO attack is an instance of a re-entrancy
attack where the main contract calls an external contract which
again calls into the calling contract within the same transaction.

These attacks have fueled interest in the community to
conduct research on solutions dedicated to enhance the secu-
rity of smart contracts. Recently presented approaches range
from devising better development environments to using safer
programming languages [14], formal verification [25] and
symbolic execution [29]. Prior work has focused primarily
on techniques that detect and prevent possible vulnerabilities
upfront. For instance, Oyente [29] proposed using symbolic
execution to find vulnerabilities in smart contracts. ZEUS [25]
uses model checking to verify the correctness of smart con-
tracts, and Securify [42] performs advanced static analysis
to infer semantic facts about data-flows in a smart contracts
to prove the presence or absence of vulnerabilities. Other
recent approaches use symbolic execution to automatically
construct exploits in order to demonstrate the vulnerability of
an analyzed smart contract [27], [32].

Challenges in Fixing Smart Contracts. We note that fixing
discovered bugs in smart contracts is particularly challenging
due to three key challenges: (1) the code of a smart contract is
expected to be immutable after deployment, (2) smart contract
owners are anonymous, i.e., responsible disclosure is usually
infeasible, and (3) existing approaches are mostly performing
offline analysis and are susceptible to missing unknown run-
time attack patterns. As a consequence of (1), approaches that
prove correctness or absence of a certain type of vulnerabil-
ity [25], [29], [42] are only important for the development
of future smart contracts, but leave already deployed (legacy)
contracts vulnerable. More specifically, to deal with a vulnera-
ble contract and restore a safe state, the owner of the contract
must deprecate the vulnerable contract, move all funds out
of the contract, deploy a new contract, and move the funds to
the new contract. This process is largely cumbersome since the

Network and Distributed Systems Security (NDSS) Symposium 2019
24-27 February 2019, San Diego, CA, USA
ISBN 1-891562-55-X
https://dx.doi.org/10.14722/ndss.2019.23413
www.ndss-symposium.org

address of the vulnerable contract might be referenced by other
contracts (see for example [39]). Even if this process could
be simplified, it remains still unclear how to contact contract
owners to inform them about contract vulnerabilities. For
instance, a recent study was able to generate exploits to steal
Ether from 815 existing smart contracts. However, the authors
refrained from mentioning any particular smart contract as
it was not possible to report the discovered bugs to any of
the creators [27]. Finally, offline analysis techniques typically
cannot fully cover the run-time behavior of a smart contract
thereby missing novel attacks exploiting code constructs that
were believed to be not exploitable.

Research Question. Given these challenges, this paper aims to
answer the question whether we can protect legacy, vulnerable
smart contracts from being exploited without (1) changing
the smart contract code, and (2) possessing any semantic
knowledge on the smart contract. To answer this question, we
focus our analysis on re-entrancy attacks. Among the attack
techniques proposed against smart contracts [10], re-entrancy
attacks play a particular role as they have been leveraged in
the DAO attack [35] which is undoubtedly the most popular
smart contract attack until today. Recent studies also argue
that many smart contracts are vulnerable to re-entrancy, e.g.,
Oyente reports 185 and Securify around 1,400 contracts as
vulnerable to re-entrancy attacks [29], [42]. In addition, re-
entrancy attack patterns are suitable for run-time detection
given the conditions mentioned in our research question (i.e.,
no code changes, no prior knowledge). Surprisingly, as our
systematic investigation reveals, new classes of re-entrancy
attacks, beyond DAO, can be developed without being detected
by the plethora of existing defenses proposed in the literature,
such as [25], [29], [42].

Contributions. In this paper, we present the design and
implementation of a novel smart contract security technology,
called Sereum (Secure Ethereum), which is able to protect
existing, deployed contracts against re-entrancy attacks in a
backwards compatible way by performing run-time monitoring
of smart contract execution with negligible overhead. Given
our run-time monitoring technique, Sereum is able to cover
the actual execution flow of a smart contract to accurately
detect and prevent attacks. As such, our approach also sheds
important lights on the general problem of incompleteness of
any offline, static analysis tool. To underline this fact, we
develop three new re-entrancy attacks in Section III (cross-
function, delegated, and create-based re-entrancy) that under-
mine existing vulnerability detection tools [29], [42] but are
detected in Sereum.

Our prototype implementation (cf. Section V) targets the
Ethereum Virtual Machine (EVM) which is currently the most
popular platform for running smart contracts. In this context,
we introduce a hardened EVM which leverages taint tracking
to monitor execution of smart contracts. While taint tracking is
a well-known technique to detect leakage of private data [19]
or memory corruption attacks [13], we apply it for the first time
to a smart contract execution platform. Specifically, we exploit
taint analysis to monitor data flows from storage variables to
control-flow decisions. Our main idea (cf. Section IV) is to
introduce write locks, which prevent the contract from updat-
ing storage variables in other invocations of the same contract
of one Ethereum transaction. Sereum prevents any write to

variables, which would render the contract’s state inconsistent
with a different re-entered execution of the same contract.
Sereum also rolls back transactions that trigger an invalid
write to variables—thereby effectively preventing re-entrancy
attacks. Sereum can also be used as a passive detection tool,
where it does not rollback attack transactions, but only issues
a warning for detected attacks.

We perform an extensive evaluation of our Sereum pro-
totype by re-executing a large subset of transactions of the
Ethereum blockchain (cf. Section VI). Our results show that
Sereum detects all malicious transactions related to the DAO
attack, and only incurs 9.6% run-time overhead; we further
verify our findings by using existing vulnerability detection
tools and manual code analysis on selected contracts. Although
Sereum only results in 0.06% of false positives, we provide
a thorough investigation of false positive associated with our
approach and other existing static analysis tools [29], [42]
thereby demonstrating that Sereum provides improved detec-
tion of re-entrancy attacks compared to existing approaches
with negligible run-time overhead.

II. BACKGROUND

In this section, we recall the basics of smart contracts
and the Ethereum Virtual Machine (Section II-A). We also
describe the implementation details of existing re-entrancy
attacks (Section II-B), and discuss common defense techniques
against these attacks (Section II-C).

A. Smart Contracts and the Ethereum Virtual Machine

In general, the blockchain consists of a distributed ledger
where transactions are committed in the same order across
all nodes. Smart contracts typically consist of self-contained
code that is executed by all blockchain nodes. The execution
of smart contracts is typically confined to a deterministic
context (e.g., based on the same input, ledger state, run-
time environment) which is replicated on benign nodes. This
ensures that the state update on the ledger is propagated to all
nodes in the network.

The currently most popular blockchain technology for
smart contracts is Ethereum [44]. Ethereum smart contracts re-
ceive and send the cryptocurrency Ether. Contracts are invoked
through transactions which are issued either by Ethereum
clients or other contracts. Transactions need to specify the
invoked contract functions, which are public interfaces exposed
by the target contracts. In order to incentivize the network to
execute contracts, Ethereum relies on the mechanism of gas:
the amount of gas corresponding to a contract relates to the cost
of executing that contract and is paid along with the invocation
transaction by the sender in Ether to fuel the execution of a
contract. This mechanism also prevents vulnerable code (e.g.,
infinite loops) from harming the entire network.

Although Ethereum supports several programming lan-
guages and compilers, the most common language for
Ethereum contracts is currently Solidity [5]. The bytecode
of contracts (generated by the Solidity compiler solc) is
distributed via dedicated contract creation transactions and
gets executed by the EVM on each local node. Once the
contract creation transaction is committed to the ledger, all

2

nodes compute the contract address—which is required to
invoke contracts—and initialize the contract code and data.

Ethereum Virtual Machine (EVM). The EVM follows the
stack machine architecture, where instructions either pop
operands from the data stack or use constant operands. The
overall architecture of the EVM is tailored towards the pecu-
liarities of blockchain environments [44]:

• Execution Context: To ensure that a transaction
execution is deterministically, all environmental in-
formation is fixed with respect to the block where
the transaction is contained. For instance, a contract
cannot use the system time. Instead, it must use the
current block number and timestamp.

• Memory: An EVM contract can use three different
memory regions to store mutable data during the
execution: stack, memory and storage. The stack is
a volatile memory region whose content can only
be changed with dedicated instructions. The EVM
distinguishes the call stack (maximum depth 1024)
from the data stack. The so-called memory is a volatile
heap-like memory region, where every byte is address-
able. The only state persistent across transactions is
maintained in the storage region which can be thought
of a key-value store that maps 256-bit words to 256-bit
words.

• Procedure Calls: The EVM CALL instruction can
be considered as a Remote Procedure Call (RPC)
as it transfers control to another (untrusted) contract.
DELEGATECALL is similar to CALL with the dif-
ference that the invoked contract shares the same
execution context as the caller. Consecutive calls are
pushed to the EVM call stack; an exception will be
thrown once the maximum call stack depth is reached.

B. Re-entrancy Problem

Re-entrancy attacks emerge as one of the most severe and
effective attack vectors against smart contracts. Re-entrancy
of a contract occurs when a contract calls another (external)
contract which again calls back into the calling contract.
All these actions are executed within a single transaction.
Legitimate re-entrancy often happens during normal contract
execution, as it is part of common and officially supported pro-
gramming patterns for Ethereum smart contracts [6]. Consider
the common withdrawal pattern [6] depicted in Figure 1 which
shows how contract A withdraws 100 wei from contract B.
The key rationale of re-entrancy is to allow other contracts to
withdraw funds from their balance. In Figure 1, contract A
invokes the public withdraw function of contract B, whereas
B subsequently invokes the msg.sender.send.value function
to transfer the specified amount to A (i.e., msg.sender is
representing the calling contract A). In Ethereum, Ether is
transferred by means of a function call, e.g., contract B must
call back (re-enter) into contract A’s fallback function to send
the funds. The fallback function is indicated by the function
without function name.

To support calling other contracts Solidity supports two
high-level constructs for calling into another contract: send
and call. Both are implemented as CALL instructions on the

1 contract A {

2 function f() { b.withdraw(100); }

3 function () public payable { }

4 }

5
6 contract B {

7 function withdraw(uint amount) public {

8 msg.sender.send.value(amount)();

9 }

10 }

A.f()

B.withdraw()

A.()

CALL

CALL

transfers amount Ether from B to A

Figure 1. Common withdrawal pattern in Solidity: the upper part shows the
sample Solidity code, whereas the lower part shows the call chain. In this
example contract A withdraws 100 wei from contract B.

EVM level. However, if the recipient account is another con-
tract, send only invokes the fallback function of the recipient
contract, while call allows the caller to specify any function
signature of the recipient contract. Further, send only supplies
a limited amount of gas. The limited amount of gas, which is
provided by send, prevents the called contract from performing
other gas-expensive instructions, such as performing further
calls. While re-entrancy is necessary for the withdrawal pattern
and several other programming patterns [6], it can be exploited
if not carefully implemented, e.g., loss of 50 million US
Dollars in the case of DAO [23], [35].

A malicious re-entrancy occurs when a contract is re-
entered unexpectedly and the contract operates on inconsistent
internal state. More specifically, if a re-entrance call involves
a control-flow decision that is based on some internal state of
the victim contract, and the state is updated after the external
call returns, then it implies that the re-entered victim contract
operated based on an inconsistent state value, and thus the
re-entrancy was not expected by the contract developer. For
example, Figure 2 shows a simplified version of a contract
(inspired by [10]), called Victim, which suffers from a re-
entrancy vulnerability. Victim keeps track of an amount (a)
and features the withdraw function allowing other contracts
to withdraw Ether (c). The withdraw function must perform
three steps: ➀ check whether the calling contract is allowed
to withdraw the requested amount of Ether, e.g., checking
whether a ≤ c, ➁ send the amount of Ether to the calling
contract and ➂ update the internal state to reflect the new
amount, e.g., c − a. Note that step ➁ is performed before the
state is updated in ➂. Hence, a malicious contract, can re-enter
the contract and call withdraw based on the same conditions
and amounts as for the first invocation. As such, an attacker
can repeatedly re-enter into Victim to transfer large amounts of
Ether until the Victim is drained of Ether. A secure version of
our simple example requires swapping lines 3 and 4 to ensure
that the second invocation of Victim operates on consistent
state with updated amounts. In Section III, we elaborate on the

3

1 function withdraw(uint amount) public {

2 1 if (credit[msg.sender] >= amount) {

3 2 msg.sender.call.value(amount)();

4 3 credit[msg.sender] -= amount;

5 }

6 }

Victim Attacker Victim Attacker State

1 c = N, a = N

2 a ≤ c X

A

1 a ≤ c X

2

A

3 c′
= c − a = 0

A

3 c′′
= c′ − a = −N ×

re-enter

transfer Ξ

transfer Ξ

state update

state update

Figure 2. Sample contract vulnerable to re-entrancy attacks [10]: the upper
parts shows the Solidity code, whereas the lower part shows the call sequence
between the vulnerable contract Victim and the attacker contract, and the
state of the variable a (amount) and c (credit[msg.sender]). The amount a has
not been updated for the second invocation of Victim thereby allowing a
malicious re-entrancy.

challenges of fixing vulnerable contracts and the prevalence of
re-entrancy vulnerabilities in existing contracts.

C. Common Defenses and Analysis Tools

While this paper puts its focus on re-entrancy vulnerabil-
ities, other types of vulnerabilities have also been discovered
(e.g., integer overflow, type confusion) that have been compre-
hensively surveyed in [10]. To combat smart contract vulnera-
bilities, the literature features a number of proposals and tools
for identifying vulnerabilities in smart contracts. For instance,
Oyente [29], Mythril [31] and Manticore [30] leverage sym-
bolic execution [26] to detect various types of bugs (including
re-entrancy) in Ethereum smart contracts. teEther [27] is a
tool that automatically generates exploits for smart contracts.
It defines the notion of vulnerable state, in which Ether can
be transferred to an attacker-controlled address. By means of
symbolic execution, a transaction sequence can be inferred to
reach the vulnerable state. This transaction sequence is used
to automatically generate the exploit. Similarly, Maian [32]
relies on symbolic analysis, but aims at finding a sequence
of invocations that construct traces that lead to vulnerabilities.
However, symbolic execution techniques suffer from the well-
known path explosion problem for larger programs which is
still an ongoing research topic [11], [28], [37], [41].

Zeus [25] introduces a policy language to assert the cor-
rectness as well as the security requirements of a contract. For
this, it requires contract source code and user-defined policies.
It applies static analysis based on symbolic verification to
find assertion violations. SmartCheck [40] first converts the

solidity contract source code to a XML-based parse-tree and
then searches for vulnerable patterns through XPath queries.
Securify [42] uses static analysis to infer semantic facts about
smart contracts. These semantic facts are passed to a Datalog
solver [24], which can prove whether a defined compliance
pattern or violation pattern is satisfied thereby proving the
absence or presence of certain vulnerabilities. Other works
leverage translation to F* to prove safety and security prop-
erties of smart contracts and to improve on existing static
analysis tools [12], [20]. KEVM [22] defines executable formal
semantics for EVM bytecode in the K-framework and presents
an accompanying formal verification tool.

ECFChecker [21] is an analysis tool that detects re-
entrancy vulnerabilities by defining a new attribute, Effectively
Callback Free (ECF). An execution is ECF when there exists
an equivalent execution without callbacks that can achieve the
same state transition. If all possible executions of a contract
satisfy ECF, the whole contract is considered as featuring
ECF. Non-ECF contracts are thus considered as vulnerable to
re-entrancy, as callbacks can affect the state transition upon
contract execution. Proving the ECF property statically was
shown to be undecidable in general. However, Grossman et
al. also developed a dynamic checker that can show whether
a transaction violates the ECF property of a contract [21].
ECFChecker has been developed concurrently to Sereum and
is, to the best of our knowledge, the only other runtime
monitoring tool. However, as we argue in Section III, this
approach does not cover the full space of re-entrancy attacks.

III. PROBLEM STATEMENT AND NEW ATTACKS

In this paper, we set out to propose a defense (cf. Sec-
tion IV) which protects existing, deployed smart contracts
against re-entrancy attacks in a backwards-compatible way
without requiring source code or any modification of the
contract code. As mentioned earlier, re-entrancy patterns are
prevalent in smart contracts and require developers to carefully
follow the implementation guidelines [6].

As the attack against “TheDAO” demonstrated, contracts
that are vulnerable re-entrancy attacks can be drained of all
Ether. Until now, the only publicly documented re-entrancy
attack, was against the “TheDAO” contract [35]. Our evalu-
ation also shows that re-entrancy attacks have not yet been
launched against other contracts (except some new minor
incidents we will describe in Section VI). However, recent
studies demonstrate that many already deployed contracts are
vulnerable, e.g., Oyente flags 185 contracts as potentially vul-
nerable. These findings demonstrate that a systematic defense
against re-entrancy attacks is urgently required to protect these
contracts from being exploited.

As discussed in Section II-C, the majority of defenses
deploy static analysis and symbolic execution techniques to
identify re-entrancy vulnerabilities. While these tools surely
help in avoiding re-entrancy for new contracts, it remains open
how to protect existing contracts. That is, fixing smart contract
vulnerabilities based on these tools is highly challenging owing
to the immutability of smart contract code and anonymity of
smart contract owners (cf. Section I).

Apart from these fundamental limitations, we also observe
that existing approaches fail to effectively detect all re-entrancy

4

vulnerabilities or suffer from a high number of false positives.
More specifically, we note that existing approaches can be
undermined by advanced re-entrancy attacks. To this end,
we identify three re-entrancy patterns, which existing tools
do not flag as re-entrancy vulnerabilities but are neverthe-
less exploitable. We call these patterns (1) cross-function re-
entrancy, (2) delegated re-entrancy and (3) create-based re-
entrancy. While cross-function re-entrancy vulnerabilities have
been partially discussed in the Ethereum community (e.g., [15],
[16]), we believe that this is first presentation of delegated and
create-based re-entrancy attacks. All of these attacks are either
missed or imprecisely detected by the state-of-the-art detection
tools such as Oyente [29], Securify [42], and ZEUS [25].

In what follows, we present three attacks that exploit these
re-entrancy patterns and discuss why existing tools cannot
accurately mark the contract code as vulnerable. As we show,
these attacks map to standard programming patterns and are
highly likely to be included in existing contracts. For the
purpose of re-producing our attacks and testing them against
the public detection tools, the source codes of the vulnerable
contracts and the corresponding attacks is available at [4].

A. Cross-Function Re-Entrancy

The first attack that we developed exploits the fact that
a re-entrancy attack spans over multiple functions of the
victim contract. We show that such cross-function re-entrancy
attacks are equally dangerous as traditional same-function re-
entrancy. In classical re-entrancy attacks the same function of
the contract is re-entered again. In cross-function re-entrancy
the same contract is re-entered in a different function. This
attack exploits the fact that smart contracts often offer multiple
interfaces, that read or write the same internal state variables.

For the sake of an example, consider the snippet from an
ERC20 Token like contract depicted in Figure 3. The function
withdrawAll performs a state update (the update of tokenBal-
ance) after an external call. However, an attacker cannot simply
re-enter the withdrawAll function since the etherAmount is set
to zero before the external call. Thus, the condition check in
line 7 cannot evaluate to true anymore thereby preventing re-
entrancy. However, the attacker can still trigger re-entrancy
on other functions. For instance, the attacker can re-enter the
transfer function, which uses the inconsistent tokenBalance
variable. This allows the attacker to transfer tokens to another
address, although the attacker should not have any token
available anymore.

Unfortunately, existing academic static analysis tools do
not accurately address cross-function re-entrancy. Namely,
Oyente does not flag the code depicted in Figure 3 as
vulnerable to re-entrancy. Securify and Mythril apply a too
conservative policy with regards to re-entrancy in general:
both flag any state update occurring after an external call
as a bug not considering whether the state update actually
causes inconsistent state. Hence, it suffers from significant
false positive issues that we will discuss in more detail in
Section VI.

In general, detecting cross-function re-entrancy is chal-
lenging for any static analysis tool due to the potential state
explosion in case every external call is checked to be safe for
every function of the contract. For exactly this reason, ZEUS

1 mapping (address => uint) tokenBalance;

2 mapping (address => uint) etherBalance;

3
4 function withdrawAll() public {

5 uint etherAmount = etherBalance[msg.sender];

6 uint tokenAmount = tokenBalance[msg.sender];

7 if (etherAmount > 0 && tokenAmount > 0) {

8 uint e = etherAmount + (tokenAmount * currentRate);

9 etherBalance[msg.sender] = 0;

10 // cannot re-enter withdrawAll()

11 // However, can re-enter transfer()

12 msg.sender.call.value(e)();

13 // state update causing inconsistent state

14 tokenBalance[msg.sender] = 0;

15 }

16 }

17 function transfer(address to, uint amount) public {

18 // uses inconsistent tokenBalance (>0) when re-entered

19 if (tokenBalance[msg.sender] >= amount) {

20 tokenBalance[to] += amount;

21 tokenBalance[msg.sender] -= amount;

22 }

23 }

Victim

withdrawAll()

Attacker

Victim

transfer(address, uint)

CALL

CALL

re-enter different function

Figure 3. The upper part shows the relevant code for a customized ERC20
Token with a cross-function re-entrancy bug. The lower part shows the call
chain during the attack. The attacker cannot re-enter withdrawAll. However,
the transferToken can still be re-entered and abused to transfer tokens to
another attacker-controlled address. We assume the attacker is then able to
exchange the tokens for Ether.

omitted to perform any cross-function analysis [25]. However,
recent work in symbolic execution tools allows detection of
cross-function re-entrancy vulnerabilities. For example, Man-
ticore [30] is able to detect cross-function re-entrancy attacks.

In general, ECFChecker is able to detect cross-function
re-entrancy attacks. However, during our evaluation, we were
able to construct a contract that can be exploited with a
cross-function re-entrancy attack without being detected by
ECFChecker. We include this specific contract as part of our
set of vulnerable contracts [4].

B. Delegated Re-Entrancy

Our second attack performs a new form of re-entrancy
that hides the vulnerability within a DELETEGATECALL or
CALLCODE instruction. These EVM instructions allow a con-
tract to invoke code of another contract in the context of
the calling contract. These instructions are mostly used to
implement dynamic library contracts. In Ethereum libraries
are simply other contracts deployed on the blockchain. When
a contract invokes a library, they share the same execution
context. A library has full control over the calling contracts
funds and internal state, i.e., the storage memory region. Using
libraries has the advantage that many contracts can re-use the
same code, which is deployed only once on the blockchain.

5

1 library Lib { // Library contract

2 function send(address to, uint256 amount) public {

3 to.call.value(amount)(); // CALL

4 }

5 // ...

6 }

7 contract Victim {

8 mapping (address => uint) public credit;

9 Lib lib; // address of library contract

10 // ...

11 function withdraw(uint amount) public {

12 if (credit[msg.sender] >= amount) {

13 // DELEGATECALL into Library

14 address(lib).delegatecall(

15 abi.encodeWithSignature("send(address,uint256)",

16 to, amount));

17 // state update after DELEGATECALL

18 credit[msg.sender] -= amount;

19 }

20 }

21 // ...

Victim

Library

Attacker

Victim

DELEGATECALL

CALL

CALL

Figure 4. The upper part show the relevant solidity source code. The lower
part shows the call chain for a delegated re-entrancy attack. Analyzed in
isolation, the Victim and the Library contract are not vulnerable to re-entrancy.
However, when the Victim contract is combined with the Library contract, it
becomes vulnerable. In this simplified case the Library contract is simply used
for sending Ether.

Furthermore, it also allows a contract to update functionality
by switching to a newer version of the library.

For a combination of contract and libraries to be vulnerable,
the state-update and the external call must take place in differ-
ent contracts. For example, the improper state-update happens
in one library after the contract already performed the external
call. When each one is analyzed in isolation, none of the
contracts exhibit a re-entrancy vulnerability. However, when
both contracts are combined, a new re-entrancy vulnerability
emerges which we refer to as delegated re-entrancy. Figure 4
shows a simplified example of a contract, which uses a library
contract for issuing external calls.

Existing static analysis tools cannot detect delegated re-
entrancy attacks: during offline analysis, it is not known which
library contract will be used when actually executing the smart
contract. Hence, existing analysis tools, such as Oyente or
Securify, fail to identify the delegated re-entrancy vulnerability
as they analyze contracts in isolation. Although symbolic
execution techniques could potentially leverage the current
blockchain state to infer which library is eventually called and
dynamically fetch the code of the library contract, this is not
a viable solution as a future (updated) version of the library
might introduce a new vulnerability. To detect these attacks,
a run-time solution emerges as one of the few workable and
effective means to deter this attack. Due to its dynamic nature,

ECFChecker is able to detect delegated re-entrancy attacks, as
it analyzes the actual combination of contracts and libraries.

C. Create-Based Re-Entrancy

Similar to delegated re-entrancy attacks, our third type
of attack exploits the fact that a contract’s constructor can
issue further external calls. Recall that contracts can either
be created by accounts (with a special transaction) or by other
contracts. In solidity, a new contract can be created with the
new keyword. On the EVM level, this is implemented with
the CREATE instruction. Whenever a new contract is created,
the constructor of that contract will be executed immediately.
Usually, the newly created contract will be trusted and as such
does not pose a threat. However, the newly created contract
can issue further calls in its constructor to other, possibly
malicious, contracts. To be vulnerable to a create-based re-
entrancy attack, the victim contract must first create a new
contract and afterwards update its own internal state, resulting
in a possible inconsistent state. The newly created contract
must also issue an external call to an attacker-controlled
address. This then allows the attacker to re-enter the victim
contract and exploit the inconsistent state.

Create-based re-entrancy poses a significant problem for
the state-of-the-art analysis tools. Securify and Mythril do not
consider CREATE as an external call and thus do not flag
subsequent state updates. Similarly, Oyente, Manticore, and
ECFChecker consider only CALL instructions when check-
ing for re-entrancy vulnerabilities. Hence, they all fail to
detect create-based re-entrancy attacks. Similar to delegated
re-entrancy, the create-based re-entrancy vulnerability emerges
only when two contracts are combined. Thus, the contracts
must be also analyzed in combination, which is challenging as
the contract code might change after the analysis.

IV. DESIGN OF Sereum

In this section, we devise a novel way to detect re-entrancy
attacks based on run-time monitoring at the level of EVM
bytecode instructions. Our approach, called Sereum (Secure
Ethereum), is based on extending an existing Ethereum client,
which we extend to perform run-time monitoring of contract
execution.

Architecture. Figure 5 shows an overview of the Sereum
architecture. For a standard Ethereum client, the EVM features
a bytecode interpreter, which is responsible for executing the
code of the smart contracts, and the transaction manager
that executes, verifies and commits new and old transactions.
Sereum extends the EVM by introducing two new compo-
nents: (1) a taint engine, and (2) an attack detector. The
taint engine performs dynamic taint-tracking; dynamic taint
tracking assigns labels to data at pre-defined sources and then
observes how the labeled data affects the execution of the
program [37]. To the best of our knowledge Sereum is the
first dynamic taint-tracking solution for smart contracts. The
attack detector utilizes the taint engine to recognize suspicious
states of program execution indicating that a re-entrancy attack
is happening in the current transaction. It interfaces with the
transaction manager of the EVM to abort transactions as soon
as an attack is detected.

6

Bytecode Interpreter

Transaction Manager Attack Detector

Taint Engine

Ethereum Virtual Machine
Sereum

Figure 5. Architecture of enhanced EVM with run-time monitoring.

Detecting Inconsistent State. To effectively reason about
a malicious re-entrance into a contract, we need to detect
whether a contract acts on inconsistent internal state (cf.
Figure 2). Note that any persistent internal state is stored
in the storage memory region of the EVM (cf. Section II).
Variables which are shared between different invocations of
a contract are always stored in the storage region. As such,
only the storage region is relevant for re-entrancy detection.
Thus, Sereum applies taint tracking to storage variables as
these are the only internal state variables capable of affecting a
contract’s control flow in a subsequent (re-entered) invocation
of the contract. That said, only if a control-flow decision is
dependent on storage variables, an attacker can manipulate the
outcome of a conditional branch decision by re-entering the
contract and thereby manipulate the behavior of the contract.
Hence, re-entrancy attacks only apply to contracts that execute
conditional branches dependent on persistent internal state, i.e.,
the storage region.

The main idea behind Sereum is to detect state updates,
i.e., altering of storage variables, after a contract (denoted as
Victim contract) calls into another contract (denoted as Attacker
contract). Notice that not all state updates resemble malicious
behavior, but only those where Victim is re-entered and acts
upon the updated state. Typically, the goal of re-entrancy
attacks is to bypass validity checks in the business logic of the
Victim contract. As such, Sereum focuses only on conditional
jumps and the data that influences the conditional jumps.
Notice that it is also possible for a contract to transfer Ether
without performing any validity check. Obviously, deploying
such a contract would be highly dangerous and inefficient
due to unnecessary consumption of gas. Hence, we do not
explicitly capture such cases in Sereum. However, Sereum can
be easily extended to cover this kind of re-entrancy attack by
issuing write-locks not only for behavior-changing variables,
but also for variables that are passed to other contracts during
external calls (such as Ether amount or call input).

Consider the example shown in Figure 6, Victim calls
into the Attacker contract. The Attacker then forces a re-
entrancy into the Victim contract by calling into the Victim
again. The second re-entered invocation of Victim reads from a
storage variable and takes a control-flow decision based on that
variable. After the Attacker contract eventually returns again
to Victim, the Victim contract will update the state. However,
at this point, it is clear that the re-entered Victim used a wrong
value read from inconsistent internal state for its conditional
branch decision.

The key observation is that inconsistent state can only arise
if (1) a contract executes an external call to another contract,
(2) the storage variable causing inconsistency is used during

Victim Attacker Victim

(re-entered)

Call Attacker

Call Victim

Read Obsolete State

Conditional Branch

· · ·

Update State

CALL

CALL

RETURN

RETURN

Figure 6. Re-entrancy attack exploits inconsistent state among different
invocations of a contract.

the external call for a control-flow decision and (3) the variable
is updated after the external call returns. Next, we describe in
more details how the taint engine and the attack detector detect
inconsistent state at the EVM level.

Taint Engine and Attack Detector. To detect state updates,
which cause inconsistency, we need to know which storage
variables were used for control-flow decisions. On the EVM
bytecode level a smart contract implements any control-flow
decision as a conditional jump instruction. Consequently, we
leverage our taint engine to detect any data-flow from a storage
load to the condition processed by a conditional jump in-
struction. This ensures that we only monitor those conditional
jumps which are influenced by a storage variable. For every
execution of a smart contract in a transaction, Sereum records
the set of storage variables, which were used for control-
flow decisions. Using this information, Sereum introduces a
set of locks which prohibit further updates for those storage
variables. If a previous invocation of the contract attempts to
update one of these variables, Sereum reports a re-entrancy
problem and aborts the transaction to avoid exploitation of the
re-entrancy vulnerability.

In the simplest case, the attacker directly re-enters the
victim contract. However, the attacker might try to obfuscate
the re-entrant call by first calling an arbitrary long chain of
nested calls to different attacker-controlled contracts. Further-
more, during the external call, the attacker can re-enter the
victim contract several times, possibly in different functions
(as shown in the cross-function re-entrancy attack described in
Section III). This has to be taken into account when computing
the set of locked storage variables. To tackle these attacks,
Sereum builds a dynamic call tree during the execution of a
transaction. Every node in the dynamic call tree, represents
a call to a contract and the depth of the node in the tree
is equal to the depth of the contract invocation in the call
stack of the EVM. We store those storage variables which
influence control-flow decisions as set Di for every node i in
the dynamic call tree. The set of storage variables Li that are
locked at node i is the union of Dj for any node j of the
same contract as i that belongs to the sub-tree spanning from
node i.

Example of Dynamic Call Tree. Figure 7 depicts an example
for Sereum’s generation of a dynamic call tree for a given
Ethereum transaction. A possibly malicious contract A re-

7

A

C

A

C

C

A

C C

A

C

D4 = {V1} D7 =

{V2, V3}
D8 =

{V4}
D10 =

{V2, V4}

L2 = D4

= {V1}

L5 = D7 ∪ D8 ∪ D10

= {V2, V3, V4}

1

2

3

4

5

6

7 8

9

10

Figure 7. Dynamic call tree of a Ethereum transaction. Contract A is
re-entered several times. Vk are storage variables. Di is the set of storage
variables, which influence control-flow decisions in node i. Li is the set of
storage variables, which are locked at node i and cannot be updated anymore.

enters a vulnerable contract C multiple times at different entry
points (functions). First, as shown on the left sub-tree, contract
A calls C, C calls A, and A finally re-enters C. This sub-tree
would be equivalent to a classical re-entrancy attack, as shown
previously in Figure 2. The variables locked during the first
execution of contract C (node marked with 2) are impacted
only by the lower nodes in the call tree. The second execution
of contract C (in node 4) uses the storage variable V1 for
deciding a conditional control-flow. Hence, this variable must
not be modified after the call in the execution of node 2.

In contrast, the right side of the call tree contains a more
diverse set of nodes. For instance, the right part of the call-
tree could be part of a cross-function re-entrancy attack. We
can observe that different functions were called in the various
re-entrant invocations of C, because the variables used for
conditional branches are different. Note that none of the sets
D5, D7, D8, and D10 are equal. Contract C performs two calls
into A in node 5. These calls re-enter C in nodes 7, 8, and 10.
For the execution of C from node 5, we lock all variables from
the sub-calltree below node 5. Note that although variable V1

is locked in node 2, it is not in the set of locked variables
L5. This means that no further calls starting from node 5 have
used the variable V1 for a control-flow decision; thus V1 can be
safely updated in node 5, which will not change the behavior
in any of the nodes 7, 8 and 10 unexpectedly.

A naive implementation of Sereum could just lock all
variables which were used for control-flow decisions. However,
as we can see from Figure 7, this would result in unnecessary
locking of variables when complex transactions are executed.
This would also result in a high number of false positives.
For example, contract C can safely update the state variables
V2, V3, and V4 in node 2, because they were not used for
conditional branches during the execution of node 4. Similarly,
node 5 can safely update V1 even though it was used for a
control-flow decision in a re-entrant call at node 4.

The dynamic call tree allows Sereum to tackle the chal-
lenging new re-entrancy attacks we developed in Section III.
Recall that detecting cross-function re-entrancy is challeng-
ing for static analysis tools due to potential state explosion.

Since Sereum performs dynamic analysis, it does not suffer
from such kind of weakness; it only analyzes those cross-
function re-entrant calls that actually occur at run-time. Sim-
ilarly, delegated re-entrancy attacks are detected as Sereum
–in contrast to existing tools– does not inspect contracts in
isolation, but analyzes and monitors exactly the library code
which is invoked when a transaction executes. That is, as an
extension to the Ethereum client, Sereum can easily access the
entire blockchain state and hence retrieve the code of every
invoked library contract. Our taint engine simply propagates
the taints through the library. This also naturally covers any
future updates of the library code. Next, we describe the
implementation details of Sereum.

V. IMPLEMENTATION

We implemented Sereum based on the popular go-
ethereum1 project, whose client for the Ethereum network is
called geth. In our implementation, we extended the existing
EVM implementation to include the taint engine and the re-
entrancy attack detector. We faced one particular challenge in
our implementation: variables stored in the storage memory
region are represented on the EVM bytecode level as load and
store instructions to certain addresses, i.e., any type informa-
tion is lost during compilation. Hence, only storage addresses
are visible on the EVM level. Most storage variables, such as
integers, are associated with one address in the storage area.
However, other types, such as mapping of arrays, use multiple
(not necessarily) adjacent storage addresses. As such, Sereum
tracks data-flows and sets the write-locks on the granularity of
storage addresses.

In the remainder of this section, we describe how Sereum
tracks taints from storage load instructions to conditional
branches to detect storage addresses that reference values that
affect the contract’s control-flow. Furthermore, we show how
Sereum performs attack detection by building the dynamic call
tree and propagating the set of write-locked storage addresses.

A. Taint Tracking EVM

Taint tracking is a popular technique for analyzing data-
flows in programs [37]. First, a taint is assigned to a value at
a pre-defined program point, referred to as the so-called taint
source. The taint is propagated throughout the execution of the
program along with the value it was assigned to. Taint sinks
are pre-defined points in the program, e.g., certain instructions
or function calls. If a tainted value reaches a taint sink, the
Sereum taint engine will issue a report, and invoke the attack
detection module. Taint analysis can be used for both static
and dynamic data-flow analysis. Given that we aim to achieve
run-time monitoring of smart contract, we leverage dynamic
taint tracking in Sereum.

To do so, we modified the bytecode interpreter of geth
ensuring that it is completely transparent to the executed smart
contract. Our modified bytecode interpreter maintains shadow
memory to store taints separated from the actual data values,
which is a common approach for dynamic taint analysis.
Sereum allocates shadow memory for the different types of mu-
table memory in Ethereum smart contracts (see Section II-A).

1https://github.com/ethereum/go-ethereum, based on git commit
6a2d2869f6cb369379eb1c03ed7e55c089e83dd6/v1.8.3-unstable

8

https://github.com/ethereum/go-ethereum

The stack region can be addressed at the granularity of 32-byte
words. Thus, every stack slot is associated with one or multiple
taints. The storage address space is also accessed at 32-byte
word granularity, i.e., the storage can be considered as a large
array of 32-byte words, where the storage address is the index
into that array. As a result, we treat the storage region similar to
the stack and associate one or multiple taints for every 32-byte
word. However, unlike the stack and storage address space, the
memory region can be accessed at byte granularity. Hence, we
associate every byte in the memory address space with one or
multiple taints. To reduce the memory overhead incurred by
the shadow memory for the memory region, we store taints for
ranges of the memory region. For example, if the same taint
is assigned to memory addresses 0 to 32, we only store one
taint for the whole range. When only the byte at address 16
is assigned a new taint, we split the range and assign the new
taint only to the modified byte.

We propagate taints through the computations of a smart
contract. As a general taint propagation rule for all instructions,
we take the taints of the input parameters and assign them to
all output parameters. Since the EVM is a stack machine, all
instructions either use the stack to pass parameters or have
constant parameters hard-coded in the code of the contract.
Hence, for all of the computational instructions, such as arith-
metic and logic instructions, the taint engine will pop the taints
associated with the instruction’s input parameters from the
shadow stack and the output of the instruction is then tainted
with the union of all input taints. Constant parameters are
always considered untainted. This ensures that we capture data-
flows within the computations of the contract. One exception
is the SWAP instruction family, which swaps two items on
the stack. The taint engine will also perform an equivalent
swap on the shadow stack without changing taint assignments.
Whenever a value is copied from one of the memory areas
to another area, we also copy the taint between the different
shadow areas. For instance, when a value is copied from the
stack to the memory area, i.e., the contract executes a MSTORE
instruction, the taint engine will pop one taint from the shadow
stack and store it to the shadow memory region. The EVM
architecture is completely deterministic; smart contracts in the
EVM can only access the blockchain state using dedicated
instructions. That is, no other form of input or output is
possible. This allows us to completely model the data-flows
of the system by tracking data-flows at the EVM instruction
level.

For re-entrancy detection, as described in Section IV, we
only need one type of taint, which we call DependsOnStorage.
The taint source for this taint is the SLOAD instruction.
Upon encountering this instruction, the taint engine creates
a taint, which consists of the taint type and the address
passed as operand to the SLOAD instruction. The conditional
JUMPI instruction is used as a taint sink. Whenever such a
conditional jump is executed, the taint engine checks whether
the condition value is tainted with a DependsOnStorage taint.
If this is the case, the taint engine will extract the storage
address from the taint and add it to the set of variables
that influenced control-flow decisions. Our implementation
supports an arbitrary number of different DependsOnStorage
taints. This allows Sereum to support complex code constructs,
e.g., control-flow decisions which depend on multiple different
storage variables.

Example for Taint Assignment and Propagation. Figure 9
shows a snippet of Ethereum bytecode instructions. In this
snippet of instructions, there exists a data-flow from the
SLOAD instruction in line 1 to the conditional jump instruction
in line 4. The SLOAD instruction will load a value from the
storage memory region. The first and only parameter to SLOAD
is the address in the storage area. The JUMPI instruction
takes two parameters: the jump destination and the condition
whether the jump is to be performed. Recall that all instruction
operands except for the PUSH instruction are passed via the
stack. Figure 8 shows the state of the normal data stack and the
corresponding shadow stack, when the snippet in Figure 9 is
executed. SP denotes the stack pointer before the instruction is
executed. The SLOAD instruction will pop an address A from
the stack, load the value V (referenced by A) from storage,
and then push it onto the stack. Since, the SLOAD instruction
is defined as taint source, the taint engine will create a new
DependsOnStorage taint, which we denote as τs. This taint is
assigned to the value V by pushing it onto the shadow stack.
Note that in this case V was not previously assigned a taint.
The instruction LT (less-than) compares the value loaded from
storage with the value C that was previously pushed on the
stack. This comparison decides whether the conditional jump
should be taken. Since the LT instruction takes two parameters
from the stack (V and C), the taint engine also pops two
taints from the shadow stack (τs and τ ′). The result of the
comparison is then tainted with both taints (τs and τ ′), so
the taint engine pushes a merged taint (τs, τ ′) to the shadow
stack. The PUSH2 instruction then pushes a 2-byte constant
to the stack, which is assigned an empty taint τ∅. Finally, the
JUMPI instruction takes a code pointer (dst) and a boolean
condition as parameters from the stack. Since JUMPI is a taint
sink, the taint engine will check the taints associated with the
boolean condition. If this value is tainted with the τS taint,
it will compute the original storage address A based on the
taint. At this point, we know that the value at storage address
A influenced the control-flow decision. Hence, we add it to
the set of control-flow influencing storage addresses, which is
passed to the attack detection component later on.

Using the taint engine, Sereum records the set of storage
addresses that reference values which influence control-flow
decisions. This set of addresses is then forwarded to the attack
detection component once the contract finishes executing.

B. Attack Detection

To detect re-entrancy attacks, we lock the write-access to
storage addresses that influence control-flow decisions. During
execution of a contract, the taint engine detects and records
storage addresses, which are loaded and then influence the out-
come of a control-flow decision. As described in Section IV,
Sereum uses a dynamic call-tree to compute the set of variables
that are locked for writing. Sereum builds the dynamic call-
tree during execution of a transaction. This tree contains a node
for every invocation of a contract during the transaction. The
dynamic call-tree records how the call stack of the transaction
evolves over time. The ordering of the child nodes in the
dynamic call-tree corresponds to the order of execution during
the transaction. The depth of the node in the tree corresponds
to the depth in the call stack, i.e., the time when a contract
was invoked. The dynamic call-tree is updated whenever a
contract issues or returns from an external call. When the

9

PC Instruction Stack (before Instruction) Shadow Stack (Taints) Taint Engine

1 SLOAD

A top

C

. . .

τ∅ top

τ ′

. . .

Create new DependsOnStorage taint τS as-

sociated with address A and push it onto the

shadow stack.

2 LT

V top

C

. . .

τS top

τ ′

. . .

Take the taints of the two instruction operands,

τS and τ ′ and assign both to b by moving them

to the same stack slot.

3 PUSH2 dst b = V < C top

. . .

τS, τ ′ top

. . .

Push empty taint for constant dst.

4 JUMPI

dst top

b = V < C

. . .

τ∅ top

τS, τ ′

. . .

Check the taints of the jump condition: If it

is tainted with a DependsOnStorage taint (τS),

then compute original address A from taint and

record that the variable at storage address A

influenced control-flow.

Figure 8. The taint engine propagates the taints τ through the executed instructions and stores them on a shadow stack. The condition for the conditional jump
b depends on the values C and the value V , which was loaded from storage address A. SP is the current stack pointer, pointing to the top of the data stack.

1 SLOAD

2 LT

3 PUSH2 dst

4 JUMPI

Figure 9. Ethereum assembly snippet implementing a solidity if-statement

with a conditional branch. The SLOAD Instruction in line 1 indirectly in-
fluences the control-flow decision in the JUMPI instruction in line 4 as it is
used as a parameter in the LT instruction. LT performs a less-than comparison
between the first and second operand on the stack.

called contract completes execution, the set of control-flow
influencing variables is retrieved from the taint engine and
stored in the node of the call-tree.

Sereum locks only the set of variables, which were used
for control-flow decisions during an external call. To com-
pute this set, Sereum traverses the dynamic call-tree starting
from the node corresponding to the current execution. During
traversal, Sereum searches for nodes, which were part of
executions of the same contract. When Sereum finds such a
node, it retrieves the set of control-flow influencing variables
previously recorded by the taint engine. Sereum updates the
set of locked variables after every external call. Whenever a
contract attempts to write to the storage area, i.e., executes
the SSTORE instruction, Sereum intercepts the write and first
checks whether the address is locked. If the variable is locked,
Sereum reports a re-entrancy attack and then aborts execution
of the transaction. This results in the EVM unwinding all state
changes and Ether transfers.

VI. EVALUATION

In this section, we evaluate the effectiveness and per-
formance of Sereum based on existing Ethereum contracts
deployed on the Ethereum mainnet. Since our run-time analysis

is transparently enabled for each execution of a contract, we
re-execute the transactions that are saved on the Ethereum
blockchain. We compare our findings with state-of-the-art
academic analysis tools such as Oyente [29], [34] and Se-
curify [42]. Note that we do not compare with Zeus [25] and
SmartCheck [40] since these require access to the source code
of contracts which is rarely available for existing contracts.
The latest version of Securify, which is only available through
a web interface, does not support submitting bytecode contracts
anymore. Therefore, we were not able to test all contracts with
Securify. Furthermore, we do not compare with Mythril [31]
and Manticore [30] as they follow the detection approach of
Oyente (symbolic execution). We also conduct experiments
based on the three new re-entrancy attack patterns we in-
troduced in Section III—effectively demonstrating that only
Sereum is able to detect them all.

A. Run-time Detection of Re-Entrancy Attacks

We first connect our Sereum client with the public
Ethereum network to retrieve all the existing blocks while
keeping as many intermediate states in the cache as possible.
Transaction re-execution requires the state of the context block.
States are saved as nodes in the so-called state Patricia tree
of the Ethereum blockchain. We run the geth (Go Ethereum)
client with the options sync mode full, garbage collection mode
archive, and assign as much memory as possible for the cache.
During the block synchronization process, the taint tracking
option of Sereum is disabled to ensure that the client preserves
the original state at each block height.

We then replay the execution of each transaction in the
blockchain. To reduce the execution time, we limit our testset
until block number 4,500,000. Note that we skip those blocks
which were target of denial-of-service attacks as they incur
high execution times of transactions [43]. We replay the

10

transactions using the debug module of the geth RPC API.
This ensures that our replay of transactions does not affect the
public saved blockchain data. We also retrieve an instruction-
level trace of the executed instructions and the corresponding
storage values during the transaction execution. This allows us
to step through the contract’s execution at the granularity of
instructions.

We enable the taint tracking option in Sereum during the
transaction replay to evaluate whether a transaction triggers a
re-entrancy attack pattern; in this case, an exception will be
thrown, the execution of the transaction gets invalidated, and
an error is reported via the API. Sereum will then return the
instruction trace up to the point where the re-entrancy attack
is detected.

All in all, we re-executed 77,987,922 transactions involved
in these 4.5 million blocks, and Sereum has flagged 49,080
(0.063%) of them as re-entrancy violation. Originally, we
identified 52 involved contracts that count up to only 0.055%
of the total number of 93,942 2 created contracts in our
testset. However, while manually analyzing these contracts,
we discovered that many contracts are created by the same
account and share the same contract code; they are only
instantiated with different parameters. As such, we consider
these contracts as being identical. More specifically, we found
three groups of identical contracts involving 21, 4, and 3
contracts, respectively. Similarly, we identified that a number
of contracts execute the same sequence of instructions that only
differ in the storage addresses. We consider these contracts as
alike contracts. In total, we found two groups of alike contracts
of size 10 and 3, respectively. As a result, Sereum detected 16
identical or alike contracts that are invoked by transactions
matching the re-entrancy attack pattern.

For 6 out of these 16 contracts, the source code is available
on http://etherscan.io, thus allowing us to perform detailed
investigation why they have been flagged. In what follows,
we manually check whether a violating transaction resembles
a real re-entrancy attack, and whether the concerned contract
suffers from re-entrancy vulnerability that could potentially be
exploited.

For contracts with Solidity source code, we perform source
code review and check the contract logic provided the trans-
action input to manually identify re-entrancy attacks. We use
the transaction trace as a reference to follow the control flow
and observe the intra-contracts calls. For contracts with no
source code, we cannot fully recover the contracts semantics
for detected inconsistent state updates. In this case, we use the
transaction trace and the ethersplay [3] disassembler tool to
partially reverse-engineer the contracts.

Based on our investigation, we can confirm that two
contracts were actually exploited by means of a re-entrancy
attack. One of them is the known DAO [17] attack attributing
to 2,294 attack transactions.3 The second case involves a quite
unknown re-entrancy attack. It occurred at contract address
0xd654bDD32FC99471455e86C2E7f7D7b6437e9179

2We count the number of contracts created by transactions sent to the
contract creation address ‘0x0’. We do not count those contracts created by
other contracts, which will result in a higher number.

3Note that we consider TheDarkDAO [18] and DAO [17] contract as being
identical.

1

10

100

1,000

10,000

100,000

#T
ra

ns
ac

tio
ns

(S
er

eu
m

)

False Positive (FP)
True Positive (TP)

CCRB
DAO

0x
74

84
a1

(p
ro

xy
CC)

DAC

(D
SEth

Tok
en

)

0x
69

5d
73

(E
ZC)

0x
98

D8A
6

(W
EI)

0x
bD

7C
eC

0x
F4e

e9
3

Alar
m

0x
77

15
00

Kiss
BTC

Lo
tte

ry
Gam

eL
og

ic

FP Type I I I II II IIIII IVV V V V U U

Oyente

Securify

Vulnerable Contracts

Figure 10. The top plot shows the number of detected transactions triggering
the re-entrancy vulnerability in the flagged contracts. Each contract is catego-
rized by its false positive type described in Section VI-B. Type I corresponds to
“lack of field-sensitivity”, Type II “storage deallocation”, Type III “constructor
callbacks”, Type IV “tight contract coupling”, Type V “manual re-entrancy
locking”, and U for Unknown. The contract name is shown for those where
source code available. Contracts in parenthesis are known token contracts
at http://etherscan.io although source code is not available. The bottom plot
shows how the tools Oyente [34] and Securify [42] handle this subset of
contracts. Since the last public version of Securify requires source code, we
add a cross for those (bytecode) contracts we were not able to evaluate.

and attributed to 43 attack transactions. After reviewing blog
posts and GitHub repositories related to this contract [1], [8],
we discovered that this contract is known as DSEthToken
and is part of the maker-otc project. This series of attack
transactions were initiated by the contract developers after
they discovered a re-entrancy vulnerability. Since the related
funds were drained by (benign) developers, the Ethereum
community payed less attention to this incident. In total,
Sereum incurs a false positive rate as low as 0.06% across
all the re-run transactions. Figure 10 shows the number of
transactions that match the re-entrancy attack pattern flagged
by Sereum. Some of the results reflect false positives which
will be discussed in detail in Section VI-B.

We also observe that Oyente flagged 8 of these contracts
as vulnerable to re-entrancy attacks. Some contracts were not
detected by Oyente since Oyente does not consider any of
the advanced re-entrancy attacks we discussed in Section III.
During our analysis we noticed that in some cases Oyente
warned about re-entrancy problems, which are only exploitable
with a cross-function re-entrancy attack. However, we believe
this is due to Oyente incorrectly detecting a same-function
re-entrancy vulnerability. Apart from the 6 false positives in
our test set, the analysis performed by previous work [20],
[42] demonstrated that re-entrancy detection in Oyente suffers
from false positive issues.

With respect to Securify, the latest version of Securify
requires the source code of a contract thereby impeding us
from evaluating all contracts. We therefore have only examined
the contracts whose source code is available. Securify defines
a very conservative violation pattern for re-entrancy detection
that forbids any state update after an external call. As such,
5.8% out of 24,594 tested contracts in the authors’ experiment
(around 1,426 contracts) are flagged as vulnerable to re-

11

etherscan.io
etherscan.io

entrancy, which consequently results in a very high false
positive rate.

Lastly, we evaluated our new re-entrancy attack patterns
(Section III). For each contract, we crafted one attack trans-
action for Sereum to perform the check: Sereum success-
fully detects all attack transactions to the three vulnerable
contracts. Table I shows an overview of various tools tested
against the vulnerable contracts for the new re-entrancy attacks
patterns. As discussed earlier, neither Oyente, Securify nor
Manticore were able to detect delegated and create-based re-
entrancy vulnerabilities. While Oyente does not detect the
cross-function re-entrancy attack, Securify is able to detect
it due to its conservative policy. Similarly, Mythril detects
cross-function and create-based re-entrancy, because it utilizes
a similar policy to Securify, which is extremely conservative
and therefore also results in a high number of false positives.
ECFChecker detects the cross-function re-entrancy attack.
However, during our evaluation, we crafted another contract,
which is vulnerable to cross-function re-entrancy, but was not
detected by ECFChecker. Recall that the delegated re-entrancy
attack cannot be detected by any existing static off-line tool
as it exploits a dynamic library which is either not available
at analysis time or might be updated in the future. However,
a dynamic tool, such as ECFChecker, can detect the delegated
re-entrancy. The create-based re-entrancy attack is not detected
by any of the existing analysis tools, as the instruction CREATE
is currently not considered as an external call by none of the
existing analysis tools.

In general, we argue that Sereum offers the advantage of
detecting actual re-entrancy attacks and not possible vulnera-
bilities. As such, we can evaluate on a reduced set of only
16 contracts rather than 185 (Oyente) or 1,426 (Securify)
contracts. In contrast to previous work [29], [42], this makes
it feasible for us to exactly determine whether an alarm is
a true or false positive. Moreover, some of the contracts are
not flagged by Oyente and Securify as these do not cover the
full space of re-entrancy attacks. As such, they naturally do
not raise false positives for contracts that violate re-entrancy
patterns that are closely related to the delegated and create-
based re-entrancy (i.e., Type III and IV).

B. False Positive Analysis

While investigating the 16 contracts which triggered the
re-entrancy detection of Sereum, we discovered code patterns
in deployed contracts (see Figure 10), which are challenging to
accurately handle for any off-line or run-time bytecode analysis

Table I. COMPARISON OF RE-ENTRANCY DETECTION TOOLS SUBJECT

TO OUR TESTCASES FOR THE ADVANCED RE-ENTRANCY ATTACK

PATTERNS. TOOLS MARKED WITH SUPPORT DETECTING THIS TYPE OF

RE-ENTRANCY, WHILE TOOLS MARKED WITH # DO NOT SUPPORT

DETECTING THIS TYPE OF RE-ENTRANCY. TOOLS WITH AN OVERLY

RESTRICTIVE POLICY ARE MARKED WITH G#.

Tool Version Cross-Function Delegated Create-based

Oyente 0.2.7 # # #

Mythril 0.19.9 G# # G#

Securify 2018-08-01 G# # #

Manticore 0.2.2 # #

ECFChecker geth1.8port #

Sereum -

1 struct S {

2 int128 a; // 16 bytes

3 int128 b; // 16 bytes

4 } // total: 32 bytes (one word in storage)

Figure 11. Solidity struct, where both a and b are at the same storage address.
Therefore, any update to a or b includes loading and writing also the other.

tool. These patterns are the root cause for the rare false positive
cases we encountered during our evaluation of Sereum.

However, since these code patterns are not only challenging
for Sereum, but for other existing analysis tools such as
Oyente [34], Mythril [31], Securify [42], or any reverse-
engineering tools operating at EVM bytecode level [3], [45],
we believe that a detailed investigation of these cases is highly
valuable for future research in this area. Our investigation also
reveals for the first time why existing tools suffer from false
alarms when searching for re-entrancy vulnerabilities. In what
follows, we reflect on the investigation of the false positives
that we encountered.

I. Lack of Field-Sensitivity on the EVM Level. Some
false positives are caused by lack of information on fields
at bytecode level for data structures. Solidity supports the
keyword struct to define a data structure that is composed
of multiple types, e.g., Figure 11 shows a sample definition
of a struct S of size 32 bytes. Since the whole type can
be stored within one single word in the EVM storage area,
accessing either of the fields a or b ends up accessing the
same storage address. In other words, on the EVM bytecode
level, the taint-tracking engine of Sereum cannot differentiate
the access to fields a and b. This leads to a problem called
over-tainting, where taints spread to unrelated values and in
turn causes false positives. Notice that this problem affects
all analysis tools working on the EVM bytecode level. Some
static analysis tools [38] use heuristics to detect the high-level
types in Ethereum bytecode. The same approach could be used
to infer the types of different fields of a packed data struc-
ture. However, for a run-time monitoring solution, heuristic
approaches often incur unacceptable runtime overhead without
guarantee of successful identification. To address this type of
false positive, one would either require the source code of the
contract or additional type information on the bytecode level.

II. Storage Deallocation. Recall that the EVM storage area
is basically a key-value store that maps 256-bit words to 256-
bit words. The EVM architecture guarantees that the whole
storage area is initialized with all-zero values and is always
available upon request. More specifically, no explicit memory
allocation is required, while memory deallocation simply resets
the value to zero. This poses a problem at the bytecode level:
a memory deallocation is no different from a state update to
value 0, though the semantics differ; especially when applying
the re-entrancy detection logic. Consider the example of a map
M in Figure 12. When the contract deallocates the element
indexed by id from M (delete from a map), it basically has
the same effect as setting the value of M [id] to 0 at the
bytecode level. Here, the Solidity compiler will emit nearly
identical bytecode for both cases. We encountered a contract4

4Contract address: 0x6777c314b412f0196aca852632969f63e7971340

12

1 mapping (uint => uint) M; // a hash map

2 // delete entry from mapping

3 delete M[id];

4 // on the EVM level this is equivalent to

5 M[id] = 0;

Figure 12. Solidity storage delete is equivalent to storing zero.

presenting this case which leads to a false alarm. Similar to
field-sensitivity issues, correctly handling such cases requires
the source code or an explicit EVM deallocation instruction.

III. Constructor Callbacks. Sereum considers calls to the
constructor of contracts to be the same as calls to any other
external contract. This allows Sereum to detect create-based re-
entrancy attacks (cf. Section III-C). However, detecting create-
based re-entrancy comes at the cost of some false positives.
During our evaluation5, we noticed that sub-contracts created
by other contracts, tend to call back into their parent contracts.
Usually, this is used to retrieve additional information from
the parent contract: the parent creates the sub-contract, the
sub-contract re-enters the parent contract to retrieve the value
of a storage variable, and that same variable is then updated
later by the parent. Consider the example in Figure 13, where
contract A creates a sub-contract B. While the constructor
executes, B re-enters the parent contract A, which performs
a control-flow decision on the funds variable. This results in
Sereum locking the variable funds. Since no call to another
potentially malicious external contract is involved this example
is not exploitable via re-entrancy. However, Sereum detects that
the funds variable is possibly inconsistent due to the deferred
state update. A malicious contract B could have re-entered A
and modified the funds variable in the meantime.

We argue that this constructor callback pattern should be
avoided by contract developers. All necessary information
should be passed to the sub-contract’s constructor, such that no
re-entrancy into the parent contract is needed. This does not
only avoid false positives in Sereum, but also decreases the gas
costs. External calls are one of the most expensive instructions
in terms of gas requirements, which must be payed for in Ether
and as such should be avoided as much as possible.

IV. Tight Contract Coupling. During our evaluation, we no-
ticed a few cases where multiple contracts are tightly coupled
with each other resulting in overly complex transactions, i.e.,
transactions that cause the contracts to be re-entered multiple
times into various functions. This suggests that these contracts
have a strong interdependency. Since Sereum introduces locks
for variables that can be potentially exploited for re-entrancy
and is not aware of the underlying trust relations among
contracts, it reports a false alarm when a locked variable
is updated. We consider these cases as an example for bad
contract development practice since performing external calls
is relatively expensive in terms of gas, and such also Ether, and
could be easily avoided in these contracts. That is, if trusted
contracts have internal state that depends on the state of other
trusted contracts, we suggest developers to keep the whole
state in one contract and use safe library calls instead.

5Contract address 0xFBe1C2a693746Ccfa2755bD408986da5281c689F

1 contract A {

2 mapping (address => uint) funds;

3 // ...

4 function hasFunds(address a) public returns(bool) {

5 // funds is used for control-flow decision

6 if (funds[a] >= 1) { return true; }

7 else { return false; }

8 }

9 function createB() {

10 B b = new B(this, msg.sender);

11 // ...

12 // update state (locked due to call to hasFunds)

13 funds[msg.sender] -= 1;

14 }

15 }

16 contract B {

17 constructor(A parent, address x) {

18 // call back into parent

19 if (parent.hasfunds(x)) { /* ... */ }

20 }

21 }

Figure 13. Constructor callback. The sub-contract B calls back (re-enters)
into the hasFunds function of the parent contract A. This type of false positive
is similar to the create-based re-entrancy attack pattern.

1 mapping (address => uint) private balances;

2 mapping (address => bool) private disableWithdraw;

3 // ...

4 function withdraw() public {

5 1 if (disableWithdraw[msg.sender] == true) {

6 // abort immediately and return error to caller

7 revert();

8 }

9 uint amountToWithdraw = balances[msg.sender];

10
11 2 disableWithdraw[msg.sender] = true;

12 3 msg.sender.call.value(amountToWithdraw)();

13 4 disableWithdraw[msg.sender] = false;

14 // state update after call

15 userBalances[msg.sender] = 0;

16 }

Figure 14. Manual locking to guard against re-entrancy.

V. Manual Re-Entrancy Locking. To allow expected and
safe re-entrancy, a smart contract can manually introduce lock
variables (i.e., a mutex) to guard the entry of the function. In
Figure 14), disableWithdraw enables a lock at ➁ before making
an external call at ➂. The lock is reset after the call at ➃. This
prevents any potential re-entrance at ➀. Hence, even though
the balance is updated after the external call, the contract is
still safe from re-entrancy attacks.

However, the access pattern to these lock variables during
contract re-entrance matches an attack pattern, i.e., the internal
state (the lock variable) that affects the control flow in subse-
quent (re-entered) invocation of the contract, is updated sub-
sequently (at ➃). Operating at bytecode level, it is challenging
to distinguish the benign state updates of locks from those of
critical variables such as balances. Note that manual locking
is an error-prone approach as it could allow an attacker to re-
enter other functions of the same contract, unless the entry
of every function is guarded by the lock. In contrast, Sereum
automatically introduces locks for all possibly dangerous vari-
ables (detected via taint tracking) across all functions thereby

13

removing the burden from developers to manually determine
all possible vulnerable functions and critical variables.

C. Performance and Memory Overhead

Since there are no benchmarks, consisting of realistic
contracts, available for EVM implementations, we measured
the performance overhead by timing the execution of a subset
of blocks from the Ethereum blockchain. We sampled blocks
from the blockchain, starting from 460000, 450000, 440000,
4300000 and 4200000, we use 10 consecutive blocks. We run
those 50 blocks in batch 10000 times, while accounting only
for the EVM’s execution time. We perform one run with plain
geth, on which Sereum is based, and one with Sereum with
attack detection enabled. For the performance evaluation, we
do not consider those transactions, which Sereum flags as a re-
entrancy attack. Sereum aborts those transactions early, which
can result in much shorter execution time, compared to the
normal execution. We measured the performance overhead of
Sereum, compared with plain geth when running 50 blocks
in batch. Here, we average the runtime over 10,000 runs of
the same 50 blocks. We benchmarked on a 8-core Intel(R)
Xeon(R) CPU E5-1630 v4 with 3.70GHz and 32 GB RAM.
The mean runtime of geth was 2277.0 ms (σ = 146.7 ms).
The mean runtime of Sereum was 2494.5 ms (σ = 174.8
ms). As such, Sereum incurred a mean overhead of 217.6
ms (σ = 100.9 ms) or 9.6%. While measuring the timing
of the executed transactions, we additionally measured the
memory usage of the whole Ethereum client. We used Linux
cgroups to capture and measure the memory usage of Sereum
and all subprocesses. We sample the memory usage every
second while performing the runtime benchmarks. During our
benchmark, Sereum required on average 9767 MB of memory
with active attack detection, while the plain geth required 9252
MB.

This shows that Sereum can effectively detect re-entrancy
attacks with a negligible overhead. In fact, the actual runtime
overhead is not noticeable. The average time until the next
block is mined in 14.5 seconds and contains 130 transactions
on average (between Jan 1, 2018 until Aug 7, 2018). Given
our benchmark results, a rough estimate of EVM execution
time per block is 0.05 seconds, with Sereum adding 0.005
seconds overhead. Compared to the total block time the
runtime overhead of Sereum is therefore not noticeable during
normal usage.

VII. RELATED WORK

In this section, we overview related work in the area—
beyond the state of the art defenses and analysis tools that
have been described in Section II.

Vyper [7] is an experimental language dedicated to maxi-
mize the difficulty of writing misleading code while ensuring
human-readability to enable easy auditing of the contract. It
achieves better code clarity by considerably limiting high-
level programming features such as class inheritance, function
overloading, infinite loops, and recursive calls. This approach
sacrifices the expressiveness of the language in exchange for
gas predictability. Babbage [36] has been recently proposed by
the Ethereum community as a visual programming language
that consists of mechanical components aiming to help pro-
grammers to better understand the interactivity of components

in a contract. Bamboo [2] is another contract programming
language focusing on the state transition of contracts. A con-
tract is described as a state machine whose state will change
along with the contract signature. Obsidian [14] follows a
similar approach and proposes a solidity-like language with the
addition of state and state transitions as first-class constructs in
the programming language. These proposals all aim to make
the contracts more predictable. Simplicity [33] exhibits larger
expressiveness yet allowing easy static analysis compared to
EVM code. Static analysis provides useful upper bound com-
putation estimation on the transactions, thus giving the peers
more predictable views on the transaction execution. Simplicity
also features self-contained transactions that exclude the global
state in the contract execution.

Notice that such novel programming languages do make
it simpler for developers to write correct contracts. However,
wide-scale deployment of new programming models would
require rewriting of all legacy software, which requires sig-
nificant development effort.

VIII. CONCLUSION

Re-entrancy attacks exploit inconsistent internal state of
smart contracts during unsafe re-entrancy, allowing an attacker
in the worst case to drain all available assets from a smart
contract. So far, it was believed that advanced offline analysis
tools can accurately detect these vulnerabilities. However, as
we show, these tools can only detect basic re-entrancy attacks
and fail to accurately detect new re-entrancy attack patterns,
such as cross-function, delegated and create-based re-entrancy.
Furthermore, it remains open how to protect existing contracts
as smart contract code is supposed to be immutable and
contract creators are anonymous, which impedes responsible
disclosure and deployment of patched contract. To address the
particular ecosystem of smart contracts, we introduce a novel
run-time smart contract security solution, called Sereum, which
exploits dynamic taint tracking to monitor data-flows during
smart contract execution to automatically detect and prevent
inconsistent state and thereby effectively prevent basic and
advanced re-entrancy attacks without requiring any semantic
knowledge of the contract. By running Sereum on almost 80
million Ethereum transactions involving 93,942 contracts, we
show that Sereum can prevent re-entrancy attacks in existing
contracts with negligible overhead. Sereum is designed to
run in enforcement mode, protecting existing contracts, when
Sereum is integrated into the blockchain ecosystem. However,
Sereum can be particularly relevant for smart contract devel-
opers in order to identify attacks against their contracts and
patch them accordingly. Namely, Sereum can also be executed
locally by contract developers that are interested in ensuring
the security of their deployed contracts. Lastly, we are the first
in presenting and analyzing false positive cases when searching
for re-entrancy vulnerabilities. We reveal root causes of false
positive issues in existing approaches and give concrete advice
to smart contract developers to avoid suspicious patterns during
development.

ACKNOWLEDGMENT

This work has been partially funded by the DFG as part
of project S2 within the CRC 1119 CROSSING.

14

REFERENCES

[1] https://github.com/nexusdev/hack-recovery, [Online; accessed Jul 28,
2018].

[2] “Bamboo: a language for morphing smart contracts,” https://github.com/
pirapira/bamboo, [Online; accessed Jul 24, 2018].

[3] “ethersplay: Evm disassembler and related analysis tools.” https://
github.com/trailofbits/ethersplay, [Online; accessed Jul 28, 2018].

[4] “Securing smart contracts project,” https://www.syssec.wiwi.uni-due.de/
en/research/research-projects/securing-smart-contracts/.

[5] “Solidity documentation,” [Online; accessed Aug 6, 2018]. [Online].
Available: http://solidity.readthedocs.io/

[6] “Solidity withdrawal from contracts,” [Online; accessed Jul 25, 2018].
[Online]. Available: https://solidity.readthedocs.io/en/develop/common-
patterns.html#withdrawal-from-contracts

[7] “Vyper,” https://github.com/ethereum/vyper.

[8] “Critical ether token wrapper vulnerability - eth tokens sal-
vaged from potential attacks,” https://www.reddit.com/r/MakerDAO/
comments/4niu10/critical_ether_token_wrapper_vulnerability_eth/, Jun.
2016, [Online; accessed Jul 28, 2018].

[9] “A list of altcoins,” https://www.investitin.com/altcoin-list/, 2018, [On-
line; accessed Aug 6, 2018].

[10] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on
ethereum smart contracts (sok),” in Proceedings of the 6th International

Conference on Principles of Security and Trust, 2017.

[11] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley, “Enhancing
symbolic execution with veritesting,” in Proceedings of the 36th Inter-

national Conference on Software Engineering, ser. ICSE 2014. ACM,
2014.

[12] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi,
G. Gonthier, N. Kobeissi, N. Kulatova, A. Rastogi, T. Sibut-Pinote,
N. Swamy, and S. Z. Béguelin, “Formal verification of smart contracts:
Short paper,” in Proceedings of the 2016 ACM Workshop on Program-

ming Languages and Analysis for Security, 2016.

[13] J. Clause, W. Li, and A. Orso, “Dytan: A generic dynamic taint analysis
framework,” in Proceedings of the 2007 International Symposium on

Software Testing and Analysis. ACM, 2007.

[14] M. Coblenz, “Obsidian: A safer blockchain programming language,” in
2017 IEEE/ACM 39th International Conference on Software Engineer-

ing Companion (ICSE-C), May 2017.

[15] ConsenSys Diligence, “Ethereum smart contract best practices,”
[Online; accessed Jul 25, 2018]. [Online]. Available: https://consensys.
github.io/smart-contract-best-practices/known_attacks/

[16] P. Daian, “Chasing the dao attackers wake,” https://pdaian.com/blog/
chasing-the-dao-attackers-wake/, [Online; accessed Jul 26, 2018].

[17] “Dao contract address,” https://etherscan.io/address/
0xBB9bc244D798123fDe783fCc1C72d3Bb8C189413, [Online;
accessed Aug 1, 2018].

[18] “TheDarkDAO contract address.” [Online]. Available: https://etherscan.
io/address/0x304a554a310C7e546dfe434669C62820b7D83490

[19] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: an information-
flow tracking system for realtime privacy monitoring on smartphones,”
ACM Transactions on Computer Systems (TOCS), vol. 32, no. 2, 2014.

[20] I. Grishchenko, M. Maffei, and C. Schneidewind, “A semantic frame-
work for the security analysis of ethereum smart contracts,” in Proceed-

ings of the 7th International Conference on Principles of Security and

Trust, 2018.

[21] S. Grossman, I. Abraham, G. Golan-Gueta, Y. Michalevsky, N. Rinet-
zky, M. Sagiv, and Y. Zohar, “Online detection of effectively callback
free objects with applications to smart contracts,” Proceedings of the

ACM on Programming Languages, 2017.

[22] E. Hildenbrandt, M. Saxena, X. Zhu, N. Rodrigues, P. Daian, D. Guth,
and G. Rosu, “KEVM: A complete semantics of the ethereum virtual
machine,” Tech. Rep., 2017.

[23] C. Jentzsch, “The History of the DAO and Lessons Learned,” Aug
2016, [Online; accessed Aug 1, 2018]. [Online]. Available: https:
//blog.slock.it/the-history-of-the-dao-and-lessons-learned-d06740f8cfa5

[24] H. Jordan, B. Scholz, and P. Subotić, “Soufflé: On synthesis of program
analyzers,” in International Conference on Computer Aided Verification.
Springer, 2016.

[25] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “ZEUS: Analyzing
safety of smart contracts,” in Proceedings 2018 Network and Distributed

System Security Symposium. Internet Society, 2018.

[26] J. C. King, “Symbolic execution and program testing,” Communications

of the ACM, vol. 19, no. 7, 1976.

[27] J. Krupp and C. Rossow, “TEETHER: Gnawing at ethereum to auto-
matically exploit smart contracts,” in 27th USENIX Security Symposium

(USENIX Security 18), 2018.

[28] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea, “Efficient state merg-
ing in symbolic execution,” in Proceedings of the 33rd ACM SIGPLAN

Conference on Programming Language Design and Implementation,
2012.

[29] L. Luu, D. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC Conference

on Computer and Communications Security, 2016.

[30] “Manticore symbolic execution tool v0.2.2.” [Online]. Available:
https://github.com/trailofbits/manticore

[31] “Mythril v0.19.7.” [Online]. Available: https://github.com/ConsenSys/
mythril

[32] I. Nikolic, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding
the greedy, prodigal, and suicidal contracts at scale,” in 34th Annual

Computer Security Applications Conference (ACSAC’18), 2018.

[33] R. O’Connor, “Simplicity: A new language for blockchains,” in Pro-

ceedings of the 2017 Workshop on Programming Languages and

Analysis for Security. ACM, Oct. 2017.

[34] “Oyente tool,” https://github.com/melonproject/oyente, [Online; ac-
cessed Jul 26, 2018].

[35] R. Price, “Digital currency ethereum is cratering because of a $50
million hack,” https://www.businessinsider.com/dao-hacked-ethereum-
crashing-in-value-tens-of-millions-allegedly-stolen-2016-6, Jun. 2016,
[Online; accessed May 4, 2018].

[36] C. Reitwiessner, “Babbage – a mechanical smart contract language,”
https://medium.com/@chriseth/babbage-a-mechanical-smart-contract-
language-5c8329ec5a0e, 2017, [Online; accessed Jul 24, 2018].

[37] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to
know about dynamic taint analysis and forward symbolic execution (but
might have been afraid to ask),” in 31st IEEE Symposium on Security

and Privacy, S&P, 2010.

[38] M. Suiche, “Porosity: A decompiler for blockchain-based smart
contract bytecode,” 2017. [Online]. Available: https://github.com/
comaeio/porosity

[39] J. Tanner, https://blog.indorse.io/ethereum-upgradeable-smart-contract-
strategies-456350d0557c, Mar 2018, [Online; accessed Aug 6, 2018].

[40] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, “Smartcheck: Static analysis of
ethereum smart contracts,” in Proceedings of the 1st International

Workshop on Emerging Trends in Software Engineering for Blockchain,
2018.

[41] D. Trabish, A. Mattavelli, N. Rinetzky, and C. Cadar, “Chopped sym-
bolic execution,” in Proceedings of the 40th International Conference

on Software Engineering, 2018.

[42] P. Tsankov, A. M. Dan, D. D. Cohen, A. Gervais, F. Buenzli, and M. T.
Vechev, “Securify: Practical security analysis of smart contracts,” in
Proceedings of the 2018 ACM Conference on Computer and Commu-

nications Security, CCS, 2018.

[43] J. Wilcke, https://blog.ethereum.org/2016/09/22/ethereum-network-
currently-undergoing-dos-attack/, 2016, [Online; accessed Jul 28,
2018].

[44] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger (EIP-150 revision),” 2016. [Online]. Available: http://gavwood.
com/paper.pdf

[45] Y. Zhou, D. Kumar, S. Bakshi, J. Mason, A. Miller, and M. Bailey,
“Erays: Reverse engineering ethereum’s opaque smart contracts,” in
27th USENIX Security Symposium, 2018.

15

https://github.com/nexusdev/hack-recovery
https://github.com/pirapira/bamboo
https://github.com/pirapira/bamboo
https://github.com/trailofbits/ethersplay
https://github.com/trailofbits/ethersplay
https://www.syssec.wiwi.uni-due.de/en/research/research-projects/securing-smart-contracts/
https://www.syssec.wiwi.uni-due.de/en/research/research-projects/securing-smart-contracts/
http://solidity.readthedocs.io/
https://solidity.readthedocs.io/en/develop/common-patterns.html#withdrawal-from-contracts
https://solidity.readthedocs.io/en/develop/common-patterns.html#withdrawal-from-contracts
https://github.com/ethereum/vyper
https://www.reddit.com/r/MakerDAO/comments/4niu10/critical_ether_token_wrapper_vulnerability_eth/
https://www.reddit.com/r/MakerDAO/comments/4niu10/critical_ether_token_wrapper_vulnerability_eth/
https://www.investitin.com/altcoin-list/
https://consensys.github.io/smart-contract-best-practices/known_attacks/
https://consensys.github.io/smart-contract-best-practices/known_attacks/
https://pdaian.com/blog/chasing-the-dao-attackers-wake/
https://pdaian.com/blog/chasing-the-dao-attackers-wake/
https://etherscan.io/address/0xBB9bc244D798123fDe783fCc1C72d3Bb8C189413
https://etherscan.io/address/0xBB9bc244D798123fDe783fCc1C72d3Bb8C189413
https://etherscan.io/address/0x304a554a310C7e546dfe434669C62820b7D83490
https://etherscan.io/address/0x304a554a310C7e546dfe434669C62820b7D83490
https://blog.slock.it/the-history-of-the-dao-and-lessons-learned-d06740f8cfa5
https://blog.slock.it/the-history-of-the-dao-and-lessons-learned-d06740f8cfa5
https://github.com/trailofbits/manticore
https://github.com/ConsenSys/mythril
https://github.com/ConsenSys/mythril
https://github.com/melonproject/oyente
https://www.businessinsider.com/dao-hacked-ethereum-crashing-in-value-tens-of-millions-allegedly-stolen-2016-6
https://www.businessinsider.com/dao-hacked-ethereum-crashing-in-value-tens-of-millions-allegedly-stolen-2016-6
https://medium.com/@chriseth/babbage-a-mechanical-smart-contract-language-5c8329ec5a0e
https://medium.com/@chriseth/babbage-a-mechanical-smart-contract-language-5c8329ec5a0e
https://github.com/comaeio/porosity
https://github.com/comaeio/porosity
https://blog.indorse.io/ethereum-upgradeable-smart-contract-strategies-456350d0557c
https://blog.indorse.io/ethereum-upgradeable-smart-contract-strategies-456350d0557c
https://blog.ethereum.org/2016/09/22/ethereum-network-currently-undergoing-dos-attack/
https://blog.ethereum.org/2016/09/22/ethereum-network-currently-undergoing-dos-attack/
http://gavwood.com/paper.pdf
http://gavwood.com/paper.pdf

	Introduction
	Background
	Smart Contracts and the Ethereum Virtual Machine
	Re-entrancy Problem
	Common Defenses and Analysis Tools

	Problem Statement and New Attacks
	Cross-Function Re-Entrancy
	Delegated Re-Entrancy
	Create-Based Re-Entrancy

	Design of Sereum
	Implementation
	Taint Tracking EVM
	Attack Detection

	Evaluation
	Run-time Detection of Re-Entrancy Attacks
	False Positive Analysis
	Performance and Memory Overhead

	Related Work
	Conclusion
	References

