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Abstract

PURPOSE—To noninvasively evaluate the effects of corneal hydration and collagen

crosslinking (CXL) on the mechanical behavior of the cornea.

SETTING—Cleveland Clinic Cole Eye Institute, Cleveland, Ohio, USA.

DESIGN—Experimental study.

METHODS—An optical coherence elastography (OCE) technique was used to measure the

displacement behavior of 5 pairs of debrided human donor globes in 3 serial states as follows:

edematous, normal thickness, and after riboflavin–ultraviolet-A–mediated CXL. During

micromotor-controlled axial displacements with a curved goniolens at physiologic intraocular

pressure (IOP), serial optical coherence tomography scans were obtained to allow high-resolution

intrastromal speckle tracking and displacement measurements over the central 4.0 mm of the

cornea.

RESULTS—With no imposed increase in IOP, the mean lateral to imposed axial displacement

ratios were 0.035 μm/μm ± 0.037 (SD) in edematous corneas, 0.021 ± 0.02 μm/μm in normal

thickness corneas, and 0.014 ± 0.009 μm/μm in post-CXL corneas. The differences were

statistically significant (P<.05, analysis of variance) and indicated a 40% increase in lateral

stromal resistance with deturgescence and a further 33% mean increase in relative stiffness with

CXL.

CONCLUSIONS—Serial perturbations of the corneal hydration state and CXL had significant

effects on corneal biomechanical behavior. With an axially applied stress from a nonapplanating

contact lens, displacements along the direction of the collagen lamellae were 2 orders of

magnitude lower than axial deformations. These experiments show the ability of OCE to quantify

clinically relevant mechanical property differences under physiologic conditions.
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The shape of the cornea and its optical properties are greatly influenced by the

biomechanical properties of its constituent tissue. Diseases such as keratoconus, pellucid

marginal degeneration, and keratoglobus distort this shape and are hypothesized to involve a

primary disorder of biomechanical strength.1 Although stiffening by corneal collagen

crosslinking (CXL) is a promising emerging treatment for ectatic disease,2 the

biomechanical features of ectatic disease and the impact of CXL on target tissues have not

been fully characterized, in part because of a paucity of clinical tools for biomechanical

characterization.3–6

Refractive surgery procedures such as laser in situ keratomileusis (LASIK) and

photorefractive keratectomy (PRK) are performed to reduce spectacle or contact lens

dependence by altering the corneal shape and refractive power. In such procedures, the

biomechanical properties of the cornea are altered and mediate secondary mechanical shape

changes of the corneal surface.7,8 In corneas with undiagnosed disease states, refractive

surgery can be followed by a progressive and sometimes unrecoverable corneal shape

change.1,9,10 The combination of an ectatic disease state and refractive surgery may lead to

rapid corneal degeneration.9,11,12 Currently available screening tools to detect this type of

predisposition do not offer the capability to spatially resolve the mechanical properties of the

cornea. Laser in situ keratomileusis, PRK, and other corneal reshaping procedures do not

currently account for patient-specific mechanical properties, and the lack of such

information may contribute to less predictable refractive outcomes due to interindividual

differences in the corneal biomechanical state. These issues point to a need for an in vivo

tool for measuring the mechanical properties of the cornea that can enhance the sensitivity

and specificity of screening examinations and provide data for modeling the influence of

tissue-specific mechanical properties on the surgical outcome.1,13–15

Elastography is a method originally pioneered in the field of ultrasound imaging.16 It

provides mechanical contrast to imaging for tissue discrimination. Application of

elastographic techniques to optical coherence tomography (OCT)16–24 has shown promise in

distinguishing diseased states from normal tissue states.25–31 The application of these

techniques to the measurement of corneal biomechanical properties could affect early

disease detection, enhance assessment of candidacy for corneal refractive procedures, and

enable more patient-specific surgical planning.

Elastography of the cornea requires the implementation of an imaging technique and a

perturbation protocol. We previously described a nondestructive technique that used a

gonioscopy lens to impart stress perturbation and OCT imaging to measure the displacement

response throughout the corneal depth.32,33 The current study sought to determine the

biomechanical effect in terms of lateral resistance to displacement of hydration changes and

CXL in human whole-globe corneal tissue.

MATERIALS AND METHODS

Five pairs of human donor globes were obtained from Cleveland Eye Bank and used for the

experiments. Each eye was tested within 72 hours postmortem, with the majority being used
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within 48 hours. The eyes were obtained in a refrigerated, but not frozen, state and preserved

in a chondroitin sul-fate–based corneal storage medium (Optisol-GS, Bausch & Lomb).

The following procedure was performed on each eye globe: Once the eye was obtained, it

was removed from refrigerated storage. The principal meridia of the eye were identified by

the remnants of the ocular muscles still attached to the globe. The eye was mounted beneath

a purpose-designed OCT device sample arm and pressurized using gravity-infused 0.9%

saline through a 21-gauge needle inserted into the posterior chamber. The pressure inside the

globe was monitored with an inline pressure transducer and calibrated digital monitor. The

intraocular pressure (IOP) was set to a target of 15 mm Hg and monitored throughout all

stages of the experiments. After mounting and pressurization were complete, the epithelium

was removed by manual scraping.

The OCT imaging was performed using a previously described technique.32 The technique

consisted of scanning 4.0 mm × 40 μm with lateral oversampling of approximately 10 times

the spot size (20 μm) to ensure accurate capture of the speckle pattern. Imaging was

performed at a line rate of 47 000 A-scans/sec with no averaging performed. The system

consisted of a purpose-built k-space linear Fourier-domain OCT system with 12 μm axial

resolution in air and a spot size of approximately 20 μm in air with a scanning range of 15.0

mm by 15.0 mm laterally. The system was driven by a C++ software suite created for this

purpose.

While the donor eye was still in an edematous state, the first set of imaging experiments was

performed. A standard clinical gonioscopy lens with a 4.0 mm central aperture (Volk

Optical, Inc.) was used to perturb the tissue. The OCT sample arm beam was passed through

the central unobstructed view of the gonioscopy lens, as in Figure 1. This enabled imaging a

window of approximately 4.0 mm in width. The imaging window was oriented along 1 of

the 2 principal meridia chosen at random.

The gonioscopy lens was physically mounted to a computer-controlled translation stage

(TLA-28, Zaber Technologies, Inc.), which was used to control the displacement of the

gonioscopy lens on the cornea (Figure 1). The gonios-copy lens was displaced in 20 μm

increments along the scan direction (axially) through a total range of 220 μm. Images were

acquired before and after each displacement increment. Displacement tracking was

performed using a method previously described.32 In this study, the region of interest used

was 15 pixels by 15 pixels, or 60 μm axially by 15 μm laterally. As before, basic

thresholding was used to prevent erroneous tracking of noise in the image. The imaging

sequence was repeated for the second meridia to ensure that data were collected in the

nasal–temporal and inferior–superior meridia.

After the first imaging sequence was completed, the eye was inflated to approximately 50

mm Hg and a hyperosmolar dextran 15% solution (MW 500 000, Sigma-Aldrich Co.) was

applied to the corneal surface to thin the cornea to approximately normal physiologic

levels.34,35 The eye was allowed to thin to normal physiologic thickness (≤500 μm) over

approximately 30 minutes. Central corneal thickness (CCT) was measured with the OCT
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scanner. After physiologic thickness was achieved, the imaging sequence performed on the

edematous cornea was repeated.

After completion of the thinning and second imaging sequence, the eye was prepared for

CXL following a standard clinical protocol as follows: One drop of riboflavin 0.1%

(concentration) was applied every 5 minutes with an ultraviolet-A (UVA) source (Pria

Vision, Inc.) illuminating the cornea at 3 mW/cm2 and turned on after the application of the

second riboflavin drop. The riboflavin solution did not contain dextran. Seven drops over 35

minutes and continuous UVA exposure for 30 minutes completed the CXL protocol. The

imaging sequence was repeated for the third and final time after the CXL procedure was

completed.

The data were collected for each set of imaging sequences. Each image was divided into 6

sections across the 4.0 mm of the corneal stroma (Figure 2). While the 2 central sections

overlap between meridia, the outer 4 sections do not, resulting in 10 regional data sets; that

is, the anterior and posterior of nasal, temporal, superior, inferior, and central. Local lateral

displacement information in each section was averaged to produce a single data point per

section. These lateral displacement measurements were plotted against the corresponding

local measured axial displacement. The absolute slope of the resultant line was fitted using a

linear fit. The absolute value of the slope was used to compensate for differences in lateral

displacement direction between each section of the image because the mechanical properties

are insensitive to image orientation. This slope was then processed with a general linear

analysis-of-variance statistical model using Minitab statistical software (version 14, Minitab

Inc.) to look for differences between the 3 measured states (edematous, deturgesed, and

crosslinked), the 10 regions identified previously, the left eye and right eye, and each eye

pair. A post hoc Tukey analysis for pairwise multiple comparisons was performed to detect

statistically significant differences between the individual groups.

RESULTS

During all compression experiments, the IOP of donor globes remained within 1 mm Hg of

pre-perturbation IOP measured with the in-line pressure transducer. The mean change in

CCT between edematous and deturgesed states was 88.2 μm ± 69.6 (SD).

Figure 3 shows color elastograms and plots of regional displacement of a representative

donor globe. The upper frame in Figure 3, A, shows the lateral corneal tissue motion in a

post-deturgescence/pre-CXL cornea across an imaged section during axial compression.

Displacements on the order of 5 μm or less were observed in most regions, with the areas of

greatest displacement (least relative stiffness) indicated in red and corresponding to posterior

stroma. Axial compressions were nearly spatially uniform (lower frame in Figure 3, A),

confirming that the imposed stress delivered by the goniolens did not produce

inhomogeneous axial deformations and complex bending moments as one would observe

with an applanating or indenting perturbation.

Table 1 shows the mean values (±SD) of the dataset. Data from 1 donor pair obtained while

nearby building construction was in progress were eliminated because of potential vibration
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artifact and classification as an outlier by the statistical software, with differences in

displacement more than double those of all other pairs. There were no statistically

significant differences between left and right donor eyes, the 10 corneal regions, or the 2

meridia measured under any tissue state in the eyes as a group. Statistically significant

interregional differences were noted in individual eyes; however, interregional differences

were not consistent or statistically significant when compared across all eyes. Relative

displacement differences were statistically significant between states, with corneal

deturgescence and CXL favoring stiffer behavior and significant reductions in displacement

variance. The mean values were 0.035 μm/μm in the edematous state, 0.021 μm/μm in the

normal state, and 0.014 μm/μm in the CXL sate (P<.05, Tukey analysis). The Levene test

indicated that the variance between the normal state and CXL state was statistically

significantly different (p<.05). Figure 4 shows a box-and-stem plot of the resultant data.

DISCUSSION

In this serial-controlled human whole-globe study, we found that corneal edema and CXL

both significantly affected the mechanical behavior of the cornea and that optical coherence

elastography is capable of measuring these mechanical differences under physiologic stress

conditions created by simple axial perturbations with a nonapplanating contact lens. In a

study of lateral corneal displacement in human whole globes using surface mercury beads as

fiducial markers, Hjortdal and Jensen36 found very low lateral strains (~1.0%) indicative of

high lateral stiffness under inflational stresses from 2 to 100 mm Hg. The low lateral-to-

axial deformation ratios observed in the current study (1 to 3 μm of lateral displacement per

100 μm of axial displacement) confirm the very high relative stiffness of the normal cornea

in the direction of the collagen lamellae, although with much lower imposed stresses and the

added advantage of intrinsic pan-corneal optical fiducial features that allow displacement

tracking across the entire corneal depth.

Abnormalities of corneal stromal resistance to deformation in the lateral direction have been

proposed as a potential factor in the pathogenesis of corneal ectasia based on ultrastructural

observations from x-ray diffraction,37,38 second-harmonic-generation confocal

microscopy,39 and histology.40 A recent x-ray diffraction study by Hayes et al.41 suggests

that ultrastructural changes, such as decreases in interfibrillar spacing and reduced fibril

diameter observed after riboflavin–UVA CXL are dependent on the corneal hydration state

and the relative osmolarity of the riboflavin solution. Porcine tissue studies have shown

increases in corneal stiffness with dehydration42,43 using excised cornea or corneal surface

curvature changes under inflational stress. Recent studies using Brillouin microscopy,44–47

which estimates elastic properties based on light-scattering behavior as opposed to

displacement mapping, showed its capability to measure property changes after CXL in

corneal tissue; however, no Brillouin-based data on the effects of hydration on corneal

biomechanical properties have been reported. We believe that the present study is the first to

nondestructively evaluate the dynamic impact of hydration and CXL treatment on the

displacement behavior of the human corneal stroma in this direction of action.

Figure 4 shows that corneal deturgescence and CXL result in progressive and significant

reductions in the mean lateral displacement and corresponding reductions in the spread of
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the data. Although no statistically significant differences were observed regionally across all

eye pairs, significant regional differences in relative displacement behavior were present in

each eye. It is likely that the regional heterogeneity of and variation in these patterns from

sample to sample in the deturgesed corneas is greater in postmortem human corneal tissue

than in the in vivo state due to the lack of uniform endothelial cell function (as suggested by

the regional variability in the upper elastogram in Figure 3, A), even with attempts to de-

swell corneas to a physiologic CCT endpoint. It is also important to note that the

measurement used to characterize local stiffness in these experiments is only 1 of many

possible formulations of displacement behavior that can be derived from the measurements.

The current measurement formulation was designed to be sensitive to differences in lateral

strain, in the predominant direction of action of the collagen fibers. It is feasible that larger

stresses with larger resulting displacements may facilitate better contrast for identifying

local material property abnormalities for early keratoconus detection and other applications.

It is possible that depth-dependent variations like those observed in ex vivo tests of

sectioned corneal tissue explants obtained from different stromal depths3,48 were not

consistently observed in this study because of the very low stresses applied. However,

another important difference when comparing our results with those in previous studies is

that the current approach measures the behavior of intact corneas surrounded by the native

boundary conditions of the whole eye rather than of explants dissociated from their

surrounding tissues. Winkler et al.49 made the recent observation that the stromal collagen

architecture may involve a greater degree of interconnectivity than previously recognized

and that this interconnectivity may favor more homogenous tissue behaviors in intact in situ

testing. We suspect the 4.0 mm scan diameter may also have contributed to the lack of

significant regional differences across the groups because only a small portion of the total

corneal stroma was measured. In future experiments, we plan to use a larger diameter lens

and corresponding scan diameter to enable measurement of a large portion of the corneal

stroma without being limited by the imaging aperture. We have also recently incorporated

force sensors for more direct measurement of stress–strain relationships and local elastic

modulus determination.

In summary, we report the first serial-control study of the effects of edema and CXL on

stromal displacement behavior in human donor globes. These experiments showed

significant increases in lateral corneal resistance with CXL and relative decreases in the

presence of stromal edema. Optical coherence tomography–based elastography is sensitive

enough to detect micron-level displacements with stresses comparable to those incurred

during applanation tonometry and can be performed with a contoured contact surface to

avoid complex bending moments, such as those produced during air puff–driven

deformations. A reduction in corneal stromal resistance to lateral strain has been proposed as

a potential mechanism of corneal instability in keratoconus, and the current study shows a

potential biomechanical mechanism for increased corneal stability after CXL.
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WHAT WAS KNOWN

• Commercially available clinical devices for estimating corneal biomechanical

properties do not monitor deformation of intracorneal deformations.

• This limits the ability to obtain depth-dependent stromal biomechanical property

data and does not facilitate the resolution of lateral displacement, which may be

important in ectasia screening and detection of CXL-mediated effects.

• Previous studies report differences in the elastic behavior of nonhuman corneal

specimens with altered corneal hydration.

WHAT THIS PAPER ADDS

• Optical coherence tomography–based elastography was sensitive enough to

detect micron-level displacements without the need for destructive or

nonphysiologic stressors that invoke large displacements.

• The results confirm the high stiffness of the cornea in the direction of the

collagen lamellae while demonstrating for the first time in human tissue that

significant changes in lateral resistance occur with edema and after CXL.

Increases in lateral stiffness may be an important mechanism of corneal

topographic stability after CXL.
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Figure 1.
Three-dimensional representation of the gonioscopy lens and whole globe in the OCT

sample arm path with mechanically translating mobile arm attached.
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Figure 2.
Color elastogram of the approximate regions of interest defined for statistical comparisons.
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Figure 3.
A: Examples of axial and lateral displacement maps for a single eye in the post-

deturgescence state. Lateral displacements (top frame) and axial displacements (bottom

frame) are presented (in μm) for a 20 μm axial compression. The axial displacement data

show a measured group displacement of approximately 20 μm. B: Cumulative regional

corneal displacements for the nasal–temporal meridian of the same eye in A. Lateral to axial

displacement ratios for the edematous state, deturgesed state, and post-CXL state are plotted

for serial compressions. Each line corresponds to one of the 6 defined regions of interest

within the same 2-dimensional section of the cornea.
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Figure 4.
Distribution of the absolute displacement slope in all eyes in all states. In this standard box-

and-whisker plot, the central line indicates the median of the data, the box represents the 2nd

and 3rd quartiles, and the whiskers indicate the 1st and 4th quartiles. Lower slope values

indicate a relative reduction in lateral displacement for a given imposed axial perturbation.

Top: Nasal to temporal orientation. Bottom: Superior to inferior orientation (CA = central

anterior; CP = central posterior; IA = inferior anterior; IP = inferior posterior; NA = nasal

anterior; NP = nasal posterior; SA = superior anterior; SP = superior posterior; TA =

temporal anterior; TP = temporal posterior).
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Table 1

Mean absolute slope of displacements (measured lateral tissue displacement/imposed axial displacement

perturbation) for each region of the cornea in all 3 measured states from the final 4 eye pairs.

Mean (μm/μm) ± SD

Spatial Position Edematous Cornea Normal Cornea Crosslinked Cornea

Anterior nasal 0.039 ± 0.052 0.019 ± 0.020 0.015 ± 0.009

Anterior central 0.038 ± 0.031 0.023 ± 0.025 0.015 ± 0.01

Anterior temporal 0.035 ± 0.043 0.017 ± 0.014 0.013 ± 0.007

Posterior nasal 0.034 ± 0.034 0.024 ± 0.023 0.015 ± 0.001

Posterior central 0.035 ± 0.030 0.024 ± 0.019 0.016 ± 0.01

Posterior temporal 0.032 ± 0.031 0.021 ± 0.016 0.012 ± 0.009
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