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Abstract

Proteoglycans are fundamental components of the endothelial barrier, but the functions of

the proteoglycan serglycin in endothelium are less described. Our aim was to describe the

roles of serglycin in processes relevant for endothelial dysfunction. Primary human umbilical

vein endothelial cells (HUVEC) were cultured in vitro and the expression of proteoglycans

was investigated. Dense cell cultures representing the quiescent endothelium coating the

vasculature was compared to sparse activated cell cultures, relevant for diabetes, cancer and

cardiovascular disease. Secretion of 35S- proteoglycans increased in sparse cultures, and we

showed that serglycin is a major component of the cell-density sensitive proteoglycan popula-

tion. In contrast to the other proteoglycans, serglycin expression and secretion was higher in

proliferating compared to quiescent HUVEC. RNAi silencing of serglycin inhibited proliferation

and wound healing, and serglycin expression and secretion was augmented by hypoxia,

mechanical strain and IL-1β induced inflammation. Notably, the secretion of the angiogenic

chemokine CCL2 resulting from IL-1β activation, was increased in serglycin knockdown cells,

while angiopoietin was not affected. Both serglycin and CCL2 were secreted predominantly

to the apical side of polarized HUVEC, and serglycin and CCL2 co-localized both in perinuc-

lear areas and in vesicles. These results suggest functions for serglycin in endothelial cells

trough interactions with partner molecules, in biological processes with relevance for diabetic

complications, cardiovascular disease and cancer development.

Introduction

The endothelium forms the inner lining of the vasculature and have important barrier func-

tions, involving extracellular matrix components located both in the basolateral basement

membrane and in the glycocalyx exposed on the apical side of the cells facing the circulation

[1]. Proteoglycans are important components of both of these matrices [2, 3]. Proteoglycans

are proteins substituted with unique sugar chains; glycosaminoglycans; having the ability to
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interact with partners molecules including chemokines, growth factors and proteases. The

endothelium is a metabolically active organ with impact on a range of key processes including

growth, vasomotor activity, lipid metabolism and coagulation [4], as well as inflammation and

extravasation of immune cells. Endothelial dysfunction is receiving increasing attention in rela-

tion to diabetes [5], cardiovascular disease [6] and cancer [7]. Inflammation is an important

aspect of diabetes, cancer and cardiovascular disease where endothelial cells may play an active

role through their synthesis of inflammatory molecules such as cytokines, chemokines, proteo-

glycans and other secretory products [8, 9]. IL.1β has emerged as an important factor in the

pathogenesis of type 2 diabetes [10]

One important consequence of endothelial dysfunction is changes in processes involving

injury and repair. Inflammation, angiogenesis and proliferation are all players in the complex

process of wound healing, and must be tightly regulated. Dysregulation of these processes

potentially result in diabetic complications [11]. Abnormal angiogenesis is seen in diabetes

[12], and anti-angiogenic approaches using e.g. anti-VEGF treatment is currently being tested

in treatment of retinopathy [13]. Angiogenesis is also a process with high relevance to tumor

biology and metastasis [14] and inflammatory mediators are essential components also of the

tumor microenvironment [15].

Primary human umbilical vein endothelial cells (HUVEC) have been widely used in studies

on endothelial cells, also in relation to diabetes [16–18]. Exposure to inflammatory conditions

in vitro affects both pro-adhesive properties [19] and the structure of heparan sulfate expressed

and released by these cells [20]. In polarized HUVEC serglycin is a major proteoglycan and it is

secreted to the apical medium. Activation with IL-1β increased the secretion of serglycin which

co-localized with the chemokine CXCL1 (GRO-α) in type 2 granula [21]. This suggests inter-

play between serglycin and inflammatory mediators. Furthermore, due to high expression in

hematopoietic cells, serglycin is primarily regarded as a proteoglycan linked to inflammation

[22], and it can be hypothesized that similar immunological functions of serglycin may be rele-

vant for endothelial cells. Also, the involvement of serglycin in inflammation, proliferation and

angiogenesis may implicate serglycin in several cancers [23–26].

We here study the functions and mechanisms of the proteoglycan serglycin in primary

endothelial cells. We hypothesized that serglycin is involved in processes relevant for endothe-

lial dysfunction through interactions with partner molecules through its glycosaminoglycan

side chains. Such processes include proliferation and angiogenesis such as in wound healing,

and inflammation. Serglycin expression was studied in proliferating cells, relevant for studies

of angiogenesis and inflammation, and confluent cultures, representing the quiescent vascular

endothelium lining our blood vessels.

Experimental procedures

Cell culture

HUVEC were isolated from umbilical cords as described [27]. Written informed consent was

obtained from each donor, and the use was also approved by The Regional Committees for

Medical and Health Research Ethics (REK). Cells were cultured at 37°C and 5.0% CO2 in

MCDB 131 medium (Sigma) containing 5 mM glucose and supplemented with 7% heat-inacti-

vated fetal calf serum (FCS, Sigma), basic fibroblast growth factor (bFGF, 1 ng/ml, R&D),

hydrocortisone (1 μg/ml, Sigma), epidermal growth factor (EGF, 10 ng/ml, R&D), gentamicine

(50 μg/ml, GIBCO Invitrogen) and fungizone (250 ng/ml, GIBCO Invitrogen). The medium

was replaced three times a week and cells were used for experiments within three passages. The

purity of the endothelial cell cultures was verified by microscopic observations of each culture

as well as regular staining for the endothelial cell marker von Willebrand factor (vWF). For
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experiments, cells were seeded in wells or chamber slides at different cell densities. Sparse cell

cultures were obtained by seeding approximately 15 000 cells/cm2 and dense cell cultures were

obtained by seeding approximately 100 000 cells/cm2. The contact-inhibition of dense cell cul-

tures promote quiescence [28]. For all experiments the cells were allowed to adhere, and incu-

bated for up to 24 hours before the experiment was initiated. Incubations with IL-1β (R&D

systems) were performed for 24 hours using a concentration of 0.5 ng/ml; determined by dose-

response and time-response experiments (not shown).

Protein determination

Protein content of cell lysates was determined using Uptima BC Assay protein quantization kit

(BioRad) according to the manufacturer’s protocol.

Cytotoxicity assay

The possible cytotoxic effect of cellular density as well as IL-1β exposure was investigated by

measurement of LDH activity released from damaged cells, using the Cytotoxicity Detection

Kit (Cat.no 11 644 793 001, Roche) according to the manufacturer’s instructions. In brief, con-

ditioned media from cells cultured at different cellular densities, alternatively with or without

IL-1β, was harvested; assay medium was added and incubated at 37°C for 30 min before

recording the absorbance at 490 nm. Conditioned media from Triton X-100 treated cells were

included as positive control, and non-conditioned medium was included as negative control.

Proliferation assays

Cellular growth rate of sparse versus dense cell cultures was assessed using the MTS assay, per-

formed according to the manufacturer’s descriptions (CellTiter 96 Aqueous One Solution Cell

Proliferation; G3582; Promega). In short, cells were seeded in triplicates in varying densities in

96-wells plates in 100 μl culture medium. Twenty μl of MTS reagent was added directly to the

wells and incubated for two hours. The quantity of farmazan bioreduced from MTS by the cells

was then measured by recording the absorbance at 490 nm. An increased absorbance is a mea-

sure of increased proliferation rate.

The effect of knockdown of serglycin expression on proliferation was determined using the

CyQuant Direct Cell Proliferation Assay Kit (C35011, Molecular Probes) according to the

manufacturer’s descriptions. Briefly; siSRGN or siScramble transfected cells were seeded at 10

000 cells per well in triplicates on black plate clear bottom 96-wells plates (3603, Corning) and

cultured overnight in 100 μl culture medium. The proliferative capacity of subconfluent cul-

tures was quantified after incubation with Detection Reagent and subsequent fluorescence

detection at 480/535 nm. An increase in fluorescence intensity is a measure of DNA content

and thus an increased proliferation rate.

Metabolic labeling

HUVEC cultures of the desired density were metabolically labeled with 0.1 mCi/ml 35S-sulfate

(Hartmann Analytic) in RPMI-1640 sulfate free medium (GIBCO Invitrogen) added 5 mM

L-glutamine (Sigma) and with FCS reduced from 7 to 2% to increase labeling efficiency. After

labeling for 24 hours, the culture medium was collected. The cells were washed in PBS and har-

vested in either lysis buffer (4.0 M guanidine-HCl, 0.1 M acetate buffer pH 6.5, 2% Triton

X-100) or RIPA buffer (50 mM Tris-HCl pH 7.4, 150 mMNaCl, 1% Triton X-100, 1% SDS, 1%

Na-deoxycholate, 10 mM EDTA, 10 mMNa4P2O7 and phosphatase inhibitor tablet freshly

added). In order to remove unincorporated 35S-sulfate, samples were subjected to Sephadex
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G50 fine (GE Healthcare) gel chromatography in buffer (0.05 M Tris-HCl, 0.05 M NaCl, pH

8). The 35S -macromolecules were eluted in the void volume, while smaller molecules remained

associated with the column. The amount of 35S-sulfate incorporated in newly synthesized 35S

-macromolecules was determined by scintillation counting in triplicates. 35S-macromolecules

in HUVEC are almost exclusively comprised of PGs [16]. Protein content of cell fractions was

determined in RIPA-lysates prior to G50 fine gel chromatography or in guanidine-lysates after

changing the buffer on the G50 fine column.

SDS-PAGE

Conditioned medium fractions containing equal amounts of radiolabeled material within each

experiment, approximately 10,000–15,000 cpm, were concentrated using vacuum centrifuga-

tion and treated with nitrous acid (HNO2), chondroitin ABC lyase (cABC) or trypsin, or left

untreated, before subjected to SDS-PAGE at 110V for two hours. Heparan sulfate was depoly-

merized by HNO2 deamination at pH 1.5, cleaving the polysaccharide at N-sulfated glucos-

amine units as described [29]. Chondroitin sulfate (CS) and dermatan sulfate (DS) was

degraded by incubation at 37°C overnight with 0.01–0.02 units of cABC (E.C.4.2.2.4, Sigma

C2905 or Seikagaku 100330) in 0.05 M Tris-HCl pH 8.0 containing 0.05 M sodium acetate and

0.02% BSA. For identification of the protease-resistant proteoglycan serglycin, samples were

treated with 5 μl 0.25% trypsin-EDTA (T4049, Sigma) at 37°C overnight, before inactivation

with an equal volume of 2.5% soy bean trypsin inhibitor (SBTI, Sigma). Prior to loading, the

samples were incubated at room temperature for 15 minutes in Laemmli buffer. After com-

pleted electrophoresis the 4–20% gradient-gels were treated with fixing solution (isopropanol

25%, glacial acetic acid 10%) and Amplify (Amersham). The gels were dried and subjected to

fluorography using Amersham Hyperfilm™ ECL for approximately four days at -80°C.

Western blotting

HUVEC were established at different densities in MCDB-131 medium as described, but with

serum reduced to 2%. After 24 hours the medium was collected and cell debris removed by centri-

fugation. For protein measurements, cells were washed in cold PBS and lysed in RIPA buffer. The

sample volumes from the conditioned medium were adjusted to the protein content of the corre-

sponding cell fractions. Laemmli buffer was added and conditioned medium samples subjected to

SDS-PAGE on 4–20% gradient gels and electroblotted onto PVDFmembranes (Millipore) using

the Criterion™gel system (BioRad). Primary antibodies monoclonal mouse anti-human perlecan

(MAB1948, Millipore, 1:500) 1:20,000) and monoclonal goat anti-human biglycan (NB100-55407,

Acris, 1:5,000) were used. The secondary antibodies used were HRP-linked sheep anti-mouse IgG

(NAV931, Amersham, 1:500) and HRP-linked rabbit anti-goat IgG (HAF017, R&D, 1:50,000).

The membranes were developed using ECLWestern Blotting Detection Reagents (GE Healthcare)

and finally exposed to films (AmershamHyperfilm™ ECL). The bands were quantified using the

densitometric quantification software Image J. All antibodies used are listed in Table 1.

Imunoprecipitation

HUVEC were incubated with 35S-sulfate and cell and medium fractions recovered as described

above. The volumes of the conditioned media were adjusted to the protein content of the corre-

sponding cell fractions, and subjected to G50-fine gel chromatography. The samples were divided

in two, one was left untreated and one was subjected to cABC treatment. Conditioned medium of

equal protein concentration (related to their corresponding cell lysates) and containing approxi-

mately 40,000 cpm were incubated over night with agitation at 4°C with monoclonal mouse anti

human serglycin (H00005552-H03, Abnova, 1:500) or polyclonal rabbit anti-human serglycin
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(HPA000759, Atlas Antibodies, 1:100) or polyclonal rabbit anti-versican (a kind gift from Dieter

Zimmermann, University Hospital Zurich). In initial experiments medium from the monocytic

cell line THP-1 was included as positive control for serglycin and unconditioned cell culture

medium or concentration matched irrelevant IgG control (Mouse Gamma Globulin, Jackson

Immuno Research, 015-000-002) were included as negative control. Further, 30 μl Protein A/G

solution (sc-3003, Santa Cruz) was added and the incubation was continued for two hours. The

samples were then centrifuged and washed three times in 0.05 M Tris-HCl with 0.15 MNaCl,

0.05% Triton X-100 and 1% BSA, followed by one wash in PBS. Material bound to Protein A/G

was finally released by boiling for five minutes in Laemmli sample buffer, centrifuged and loaded

on to 4–20% SDS-PAGE. Molecular weight protein markers (BioRad) were run on all gels for size

determination. After electrophoresis the gels were dried and subj ected to autoradiography. The

intensity of the bands were quantified using the densitometric quantification software Image J.

ELISA assays

Conditioned medium was collected and centrifuged to remove cell debris, and shedded synde-

can-4 as well as secreted CCL3, VEGF and CCL2 were detected according to the manufactur-

er’s instructions using the following ELISA kits: Human Syndecan-4 Assay Kit (JP27188, IBL),

Human CCL3/MIP-1 alpha DuoSet (DY270-05, R&D), Human VEGF Quantikine ELISA Kit

(DVE00, R&D) and Human CCL2/MCP-1 DuoSet, (DY279-05, R&D).

Gene expression analysis

Total RNA was isolated from cultured HUVEC using the E.Z.N.A. Total RNA kit 1 (R6834-02,

Omega Bio-Tek) according to the manufacturer’s instructions. RNA quantity measurements

Table 1. Antibodies.

Antibody supplier dilution application

Monoclonal Mouse anti-human perlecan Primary MAB1948, Millipore 1:500 western

Monoclonal Goat anti-human biglycan primary NB100-55407, Acris 1:5000 western

Monoclonal Mouse anti-human serglycin Primary H00005552-H03, AbNova 1:500 ip

Polyclonal Rabbit anti-human serglycin Primary HPA000759, Atlas Antibodies 1:100 ip

Polyclonal Rabbit anti-human versican primary Gift from Dieter Zimmerman, Zurich 1:100 ip

Monoclonal Mouse anti IL-33 primary Clone Nessy-1, Enzo Life sciences 1:200 ICC

Polyclonal Rabbit anti-human serglycin primary Gift from Niels Borregaard, Denmark 1 μg/ml ICC

Monoclonal Mouse anti-KDEL primary 10C3, Millipore 1:200 ICC

Monoclonal Mouse anti-GM130 primary BD Biosciences 1:250 ICC

Monoclonal Mouse anti-human vWF primary Dako Cytomation 1:1,400 ICC

Monoclonal Mouse anti-human CCL2 primary ABIN969505, Antibodies Online 1:400 ICC

Rabbit-anti Hemocyanin (KLH) primary H0892, Sigma 1 μg/ml ICC

Biotinylated horse anti-mouse IgG secondary Vector labs 1:200 ICC

HRP-linked rabbit anti-goat IgG secondary HAF017, R&D 1:50 000 western

HRP-linked anti-rabbit IgG secondary NA934, GE Healthcare Cons matched western

HRP-linked sheep anti-mouse IgG secondary NAV931, Amersham 1:5000 western

Alexa Fluor 488 conjugated goat anti-rabbit IgG secondary Invitrogen 1:600 ICC

Alexa Fluor 488 conjugated goat anti-mouse IgG secondary Invitrogen 1:600 ICC

Alexa Fluor 546 conjugated goat anti-mouse IgG secondary Invitrogen 1:600 ICC

Alexa Fluor 546 conjugated goat anti-rabbit IgG secondary Invitrogen 1:600 ICC

Streptavidin Cy3-conjugate tertiary 016-160-084, Jackson 1:1000 ICC

doi:10.1371/journal.pone.0145584.t001
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were performed using the ND1000 Spectrophotometer (Saveen Werner) and RNA was stored

at -80°C until further analysis. A quantity of 250 ng RNA was reverse transcribed in a total vol-

ume of 20 μl using the “High capacity RNA-to-cDNA kit” (cat no 4387406, Applied Biosys-

tems). Quantitative Real-time PCR (qRT-PCR) was performed on an ABI Prism 7900HT

(Applied Biosystems) using Taq Man Gene Expression Master Mix (4369016, Applied Biosys-

tems) and predesigned TaqMan Gene Expression Assays as listed in Table 2. 60S ribosomal

protein L30 (RPL30) was used as endogenous control. The Ct cutoff value was set to 40 cycles,

and the relative mRNA level for each transcript was calculated by the ΔΔCt method [30].

Briefly, the cycle threshold (Ct) values for each gene was normalized against the Ct values of

the housekeeping gene (= ΔCt). For comparison of gene expression in treated versus control

cells, ΔΔCt was calculated as ΔCt in treated cells subtracted the ΔCt for control cells. The fold

change in mRNA expression was calculated as 2-ΔΔCt.

Immunocytochemistry

Sparse and dense cultures of HUVEC were grown for 24 hours on Lab-Tek chamber slides

(Nalge Nunc International) coated with 1% (w/v) gelatin from porcine skin. For IL-33 staining,

the slides were washed in PBS and fixed in ice cold methanol for 10 min and stored at 4°C. The

fixed cells were labeled with mouse monoclonal anti-human IL-33 (clone Nessy-1; Enzo Life

Sciences, 1:200) at 4°C overnight in a dark humidity chamber, followed by secondary biotiny-

lated horse anti-mouse IgG (Vector labs, 1:200) for 1.5 hours at room temperature, and finally

tertiary antibody streptavidin Cy3-conjugate (Cat.no. 016-160-084, Jackson, 1:1000) for one

hour. For staining with the other antibodies, the slides were submerged three times in PBS,

fixed in 4% paraformaldehyde for 10 min, rinsed in PBS for 10 minutes and finally dipped in

milli-Q water. The slides were dried and stored at 4°C until staining. The fixed cells were

labeled with affinity purified rabbit anti-human serglycin (1 μg/ml, kindly provided by Profes-

sor Niels Borregaard, University of Copenhagen), monoclonal mouse anti-KDEL/GRP78 BiP

(10C3, Millipore, 1:200), monoclonal mouse anti-GM130 (BD Biosciences, 1:250), monoclonal

mouse anti-human vWF (Dako Cytomation, 1:1,400) or monoclonal mouse anti human CCL2

(Antibodies online, 1:400) antibodies, overnight at 4°C in a dark humidity chamber. All anti-

bodies were diluted in PBS containing 1.25% BSA and 0.2% saponin for permeabilization. The

slides were washed 10 minutes in PBS and incubated with Alexa Fluor 488 conjugated goat

anti-rabbit IgG (Invitrogen, 1:600) and/or Alexa Fluor 546 conjugated goat anti-mouse IgG

(InVitrogen, 1:600) for 90 minutes at room temperature. Negative controls were prepared by

substituting diluting buffer for primary antibody or by using an irrelevant concentration

Table 2. TaqMan gene expression assays used in qRT-PCR analysis.

Gene Protein Assay ID

HSPG2 Perlecan Hs00194179_m1

SRGN Serglycin Hs01004159_m1

SDC4 Syndecan-4 Hs00161617_m1

BGN Biglycan Hs00156076_m1

VCAN Versican Hs00171642_m1

IL-33 Interleukin-33 Hs00369211_m1

MKI67 Marker of proliferation Ki-67 Hs01032443_m1

ANG2 Angiopoietin-2 Hs01048042_m1

CCL2 CCL2 Hs00234140_m1

RPL30 60S ribosomal protein L30 Hs00265497_m1

doi:10.1371/journal.pone.0145584.t002
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matched antibody (Rabbit-anti Hemocyanin (KLH), H0892, Sigma) as negative control for ser-

glycin. All antibodies used are listed in Table 1. After staining, the slides were washed for 10

minutes in PBS, dipped in milli-Q water, air dried, and mounted using SlowFade Gold antifade

reagent with DAPI (Invitrogen). Fixed cells were examined using confocal microscopy. This

was acquired using an Olympus FluoView FV1000 (Olympus Corporation) with a plan apoc-

hromat 60x/1.35 oil objective. All images were taken as single sections in the z-plane. Triple-

stained images were obtained by sequential scanning for each channel to eliminate the crosstalk

of chromophores and to ensure reliable co-localization. Alternatively, cells were examined with

a Zeiss LSM 700, confocal laser-scanning microscope (Zeiss Microlmaging GmbH), using the

Zen software (Zen 2011 black edition/Zeizz) taken on 62x magnification. Z-stack reconstruc-

tions were made. Images were then processed using Adobe Photoshop and Adobe Illustrator

CS4/CS5 or Adobe InDesign CS6.

Application of cyclic stretch–FlexCell

HUVEC was cultured on flexible-bottomed culture plates and grown to confluence, before sub-

jected to a 10% sinusoidal wave elongation at 1.0 Hz for 4 or 24 hours. As described, mRNA

was obtained, and the effect of cyclic stretch on serglycin expression was determined by

qRT-PCR.

Culture of polarized cells

Polarized cells were obtained as described in Meen et. al. [21]. HUVEC were seeded on Costar

Transwell clear polyester membrane inserts with a pore size of 0.4 (Sigma-Aldrich) in 12-well

plates. The cells were seeded at a density of 1 × 105 cells/cm2 with 1.5 ml of culture medium in

the basolateral compartment and 0.5 ml in the apical compartment. Medium was changed

every second day until the start of the experiment, when a tight monolayer had been

established.

Serglycin knockdown

The expression of human serglycin in HUVEC was reduced using SRGN siRNA (sc-44093,

Santa Cruz) and the negative control siRNA (scramble, sc-37007, Santa Cruz) at 0.02 μM.

HUVEC were reversly transfected with siPORT (AM4502, Ambion) in Opti-MEM (Invitro-

gen) at a cell density of 200 000 cells per ml (25 000 cells / cm2), allowed to adhere and incu-

bated for 5 hours. Then, the transfection medium was replaced with MCDB growth medium

for 19 hours, followed by a second 24 hours transfection in OptiMEM. After yet another 24

hours, the silencing efficiency was quantified by qRT-PCR and immunohistochemical stain-

ings. The scramble controls did not differ from the untreated controls, indicating no effect on

siRNA transfection per se.

In Vitro Angiogenesis assays

The impact of serglycin on endothelial cell tube formation was investigated using the Cultrex1

In Vitro Angiogenesis Assay Kit Tube Formation (3470-096-K, Amsbio) according to the manu-

facturer’s instructions. In short, HUVEC transfected with siSRGN and siScramble control, as

well as nontransfected controls, were seeded on the reduced growth factor basement mem-

brane extract (BME) gel in triplicates on a 96 wells plate at 10 000 cells per well for 5 hours.

This was done in growth medium containing growth factors and 7% serum. Sulforaphane

which inhibits tube formation was included as a negative control, as well as cells cultured in

medium without growth factors or serum. The cells were stained with 2 μMCalcein AM,
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allowing visualization of the tube formation using a fluorescence microscope. Images were

recorded with a Leica DM IL inverted contrast microscope with a Leica DFC420 digital color

camera, and submitted to the Wimasis online quantification service quantifying several param-

eters, including the number of loops, mean tube length and mean loop perimeter [31].

Wound healing assay

Confluent, quiescent cultures of siSRGN or siScramble transfected cells, as well as nontrans-

fected controls, were exposed to a scratch wound using a 200 μl sterile pipette tip. The rate of

wound closure was visually monitored, and quantified by the mean change in wound width.

Hypoxia

Six-well plates with attached HUVECs were placed in the hypoxia chamber (Cat.# 865-HYPO,

Plas Labs) at 0.5% oxygen for 24 hours. Conditioned media was harvested and RNA was iso-

lated immediately.

Statistics

Comparative analysis of the data was carried out using the Student’s paired t-test. Data were

presented as mean ± SEM of the indicated number (n) of experiments. P-values< 0.05 were

considered to be statistically significant.

Results

Cellular density

Sparse and dense cultures of primary endothelial cells could represent useful models for differ-

ent in vivo situations. Dense cell cultures are contact-inhibited and non-proliferative, resem-

bling the quiescent endothelium coating the vasculature. In contrast, sparse cell cultures are

proliferating and can be used as an experimental model system with relevance in wound heal-

ing and neoplasia. The typical morphology of a sparse and a corresponding dense culture is

shown in Fig 1A, illustrating the typical fibroblastic appearance of sparse proliferating cells and

the cobblestone appearance of dense quiescent cells.

IL-33 in its mature cleaved form is a proinflammatory cytokine, while its full length precur-

sor acts as a nuclear factor. In endothelial cells, nuclear IL-33 is expressed only in the quiescent

state and is regarded as a marker for endothelial quiescence [32]. The Ki-67 (MKI67) protein,

in contrast, is a cellular marker of proliferation [33]. To verify the proliferative status of our cell

cultures, gene expression of these two markers was determined in sparse and dense cultures

(Fig 1B). The increased expression of IL-33 and decreased expression of MKI67 confirmed the

quiescent state of the dense cultures. Accordingly, the low IL-33 and high MKI67 expression in

sparse cultures confirmed that these cells were in a proliferative state. In addition, both sparse

and dense cultures were immunostained for IL-33 (Fig 1C). DAPI-stained nuclei are visible in

blue, while IL-33 is seen as magenta stain. The nuclear presence of IL-33 in dense cultures only

confirmed the quiescent state of dense cultures.

The effect of cellular density on cell proliferation and mortality was determined using the

MTS-assay and the LDH-assay respectively. From Fig 1D it is evident that the proliferation of

HUVEC is inversely correlated to cell density. To investigate the effect of cell density on viabil-

ity, the LDH-assay was used. Fig 1E shows that LDH-leakage was not significantly increased

over time, neither in sparse nor in dense cultures.
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Proteoglycan secretion

A common feature of proteoglycans is their heavily sulfated glycosaminoglycan-chains, provid-

ing these molecules with the unique ability to bind to biologically active partner molecules

based on electrostatic- or sequence-specific interactions. HUVEC were metabolically labeled

with 35S-sulfate, and the effect of cellular density on proteoglycan expression per se was studied.
35S-proteoglycan secretion increased ~ 9 times (± 3.7) in sparse compared to dense cell cultures

(Fig 2A). Cellular density had no significant effect on the distribution of 35S- proteoglycans

between the medium and the cell fractions, the medium contained 67 and 62% of the total 35S-

proteoglycans in sparse and dense cultures, respectively (Fig 2B).

Fig 1. Cellular proliferative state.HUVEC were cultured in low (sparse) and high (dense) densities. (A) Illustration of the morphology of sparse (left panel)
and dense (right panel) HUVEC. (B) Gene expression of quiescence marker IL33 and proliferation marker MKI67 in sparse relative to dense cell cultures
determined by qRT-PCR in material from six donors. (C) Staining for IL-33 in dense culture (right panel) and sparse culture (left panel) visible as magenta,
costained with DAPI nuclear staining visible as blue. The pictures were acquired using a confocal microscope at 60X magnification. (D) The proliferation rate
was assessed by applying the MTS-assay on cell cultures of increasing densities from four donors. (E) Cell mortality rate was determined with the LDH-assay
for 5 donors in both sparse (upper panel) and dense (lower panel) cell cultures. All data are presented as means with SEM, and statistical significant
differences (p < 0.05) was tested with Students paired t-test and denoted by *. The scale bars indicates 100 and 50 μm respectively.

doi:10.1371/journal.pone.0145584.g001
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The size of the secreted 35S- proteoglycans was analyzed by SDS-PAGE. To focus on the rel-

ative ratios of the respective 35S- proteoglycans, equal amounts (cpm) of material were loaded

in each lane. The material was separated into three distinct 35S- proteoglycan populations; one

at the top of the gel, a second at molecular weights ranging from approximately 250 to 300 kDa

Fig 2. 35S-proteoglycan secretion and cellular density. Sparse and dense cultures of HUVECwere metabolically labeled for 24 hours with 35S-sulfate,
and 35S- macromolecules were recovered. (A) The amount of secreted de novo synthesized 35S-PGs from 6 donors was determined by scintillation counting
and normalized to protein. The presented results are relative to the mean of the dense values. (B) The% distribution of 35S-PGs related to protein detected in
cell lysate (cell) and in conditioned medium (medium). Mean values from both sparse and dense cultures originating from 5 donors are shown. Results are
presented as mean with SEM denoted by vertical bars, and p-values * < 0.05 were taken as a significant difference between the sparse relative to dense
cells using the Students paired t-test. (C) Secreted 35S-PGs were harvested from cell cultures of increasing densities, indicated by arrows. Equal amounts
(cpm) were loaded in each lane and separated using SDS-PAGE. We here show one representative of 6 individual experiments. The migration positions of
molecular mass markers are given in kDa. (D The intensity of the bands was quantified using Image J and mean ± SEM is presented.

doi:10.1371/journal.pone.0145584.g002
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and a third at 100 kDa (Fig 2C, left panel). We identified the upper band as predominately

heparan sulfate proteoglycans by its susceptibility to HNO2 depolymerization (right panel),

while the 250–300 kDa and the 100 kDa bands were of the CS/DS type, as they were susceptible

to cABC digestion (middle panel). This is in line with earlier observations [20, 21], and here we

show that this is the case in both sparse and dense cell cultures. The most striking effect of cell

density was observed for the high molecular weight CS/DS proteoglycan population. With

increasing density there was an obvious decrease in the 300 kDa part and an increase in the

250 kDa part of this material.

This striking effect of cell density on 35S-proteoglycan secretion was studied in further

detail, using different experimental approaches. HUVEC have been reported to express several

proteoglycans, including perlecan, biglycan, serglycin, syndecan-4 and versican [21, 34–38].

When comparing gene expression levels for these PGs it was evident that, irrespective of the

proliferative status, perlecan was expressed at the highest level, followed by biglycan and sergly-

cin, while the expression levels of versican and syndecan-4 were lower. This is shown for sparse

cells in Fig 3A, the pattern was similar for dense cell cultures. Decorin as well as syndecan-1

and -2 were expressed at even lower levels [21].

The gene expression (Fig 3B) as well as secretion pattern (Fig 3C) of these most abundant

endothelial PGs was compared in sparse and dense cultures. In contrast to all other proteogly-

cans investigated; only expression of serglycin mRNA increased with decreasing cell density.

Perlecan, biglycan and versican mRNA expression was reduced with reducing cell density,

while syndecan-4 mRNA was unaltered. The effect of cell density on proteoglycan secretion

was also determined by Western blotting, immunoprecipitation or ELISA. The secretion levels

corresponded to the gene expression levels, implying that serglycin increased in sparse cultures.

Perlecan and versican secretion decreased; syndecan-4 was unaltered, while biglycan increased.

Consequently, the expression and secretion of different proteoglycans are differently influ-

enced by the proliferative status of these cells, with serglycin standing out as the major proteo-

glycan increasing in proliferating cell cultures.

The results from Fig 3 suggest that the observed increase in de novo 35S- proteoglycan secre-

tion from Fig 2A is caused in part by increased secretion of serglycin. Furthermore, in prolifer-

ating cultures, there was an obvious increase in the 300 kDa material and a decrease in the 250

kDa material (Fig 2C). It has been shown that serglycin, unlike other proteoglycans, is resistant

to degradation by the serine protease trypsin [39, 40]. This was exploited to further identify the

components of this particular cell-density sensitive component. 35S- proteoglycans secreted

from HUVEC were subjected to SDS-PAGE before and after trypsin treatment, as shown in

Fig 4, left panel. The 300 kDa material which dominated in sparse cultures, was resistant to

trypsin treatment while the 250 kDa material, dominating in the dense cultures, was degraded.

Also, the molecular weight of the trypsin-resistant component corresponded to the molecular

weight of 35S-serglycin identified by immunoprecipitation (Fig 4, right panel). In conclusion,

these results identify the cell-density sensitive proteoglycan at approximately 300 kDa as

serglycin.

Serglycin localization

By immunocytochemistry, staining for both serglycin and the Golgi marker GM130, the intra-

cellular distribution of serglycin differed between dense and sparse cultures (Fig 5A). In dense

cultures limited staining of serglycin was seen in cytoplasmic vesicles and perinuclear regions

and co-localized with the Golgi marker GM130. Vesicular staining increased in sparse cultures

with an overt increase in Golgi staining. No co-localization with KDEL, a marker of endoplas-

mic reticulum, was observed in either sparse or dense cultures (results not shown). Staining for

Serglycin in Endothelial Cells
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the endothelial specific marker vWF was evident in vesicles in both cultures, and merge of ser-

glycin and vWF staining did not reveal any co-localization (Fig 5B), as previously has been

shown for proliferating cells [21]. Hence, both the sparse and dense cultures express the estab-

lished endothelial marker vWF.

Fig 3. Major PGs expressed and secreted by HUVEC. (A) Gene expression levels of perlecan, biglycan, serglycin, syndecan-4 and versican in sparse
cultures of HUVEC determined by qRT-PCRwas expressed as the inverse of the Ct value relative to the Ct value of the endogenous control gene RPL30.
The number of different primary cultures was 7 for all genes except for biglycan and versican resulting from 3 cultures. Differences relative to versican are
tested for statistical significanse. (B) Gene expression of perlecan, biglycan, serglycin, syndecan-4 and versican in HUVEC cultured in low (sparse)
compared to high (dense) cell densities was determined by qRT-PCR. Values are expressed as the fold change in sparse relative to dense cells. The number
of primary cell culture donors was 7, 8, 8, 10 and 6 respectively. (C) The secretion of perlecan, biglycan, serglycin, and versican from dense (d) and sparse
(s) HUVEC cultures was compared performing western blotting (perlecan and biglycan) or immunoprecipitation (serglycin and versican). The sample size
was adjusted to the protein content of the corresponding cell lysate, and shown are representative results from four donors. Similarly, syndecan-4 shedded to
the medium was measured by ELISA in sparse and dense cultures and presented as syndecan-4 per cell relative to the mean of the sparse cells. The results
are from five donors. Results are presented as mean with SEM denoted by vertical bars, and p-values < 0.05 were taken as a significant difference between
the gene expression in sparse relative to dense cells using the Students paied t-test. * p<0.05, ** p<0.01, *** p<0.001. These results are presented as
densitometric measurements in (D).

doi:10.1371/journal.pone.0145584.g003
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Serglycin in functional assays

Our results demonstrate an increased serglycin expression and secretion in proliferating

HUVEC. Serglycin is a secretory proteoglycan with the ability to interact, through its glycos-

aminoglycan-chains, with several different partner molecules having the potential to regulate

proliferation.

To study the possible role of serglycin in the pulsatile shear stress induced in vivo by the

hemodynamic forces, HUVEC were subjected to an experimental cyclic stretch assay (Flex

Cell), and serglycin gene expression was determined after 4 and 24 hours. Serglycin mRNA

increased 3-fold after 24 hours of stretch (Fig 6A). When knockdown of the serglycin gene was

achieved in HUVEC by RNAi silencing (Fig 6B) their proliferative capacity was significantly

reduced (Fig 6C).

In vivo, endothelial cells are quiescent for years, but when tissues are deprived of oxygen or

nutrients, they sprout to vascularize tissues. To investigate the functions of serglycin in angio-

genesis, control and serglycin knockdown cells were subjected to an in vitro angiogenesis assay.

The results showed a small (non-significant) reduction of both number of loops and mean tube

length in the absence of serglycin (Fig 6D). In a hypoxic environment, SRGN expression

increased 5-fold after 24 hours (Fig 6E). Hypoxia-induced angiogenesis is regulated by multiple

molecular effectors including the growth factor Angiopoietin-2 (Ang2) [41]. Ang2 increased

also in our system (Fig 6E), suggesting involvement of serglycin as well as Ang2 in angiogene-

sis. Another experimental approach to study the role of serglycin in regulation of proliferation

as well as migration is to use an in vitro scratch wound assay. This approach showed a reduced

closure of the scratch wound in the serglycin knockdown cells compared to the scrambled con-

trols (Fig 6F). Serglycin stainings revealed increased perinuclear expression in cells in the

wound edge (S1 Fig) resembling the pattern observed in the sparse cultures.

Serglycin in endothelial IL-1β activation

In the processes of wound healing, angiogenesis and tissue repair, inflammatory responses are

of central importance. IL-1β is an important factor in the pathogenesis of type 2 diabetes [10].

Previous studies in confluent HUVEC demonstrated that the proinflammatory mediator IL-1β

has a stronger influence on heparan sulfate proteoglycans than several other classical inflam-

matory cytokines [20], and caused a 1.5 fold increase in 35S-proteoglycan secretion [42]. In

Fig 4. Characterization of the highmolecular weight CS/DS-proteoglycan component. Left panel:
Equal amounts (cpm) of untreated (u) and trypsin treated (t) 35S-PGs secreted from dense and sparse cells
were separated by SDS-PAGE. Right panel: Immunoprecipitated (IP) 35S-labeled serglycin secreted from
dense (d) and sparse (s) HUVEC. Sample size was adjusted to the protein content of the corresponding cell
lysate. These results are from one representative culture of three donors analyzed. The migration positions of
molecular mass markers are given in kDa.

doi:10.1371/journal.pone.0145584.g004
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both dense and sparse HUVEC, proliferation rate and cytotoxicity was not influenced by IL-1β

(S2 Fig). However, IL-1β increased 35S-proteoglycan secretion in dense cultures only (Fig 7A).

The increase in 35S-proteoglycan secretion in dense cultures, but not in sparse was reflected in

the serglycin mRNA level (Fig 7B). Furthermore, immunoprecipitation showed an increased

secretion in both sparse and dense cells, but more in dense cell cultures (Fig 7C). The secretion

of serglycin is lower in unstimulated dense than in sparse cultures, as previously observed in

Figs 3 and 4. Supporting this finding, serglycin-positive vesicles increased after IL-1β stimula-

tion both in sparse and in dense cultures as demonstrated by immunofluorescence (Fig 7D).

Serglycin and partner molecules

We hypothesized that serglycin may exert its regulatory functions trough interactions with

transport, protection and presentation of chemokines, cytokines and growth factors. Endothe-

lial cell stimulation via IL-1 signaling results in an increased release of growth factors including

Ang2, VEGF and PDGFA as well as chemokines including CXCL1 (GROα), CCL2 (MCP1)

Fig 5. Intracellular distribution of serglycin, Golgi-marker and vWF in sparse and dense HUVEC. The left panel shows dense and the right panel shows
sparse cultures of HUVEC. The cultures were fixed and stained for serglycin (green) and Golgi marker GM130 (A) in red or the endothelial marker vWF in red
(B), with co-localization of the two visible as yellow. Blue color indicates DAPI nuclear staining. The pictures were acquired using a confocal microscope with
60 times magnification; scale bars shows 50 μm.

doi:10.1371/journal.pone.0145584.g005
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and CCL3 (MIP1α). Ang2, VEGF and PDGF are all angiogenic growth factors expressed by

HUVEC and dependent on heparan sulfate for its biological effects [43, 44]. In our hands how-

ever, secretion levels of VEGF and PDGF-B in HUVEC were undetectable and not induced by

IL-1β (results not shown). In contrast, the secretion of Ang2 was high (Fig 8A), but not signifi-

cantly increased by IL-1β. Serglycin has been shown to colocalize with CXCL1 in type 2 gran-

ules, and we have shown that CXCL1 secretion is dependent on serglycin [21].

CCL2 is a pro-inflammatory and angiogenic chemokine [45], also found in type 2 granules

of HUVEC [46]. We here confirm the results from previous studies showing that CCL2 is

highly expressed by HUVEC, demonstrating a 3,5 fold increase in intracellular CCL2 (Fig 8C),

a 16-fold increase in CCL2 secretion in IL-1β-stimulated cells (Fig 8B) and a 6.4-fold increase

in mRNA expression (Fig 8D). In macrophages CCL3 is associated with serglycin [47], How-

ever, in HUVEC we could not detect secreted CCL3 (results not shown).

In light of these results, we explored the possible role of serglycin in the secretion of Ang2

and CCL2 upon IL-1β stimulation. For this purpose, serglycin gene expression was reduced

using RNAi silencing of the SRGN gene transcript. From Fig 8E it is evident that this did not

affect secretion of Ang2. However, both intracellular and secreted CCL2 was increased in ser-

glycin knockdown cells (Fig 8F and 8G). This was accompanied by a small, but non-significant

increase in CCL2 gene expression (Fig 8H).

To further explore the role of serglycin in CCL2 storage and secretion, HUVEC were cul-

tured on semipermeable filters, allowing the cells to polarize. This system makes it possible to

study secretion to the apical and basolateral side of confluent endothelial monolayers. We have

earlier shown that serglycin is secreted predominately to the apical side of polarized HUVEC

cells. Interestingly, we show here that the increase in CCL2 secretion upon IL-1β stimulation

was also predominately to the apical side of the cells (Fig 9). In serglycin knockdown cells,

secretion to the apical side increased 12,4 fold (± 6.332) compared to a modest 1.699 fold (±

2.498) decrease to the basolateral side. This result supports a possible role for serglycin in the

secretion of the chemokine CCL2.

Finally, cells were fixed and stained for serglycin and CCL2 both in unstimulated (Ctr) and

IL-1β stimulated cells and blinded confocal microscopy analysis was performed (Fig 10). Fig

10A show Z-stacks illustrating the distribution of the target proteins throughout the cells,

while Fig 10B show one focal plane in the middle of the cells, where both proteins are equally

expressed. Serglycin was observed in perinuclear regions and in vesicles of different sizes. In

stimulated cells, serglycin perinuclear staining was increased, indicating increased synthesis.

The vesicular staining was increased upon IL-1β stimulation, and serglycin positive vesicles

were observed in higher distance from the nucleus, suggesting an increased secretion of sergly-

cin in these cells. CCL2 on the other hand was observed in perinuclear regions and also in

small vesicles throughout the cytoplasm. In unstimulated cells, CCL2 staining was visible also

at the cell surface, mostly in areas with cell-cell contact. In IL-1β stimulated cells, this cell sur-

face staining was reduced, indicating a secretion of preformed CCL2 from these areas.

Fig 6. Serglycin in functional assays. (A) Proliferative capacity of serglycin knockdown cells (siSRGN) compared to scrambled controls (siCtr), n = 5. (B)
HUVEC were subjected to 10% cyclic stretch for 4 and 24 hours respectively, and the response in serglycin expression was determined by qRT-PCR
(FlexCell) and compared to controls (Ctr), n = 3–11. (C) Serglycin mRNA expression (qRT-PCR) and protein (ICC) in serglycin knockdown (siSRGN) in
HUVEC was compared to scrambled controls (siCtr), n = 6. (D) Control and serglycin knockdown cells were subjected to an in vitro angiogenesis assay. Left
panel show the quantification of tube length and loop numbers byWimasis Image Analysis. The right panels show a representative picture of in vitro
angiogenesis assay showing tube formation capacity on BME gel in siSRGNHUVEC and siCtr, n = 4. (E) Gene expression of SRGN (left) and ANG2 (right)
in hypoxia compared to normoxia in triplicates from each of two cell donors. (F) Closure of scratch wound in control cells compared to siSRGN cells. Left
panel show percent wound closure after 6 hours, and right panel show representative phase-contrast images of scratch wound at 0 and 6 hours after
wounding, n = 3. Results are presented as mean with SEM denoted by vertical bars, and p-values < 0.05 were taken as a significant difference using the
Students paired t-test. * p<0.05, ** p<0.01, *** p<0.001, ns: not significant.

doi:10.1371/journal.pone.0145584.g006
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Fig 7. Effect of IL-1β on sparse compared to dense cell cultures.HUVEC were cultured in high (dense) or low (sparse) cell density for 24 hours with or
without IL-1β. (A) HUVEC from 6 donors were metabolically labeled with 35S-sulfate for 24 hours and the 35S-proteoglycan secretion was determined by
scintillation counting and related to protein content. (B) SRGNmRNA expression in response to IL-1β activation for dense and sparse cultures (n = 6). (C)
Serglycin secretion was determined by immunoprecipitation of 35S-serglycin from conditioned medium. These results are from one representative culture of
three donors analyzed (upper panel) and mean densitometric measurements of results from all donors (lower panel). The migration positions of molecular
mass markers are given in kDa. (D) Confluent (dense) and sparse HUVEC cultures were cultured on chamber slides, fixed and stained for serglycin, and
pictures were acquired using a Olympus Fluo View FV1000 confocal microscope with 60x magnification. The intracellular localization and expression of
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Perinuclear staining increased, suggesting increased synthesis of CCL2. Co-localization of ser-

glycin and CCL2 is visible as yellow. We observed overt co-localization of serglycin and CCL2

in perinuclear regions. Co-staining was also present in a portion of the small vesicles, and in

stimulated cells increased costaining was observed in the cytosol.

serglycin after IL-1β stimulation is compared to unstimulated control cells in both dense (left panel) and sparse (middle panel) cultures. The right panel show
a 3.7 times magnification of the indicated selected areas and the scale bars indicate 20 and 50 μm respectively. Results are presented as mean with SEM
and differences with p<0.05 was regarded as statistically significant using the Students paired t-test. * p<0.05, ** p<0.01, ns: not significant.

doi:10.1371/journal.pone.0145584.g007

Fig 8. CCL2 and Ang2 response to inflammation and to serglycin knockdown. The secretion of Ang2 (A, n = 6) in control cells was compared to IL-1β
stimulated cells. Also, secretion (B, n = 6), intracellular levels (C, n = 4) and gene expression (D, n = 4) of CCL2 in control cells was compared to IL-1β
stimulated cells. Response in Ang2 secretion (E, n = 6) and CCL2 secretion (F, n = 6), intracellular levels (G, n = 4) and gene expression (H, n = 4) in
serglycin knockdown cells (siSRGN) were compared to control cells (siCtr). Results are presented as mean with SEM and differences with p<0.05 was
regarded as statistically significant using the Students paired t-test. * p<0.05, ns: not significant.

doi:10.1371/journal.pone.0145584.g008
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Discussion

Proteoglycans are important components of the matrix and play important roles in signaling

related to cellular event such as inflammatory response and proliferation. In this study we

observe a 9-fold increase in 35S-proteoglycan secretion in proliferating endothelial cells com-

pared to quiescent cultures, and we identify serglycin as an important component of the cell-

density sensitive proteoglycan population. In line with this, we also provide evidence that gene

expression, secretion and intracellular distribution of serglycin is strikingly different between

sparse and dense cultures. However, our knowledge of the possible roles and mechanisms of

serglycin expressed by endothelial cells is limited. Most previous studies have focused on ser-

glycin in hematopoietic cells [22], although serglycin is also expressed by other cells including

smooth muscle cells [48], cancer cells [25, 26], endothelial cells [35] and adipose tissue [49].

In human endothelial cells we compared the expression of serglycin to several other proteo-

glycans, both basement membrane proteoglycan perlecan, the small leucine rich repeat proteo-

glycan biglycan, the large connective tissue proteoglycan versican, and the cell surface

proteoglycan syndecan-4. Our gene-expression data pointed to perlecan as the major proteo-

glycan in these primary endothelial cells, followed by serglycin and biglycan, whereas the other

proteoglycans were expressed at lower levels. Interestingly, expression and secretion of sergly-

cin increased in proliferative compared to quiescent cultures. This was in contrast to all the

other proteoglycans examined, which were reduced or unaffected. This observation is in line

with an early study on monocytes, which mainly express serglycin, demonstrating high proteo-

glycan expression in low density cell cultures and lowered expression in high density cultures

[50], and a study in endothelial cells demonstrating cell density-dependent regulation of pro-

teoglycan synthesis [51]. The increase in perlecan and versican in quiescence compared to

actively proliferating cells could reflect the need for proteoglycans in the construction of endo-

thelial basement membrane and extracellular matrix in dense cultures, compared to actively

proliferating cells.

Our data may suggest other possible functions for serglycin in endothelium related to the

proliferative status of the cells. It is therefore of interest that serglycin is involved in the

Fig 9. CCL2 secretion from polarized cells.HUVEC from three different donors were polarized on
semipermeable filters. Confluent monolayers were untreated (Ctr) or incubated with IL-1β for 24 hours. CCL2
content in apical (AP) and basolateral (BL) conditioned media was compared.

doi:10.1371/journal.pone.0145584.g009
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Fig 10. Serglycin and CCL2 distribution in unstimulated and stimulated cells.HUVEC were cultured on chamber slides for 24 hours without (Ctr) or with
IL-1β. The cells were fixed and stained, and pictures were acquired using a Zeiss LSM 700 confocal laser scanning microscope at 62x magnification. These
are representative results from cells isolated from three different donors. (A) The left panel show cells stained for serglycin in red and CCL2 in green. The
right panel show the negative control stained with secondary antibodies only. These pictures are Z-stacks showing the distribution of the target proteins
throughout the cells. (B) The panels show untreated (top) and IL-1β stimulated (bottom) HUVEC cultures, fixed and immunostained for serglycin (green) and
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regulation of apoptosis in mast cells [52] and that lymphoid tissues are enlarged in aging ser-

glycin -/-mice, which may be due to serglycin affecting proliferation, apoptosis or both [53].

Furthermore, high levels of serglycin were demonstrated in nasopharyngeal carcinoma cells,

with higher levels in clones with increased metastatic potential and also, with higher motility

[26]. Recently, serglycin expression was related to cancer aggressivity both in tumor and

stroma [54, 55].

Wound healing occurs as a cellular response to injury and involves activation of endothelial

cells. The endothelium is especially important in the inflammatory, proliferative and angio-

genic phases of wound healing. Many growth factors and cytokines released by endothelial

cells are needed to coordinate and maintain the healing, and endothelial proliferation and

angiogenesis is vital. In diabetes we see impaired wound healing, leading to complications such

as foot ulcers. Furthermore, in tumors, an abnormal endothelium contributes to tumor growth

and metastasis [7]. We show reduced proliferative and wound-healing capacity in endothelial

cells after serglycin knockdown. Accordingly, the results presented here implicate serglycin in

endothelial dysfunction relevant for both diabetic complications and cancer.

A reduction in normal tissue oxygen triggers compensatory responses such as angiogenesis,

resulting in improved tissue oxygenation. Although angiogenesis was not significantly influ-

enced in our experiments; serglycin increased in response to hypoxia. Early findings demon-

strated a reduced endothelial proteoglycan secretion in hypoxia, assessed by 35S-sulfate

metabolic labelling [56]. In macrophages however, a more recent study demonstrated an

increase in the proteoglycans versican and perlecan, mediated trough the HIF-pathway [57].

Furthermore, the novel hypoxia-sensitive chondroitin sulfate proteoglycan CSPG4, important

in proliferation, is also increased in hypoxia [58].

The effect of serglycin expression on proliferation has been studied in tumor models. Pur-

ushothaman and Toole found that serglycin knockdown in myeloma cells reduced tumor

growth [23]. A recent study found enhanced tumor growth and proliferation in serglycin defi-

cient RIP1-Tag2 mice [59]. This is in contrast to the results presented here. Notably, serglycin

might have different functions depending on the tissue or cell type in question.

Not only proliferation, but also the migratory capacity will affect the outcome of the scratch

wound assay. It is of interest that serglycin is shown to affect the migratory capacity of cancer

cells [25], suggesting an effect of serglycin on migration also in endothelial cells. However, pre-

liminary data from our laboratory suggest that migration is not decreased in the serglycin

knockdown. We observed that quiescent HUVEC increased the serglycin expression more

than proliferating cells after IL-1β stimulation. Proliferating cells have a high expression of ser-

glycin, and inflammatory stimuli are not able to increase this further, in contrast to resting

cells. Together, these results support a role for serglycin not limited to proliferative processes,

but also in inflammatory reactions. It can be hypothesized that serglycin is more involved in

processes related to proliferation in sparse endothelium, while more devoted to inflammatory

reactions in quiescent cells. The mechanisms by which serglycin is involved in both inflamma-

tory reactions and regulation of proliferation has only been studied to a limited extent [22].

However, in a recent study it was demonstrated that UV irradiated skin of human volunteers

had accumulations of dermal and endothelial serglycin [60], showing that activated endothelial

cells express serglycin in vivo. This in vivo finding is in accordance with data presented here

and supports the notion that serglycin in endothelial cells can be involved in both endothelial

inflammatory reactions and regulation of apoptosis and proliferation.

CCL2 (red). The left and middle panels show serglycin and CCL2 staining, respectively. The right panel shows the overlay (merge) of serglycin and CCL2.
These pictures are the view from the middle of the cells, were both target proteins are expressed equally. The scale bar indicates 10 μm.

doi:10.1371/journal.pone.0145584.g010
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Serglycin has the ability to interact with partner molecules through the glycosaminoglycan

side-chains [61]. The importance of serglycin for the storage of proteases and histamine in

granules in mast cells [62], for granzyme B storage in cytolytic T-cells [63], for chemokine and

platelet derived growth factor storage in platelets [64] and for TNFα secretion in macrophages

[65] has been clearly documented. In both storage granules and secretory vesicles serglycin

interacts with several cytokines and growth factors. Several of these are involved in angiogene-

sis and wound repair [66, 67]. We have previously established that serglycin is a major proteo-

glycan in primary human endothelial cells, involved in the storage and secretion of the

chemokine CXCL1, which was reduced in the absence of serglycin [21, 42].

Fig 11. Possible mechanisms for the role of serglycin in regulation of proliferation. In endothelium, serglycin is subject to constitutive (A) and regulated
(B) secretion. Constitutive secretion occurs mainly to the apical side, facing the bloodstream, but also to the basolateral side. Vesicles for regulated secretion
might be stored intracellularly and serglycin is secreted mainly to the apical side upon stimulation. Through the glycosaminoglycan (GAG)-chains, serglycin
has the ability to bind partner molecules including chemokines, growth factors and proteases, and thus secreted serglycin can offer protection, transport and
presentation of these molecules (C). Hence, serglycin can contribute to the formation of chemotactic gradients [72] of both bound and dissociated effector
molecules (D). This can have autocrine effects (E) as well as effects on target cells (F). CCL2 is recognized as an angiogenic chemokine [45], and in
serglycin knockdown cells we observe an increase in CCL2 secretion. Lack of serglycin has several possible outcomes. It could result in a lack of gradient
formation, as well as reduced transport and presentation affecting target cells and autocrine signaling. Further, absence of serglycin could affect storage and
secretion, resulting in dysregulated secretion exemplified by the increased levels of CCL2 observed here (G). This can have consequences for the autocrine
effect of CCL2 on endothelium, suggesting that serglycin is necessary for chemokine presentation to its receptor.

doi:10.1371/journal.pone.0145584.g011
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To understand more of the mechanisms behind the functions of serglycin in proliferation

and inflammation, we knocked down serglycin expression. In serglycin knockdown cells, the

CCL2 secretion in response to IL-1β activation was significantly increased. Furthermore, we

found that both serglycin and CCL2 was secreted predominately to the apical side of polarized

endothelial cells. Finally, serglycin and CCL2 co-localized not only in perinuclear areas, but

also in some of the vesicles. Together these data provide evidence for a role of serglycin also in

the regulation of secretion CCL2. CCL2 is a pro-inflammatory chemokine involved in cancer

metastasis by promoting monocyte attraction and angiogenesis [68]. Notably, the effect of ser-

glycin knockdown was opposite for CCL2 and CXCL1, pointing to different mechanisms for

serglycin regulation of these two chemokines. Possibly, serglycin could be important for the

vesicular storage of CCL2, while more involved in the secretion of CXCL1. These results are

also comparable to the increased secretion of TNFα observed in macrophages derived from

SRGN-/- mice [65]. A role for serglycin in intracellular storage or in lysosomal targeting, are

possible scenarios. Alternatively, with its ability to bind proteases, serglycin could have extra-

cellular functions affecting the transport and protection of secreted chemokines. In contrast to

these two chemokines, we show that Ang2 secretion is not dependent on serglycin, indicating

differences in regulation of secretion of these angiogenic factors. Endothelial cells express

CCR2, the receptor for CCL2. IL-1β stimulation and scratch wound injury increase this expres-

sion [69]. HUVEC also respond to CCL2 by increased angiogenesis [70], providing a possible

autocrine mechanism for regulation of proliferation. It is possible that serglycin participates

both in secretion of CCL2 and presentation of CCL2 to CCR2, in line with what has been

shown for delivery of serglycin in multimeric complexes with perforin and granzyme B to tar-

get cells [71].

A tentative scheme for possible mechanisms of the effects of serglycin in regulation of prolif-

eration is provided in Fig 11. In this figure we suggest that serglycin can be important for endo-

thelial inflammatory response, proliferation and angiogenesis such as in wound healing;

through regulation of secretion, transport, protection and presentation of partner molecules

including CCL2.

Together, our findings suggest that serglycin expression and localization is related to the

proliferative status of the cells. This is most probably achieved through interactions with and

regulation of partner molecules. The cell density dependent expression of serglycin can reflect

an increased demand for interactions with pro-angiogenic factors. This knowledge is important

for further understanding of functions and mechanisms of serglycin in endothelial cells in

tumor biology and development of diabetic complications.

Supporting Information

S1 Fig. Intracellular distribution of serglycin and VE-cadherin staining in wound-assay.

HUVEC cultures with wound (right panel) or with no wound (left panel) were fixed and

stained for serglycin (green) and VE-Cadherin (red). Blue color indicates DAPI nuclear stain-

ing. VE-Cadherin is expressed in endothelial cell junctions. In wounded areas with reduced

VE-Cadherin expression, serglycin perinuclear expression is increased. The pictures were

acquired using a confocal microscope with 60 times magnification.

(TIF)

S2 Fig. Effect of IL-1β on cell proliferation and cytotoxicity in sparse and dense cells. (A)

Cytotoxicity of IL-1β on HUVEC from 2 donors was determined as a function of time using

the LDH-assay in sparse (left panel) and dense (right panel) cell cultures. The results are pre-

sented as % mortality of maximum. (B) The proliferation rate was assessed by applying the

MTS-assay on cell cultures of varying densities. This assay was performed with cells from 4
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donors for all cell densities for control cells (Ctr) and 3 donors for IL-1β stimulated cells (IL-

1β) at 2 500, 10 000 and 50 000 cells per well, and from 1 donor for 5 000 and 25 000 cells per

well of 0.32 cm2. Each point shows the mean absorbance per cell, reflecting the cell prolifera-

tion. All means are shown with SEM denoted by vertical bars.

(TIF)
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