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Abstract

The cornea is the most highly innervated tissue in the body. It is generally accepted that cor-

neal stromal nerves penetrate the epithelial basal lamina giving rise to intra-epithelial

nerves. During the course of a study wherein we imaged corneal nerves in mice, we

observed a novel neuronal-epithelial cell interaction whereby nerves approaching the epi-

thelium in the cornea fused with basal epithelial cells, such that their plasma membranes

were continuous and the neuronal axoplasm freely abutted the epithelial cytoplasm. In this

study we sought to determine the frequency, distribution, and morphological profile of neuro-

nal-epithelial cell fusion events within the cornea. Serial electron microscopy images were

obtained from the anterior stroma in the paralimbus and central cornea of 8–10 week old

C57BL/6J mice. We found evidence of a novel alternative behavior involving a neuronal-epi-

thelial interaction whereby 42.8% of central corneal nerve bundles approaching the epithe-

lium contain axons that fuse with basal epithelial cells. The average surface-to-volume ratio

of a penetrating nerve was 3.32, while the average fusing nerve was smaller at 1.39 (p�

0.0001). Despite this, both neuronal-epithelial cell interactions involve similarly sized discon-

tinuities in the basal lamina. In order to verify the plasma membrane continuity between

fused neurons and epithelial cells we used the lipophilic membrane tracer DiI. The majority

of corneal nerves were labeled with DiI after application to the trigeminal ganglion and, con-

sistent with our ultrastructural observations, fusion sites recognized as DiI-labeled basal epi-

thelial cells were located at points of stromal nerve termination. These studies provide

evidence that neuronal-epithelial cell fusion is a cell-cell interaction that occurs primarily in

the central cornea, and fusing nerve bundles are morphologically distinct from penetrating

nerve bundles. This is, to our knowledge, the first description of neuronal-epithelial cell

fusion in the literature adding a new level of complexity to the current understanding of cor-

neal innervation.
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Introduction

The cornea is the most highly innervated tissue in the mammalian body [1]. The nerves of the

cornea provide autonomic responses such as tearing and blinking and assist in maintaining

corneal epithelial homeostasis through the release of trophic factors [2]. Sympathetic innerva-

tion comes from nerve fibers originating in the superior cervical ganglion while sensory infor-

mation is transmitted from the corneal epithelium to cell bodies located in the trigeminal

ganglion, [3–6]. It is well-established that corneal stromal nerves enter the cornea in the

peripheral stroma and travel horizontally before branching to give rise to vertical axons that

penetrate the epithelial basal lamina [7, 8]. Penetrated nerves ramify shortly after entering the

corneal epithelium (in a process known as leash formation), and these ramifications constitute

the sub-basal plexus. Axons in the sub-basal plexus travel anteriorly and laterally between the

wing and superficial-squamous cells of the corneal epithelium, after which they give rise to the

epithelial nerve plexus in addition to axon terminals [9, 10]. Corneal innervation is a dynamic

process, constantly changing as a result of aging and in response to pathology or injury [11].

The mechanisms by which corneal nerve patterning is regulated are not well established.

In addition to data gathered from studies on neurotransmission, our understanding of cor-

neal innervation is largely based on light and electron microscopic imaging. While transmis-

sion electron microscopy (TEM) makes it possible to appreciate corneal nerve ultrastructure

from single ultrathin sections, it provides only a two-dimensional perspective [12]. For a

three-dimensional context, serial sections are needed and while serial sectioning using TEM is

possible, the technical challenge of collecting serial sections is demanding and typically limits

three-dimensional (3D) reconstructions to less than 50 serial images spanning a depth of no

more than 5 microns [13]. To our knowledge, no serial sectioning electron microscopy studies

have been reported on the nerves of the cornea.

With the advent of a relatively new technique known as serial block-face scanning electron

microscopy (SBF-SEM) it is now possible to collect 3D ultrastructural data with relative ease.

Routine automated collection of a thousand or more serially-registered images spanning a

depth of 50 to 100 microns allows for superior 3D reconstructions and improved ultrastruc-

tural interpretation [14]. In addition to providing the ability to produce 3D reconstruction of

tissue at an ultrastructural level, the context provided by serial section imaging allows for the

identification of complex cell-cell interactions at an ultrastructural level that cannot be seen

using light microscopy or single section electron microscopy. As a result, SBF-SEM has been

applied across a great deal of tissue in the literature, but has yet to be used to study corneal

nerves.

The purpose of the current study was to use the 3D capabilities of SBF-SEM to directly

examine stromal nerve penetrations into the corneal epithelium of mice. Shortly after initiat-

ing the study, we observed for the first time a novel neuronal-epithelial cell interaction in

which stromal nerves approach the epithelium and fuse with basal epithelial cells. Herein we

use SBF-SEM to describe and compare two types of neuronal-epithelial interactions, simple

neuronal penetration into the corneal epithelium and the novel fusion event that also occurs

between stromal axons and basal epithelial cells.

Materials and methods

Animals

Male C57BL/6J mice aged 8–10 weeks were purchased from Jackson Labs (Sacramento, CA)

and housed at the University of Houston, College of Optometry (UHCO). All animals were

handled according to the guidelines described in the Association for Research in Vision and
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Ophthalmology Statement for the Use of Animals in Vision and Ophthalmic Research and the

University of Houston College of Optometry animal handling guidelines. All animal proce-

dures were approved by the University of Houston Animal Care and Use Committee (IACUC

number: 16–005).

Electron microscopy

Tissue processing. Mice were euthanized by CO2 asphyxiation followed by cervical dislo-

cation. Tissue fixation and resin-embedding were performed as previously described [15, 16].

Briefly, following enucleation, the eyes were placed in primary fixative (0.1M sodium cacody-

late buffer containing 2.5% glutaraldehyde and 20mM calcium chloride) for 2 hours at room

temperate. Fixed corneas, with the limbus intact, were carefully excised from the whole eye

and cut into four equal quadrants. These quadrants were then washed in buffer before serial

contrasting in potassium ferrocyanide, osmium tetroxide, thiocarbohydrazide and osmium

tetroxide. The contrasted tissue was stained in uranyl acetate at 4˚C overnight before being

placed in a lead aspartate solution for 30 minutes at 60˚C. Finally, the tissue was dehydrated

through an acetone series before embedding in Embed 812 resin (Embed-812, Electron

Microscopy Sciences, Hatsfield, PA) containing Ketjenblack (Ketjenblack EC600JD, Lion Spe-

cialty Chemicals Co., Tokyo) in order to reduce tissue charging [17]. The block-face was

trimmed to a 1 mm x 1 mm size and the tissue block was then glued to an aluminum specimen

pin, and covered in silver paint to further reduce charging.

Serial Block-Face Scanning Electron Microscopy (SBF-SEM). Tissue blocks were sec-

tioned using a Gatan 3View2 system (Gatan, Pleasanton, CA) mounted in a Mira 3 field emis-

sion scanning electron microscope (SEM, Tescan, Pittsburgh, PA). Back scatter electron (BSE)

detection was used to image the block-face. Serial imaging was conducted under high vacuum

(0.047 Pa) using a Schottky emitter and an accelerating voltage of 8–21 keV. Imaging under

high vacuum has the effect of decreasing noise in collected images, but introduces the potential

for tissue charging. However, the inclusion of Ketjenblack to the resin greatly diminishes the

capacity for charging within the tissue. This allowed us to image our tissue under conditions

that normally result in unacceptably charged images. Beam intensity ranged from 5–7 on a

scale ranging from 1–20, with a pixel dwell time of 32 μs, and a spot size of 4–7 nm. Resolution

improves with smaller spot sizes [18]. With a spot size of 4–7 nm the plasma membrane of

cells and organelles is clearly visible as a single electron dense structure (S1 Fig). The z-step dis-

tance between each serial image in these stacks was 100 nm. Magnification ranged from 3000-

5500x and pixel size from 4–15 nm.

The central cornea was defined as having a diameter of 2 mm; the peripheral cornea occu-

pied the region (1.5 mm) between the central cornea and the limbal vasculature. The block-

face was monitored at low magnification for stromal nerves that approached the corneal epi-

thelium at which point high magnification was used to document nerve-epithelial interactions

(i.e., penetration and fusion). Image stacks were post-processed for spatial drift removal using

Gatan Digital Micrograph software.

Subsequent three-dimensional segmentation and reconstruction was conducted using

Amira 6.0.1 software (FEI Company, Hillsboro, OR). The contours of structures of interest

were manually traced for each image in the image stack using a digitizing pen connected to a

Wacom tablet. Traced profiles were used to produce three dimensional volumetric reconstruc-

tions. Volumetric data was extrapolated from these digital reconstructions using the “material

statistics module” in the Amira 6.0.1 software package, and surface meshes applied via the

“generate surface module” in order to create digital models of each reconstruction. Images and

videos of reconstructions were generated using the “animation” module. Segmentation and
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reconstruction using the Amira 6.0.1 software was conducted by a four-person reconstruction

team. Care was taken to reconstruct the electron translucent axons separately from the electron

dense axons within each nerve bundle, this was accomplished by assigning a different material

(i.e. color) to each structure of interest. The basal lamina was identified by its characteristic

electron density (lamina densa) on the stromal face of basal epithelial cells, and neuronal mito-

chondria by their electron dense double membrane and size.

Morphometric analysis. Morphometric analysis using standard stereological techniques

was performed as previously described [19, 20]. Stereology is an aspect of morphometry that

takes advantage of the inherent mathematical relationships between three-dimensional objects

and their two-dimensional representations (e.g., electron micrographs) [21]. These relation-

ships are based on the reasoning of geometric probability and statistics, and the practice of

using stereological grids has been used extensively over the past 50 years to obtain unbiased

and accurate estimates of geometric features such as cell/organelle number, length, surface

area, and volume [22–28].

In order to estimate the surface-to-volume ratio of fusing and penetrating nerves, a cycloid

grid was used. Briefly, serial electron images were obtained of both fusing and penetrating

nerve events as they approach/interact with the corneal basal epithelium (10 animals per

group, with 20 nerves assessed in the fusing group and 23 nerves assessed in the penetrating

group). The serial images in which the nerve is visible were identified, and a section was

selected at random for analysis. Digital micrographs were analyzed in Adobe Photoshop

(Adobe Systems Inc., San Jose, CA) using a cycloid grid [29]. The vertical axis of the grid was

oriented in parallel to the basal lamina within each image in order to account for the aniso-

tropic properties of the cornea. Line intersections with the nerve bundle of interest were

counted, as well as target points located within the nerve bundle (Fig 1). In order to avoid

counting line intercepts and target points within nerves located on the epithelial side of the

basal lamina, a restriction line was drawn from one end of the basal lamina pore to the other

and counts were only made on the stromal side of each nerve. The ratio between line intersec-

tions with the nerve and target points within the nerve was used to calculate the cell surface

Fig 1. Morphometric analysis of corneal nerve surface-to-volume ratio using a cycloid grid. A single image from an

SBF-SEM series showing a nerve that has fused with a basal epithelial cell (A). A micrograph from this series was

selected at random and a cycloid grid was randomly cast onto the image while maintaining the orientation of the grid

(defined by the vertical white arrow) parallel to the epithelial basal lamina (B). The intersection of the grid lines with

the surface of the nerve bundle are marked with blue dots (surface area) while grid points falling within the nerve

bundle are marked with green dots (volume); the inset, enlarged in panel (C), offers a magnified view of the grid. Scale

bars = 2 μm.

https://doi.org/10.1371/journal.pone.0224434.g001
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density, or surface-to-volume ratio using an established stereology formula:

ŜV ¼
2 �
Pn

i¼1
Ii

l=p �
Pn

i¼1
Pi

where I is the number of intersections between the grid lines and nerve bundle, P is the num-

ber of grid points falling within the target nerve, and l/p is the length of test line per grid point

(corrected for magnification) [29].

Interactions between nerve and epithelium (fusion or penetration) include a discontinuity

in the basal lamina. The maximum dimension of each discontinuity (i.e., basal lamina pore

diameter) was identified within each image stack and measured using Fiji (ImageJ) [30].

Transmission Electron Microscopy (TEM). Tissue blocks containing verified neuronal-

epithelial cell fusion and nerve penetration into the basal epithelium were removed from the

Gatan 3View2 system and ultra-thin sections 100 nm thick were cut, set on single slot copper

grids, and imaged on a Tecnai G2 Spirit BioTWIN electron microscope (FEI Company, Hills-

boro, OR). Nerve bundles were imaged and assessed for the presence of microtubules and cel-

lular organelles.

DiI labeling of trigeminal ganglia

Tissue processing. DiI crystals were placed on the trigeminal ganglia of 6 C57BL/6J mice.

Mice were euthanized by CO2 asphyxiation followed by cervical dislocation. The head was

then removed, the skin covering the skull removed (making sure to carefully cut around the

tissue surrounding the orbit), and the skull was cut down the medial line and removed along

with the brain up to the cerebellum, pons, and medulla. The head was then placed in 2% para-

formaldehyde overnight. The following day, the trigeminal ganglion was located [31], severed

at the ophthalmic branch, and DiI crystals (1, 1—dioctadecyl-3,3,3’,3’-tetramethylindocarbo-

cyanine perchlorate, ThermoFisher, Waltham, MA) were crushed into the ganglia using surgi-

cal tweezers (Fig 2). The region around the ganglia was dried using chem-wipes prior to DiI

application, as DiI is a hydrophobic substance [32, 33]. The skull was then filled with 5% low-

melting temperature agarose using a pipette, allowed to harden at 4˚C for 2 minutes. The tissue

was then placed in 2% paraformaldehyde and allowed to sit at 4˚C for 26 weeks. Following this

period, the eyes were enucleated, corneas isolated, stained with DAPI, and flat-mounted for

imaging. Control mice, where DiI was excluded from the tissue preparation, were included in

the study.

Imaging of DiI labeled corneal nerves and basal epithelial cells. Corneas were imaged

using a DeltaVision wide field deconvolution fluorescence microscope (GE Life Sciences, Pitts-

burg, PA) with a 60x immersion oil lens. Corneas were then scanned for fusion events defined

as a basal epithelial cell/cells with DiI labeled plasma membrane immediately adjacent to a DiI

labeled stromal nerve. The central cornea was defined as the centermost 2 mm of the cornea.

The remaining 1.5 mm region, defined at its edge by the limbal vasculature, was considered

the peripheral cornea.

Statistics

GraphPad Prism (GraphPad Software. San Diego, CA, USA) was used for statistical analysis

and data represented as the mean ± standard error of the mean. A two-tailed Student’s t-test

was performed to compare surface-to-volume ratios between penetrating and fusing nerves,

while a Mann Whitney U Test (Wilcoxon Rank Sum Test) was used to compare the basal lam-

ina pore size between the two groups. A p-value of� 0.05 was considered to be statistically

significant.

Neuronal-epithelial cell fusion in the mouse cornea

PLOS ONE | https://doi.org/10.1371/journal.pone.0224434 November 13, 2019 5 / 24

https://doi.org/10.1371/journal.pone.0224434


Results

SBF-SEM imaging of mouse corneal nerves revealed conventional nerve

penetration as well as novel neuronal-epithelial cell fusion events

Using SBF-SEM we were able to image conventional nerve penetration through the epithelial

basal lamina, where a stromal nerve bundle containing multiple axons passes through the epi-

thelial basal lamina to form a leash point whereby the nerve bundle gives rise to multiple

smaller axonal projections which extend between epithelial cells and give rise to the sub-basal

and epithelial plexuses. In addition to conventional nerve penetration through the basal lam-

ina, a novel neuronal-epithelial cell fusion event was observed (Fig 3A). Nerve bundles

involved in fusion contain axons whose plasma membrane is fused and continuous with that

of a basal epithelial cell such that the axoplasm comes into direct contact with the cytoplasm of

the fused epithelial cell (Fig 3B). In all cases of neuronal-epithelial cell fusion (21 total events

across 10 animals), the fusing axons were accompanied by conventional penetrating axons

within the same nerve bundle. In other words, these nerve bundles contained a mixture of fus-

ing and penetrating axons. Penetrating axons were easily distinguishable amongst fusing

axons as their axoplasm was characteristically electron dense compared to the diffuse, electron

translucent axoplasm associated with fusing axons (Fig 4). Most often, a single nerve bundle

fused with multiple basal epithelial cells; however, fusion with single basal epithelial cells was

also observed. Whether fusion was initiated by the nerve or the epithelium could not be

determined.

After the initial discovery of neuronal-epithelial cell fusion, we sought to determine the fre-

quency and distribution of neuronal-epithelial cell fusion events using SBF-SEM on C57BL/6J

mice (n = 6). Serial transverse images were collected from the central and peripheral cornea

and nerves that approached the epithelial basal lamina were identified. Of 21 stromal nerve

Fig 2. Application of DiI to the trigeminal ganglia of the mouse. A dissected view of the mouse cranial cavity

showing trigeminal ganglia (�) straddling the optic chiasm. The trigeminal branches are labeled as 1, 2 and 3 and

correspond to the ophthalmic, maxillary, and mandibular branches. DiI crystal was applied to the severed ophthalmic

branch.

https://doi.org/10.1371/journal.pone.0224434.g002
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bundles that interacted with the central corneal epithelium, 9 contained axons that fused with

basal epithelial cells (42.8% of nerves observed) while the remaining 12 nerve bundles only

gave rise to conventional nerve penetration and leash formation. In contrast, stromal nerve

bundles that engaged the basal epithelium in the peripheral cornea (21 interactions) showed

no evidence of fusion as they penetrated the basal lamina and gave rise to the sub-basal and

epithelial nerve plexuses.

3D Reconstruction of conventional nerve penetration and neuronal-

epithelial cell fusion

To better characterize the ultrastructural organization of neuronal-epithelial cell fusion and

document how it differed from conventional nerve penetration, SBF-SEM was used to collect

serial image stacks suitable for segmentation and 3D reconstruction. When segmenting neuro-

nal-epithelial cell fusion, care was taken to trace the electron translucent portion of the fusing

axon separately from the penetrating axons with their characteristic electron dense axoplasm.

In regards to conventional penetration events, 3D reconstruction revealed a stromal nerve

bundle bifurcating before extending into the epithelium through two holes, or pores, in the

basal lamina (Fig 5). The basal epithelial cells protrude into the stroma through the basal lam-

ina pore (Fig 5B and 5C) while stromal axons pass through the pore into the corneal epithe-

lium before ramifying and establishing the sub-basal nerve plexus (Fig 5G and 5H). By

comparison, 3D reconstruction of a fusing nerve bundle reveals a mixed population of fusing

and penetrating axons (Fig 6). In this example, the neuronal-epithelial cell fusion event

Fig 3. Stromal nerve fusion with the basal epithelium. A stromal nerve fused with two basal epithelial cells (black

arrowheads) through two distinct pores in the basal lamina (Electron density; white arrowheads) (A). Enlargement of

panel (A) inset showing magnified view of one basal lamina pore (B). Note the continuity between neuronal and

epithelial plasma membranes at the site of fusion (arrows). Electron dense Schwann cell nuclei (N) were visible near

the fusion site. The axoplasm (�) was electron translucent, lacked mitochondria and mixing between axoplasm and

epithelial cell cytoplasm (E) was not evident. Scale bars = 2 μm.

https://doi.org/10.1371/journal.pone.0224434.g003
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occurred at the junction between three basal epithelial cells, commonly referred to as a Y-junc-

tion or tricellular corner. The electron dense axons within this nerve bundle passed into the

basal epithelium through a pore in the basal lamina at this tricellular junction, and produced

four ramifications (Fig 6H). The electron translucent axons within this nerve bundle did not

penetrate into the epithelium, but rather fused with three separate basal epithelial cells through

this basal lamina pore (Fig 6I).

Nerve bundles containing neuronal-epithelial cell fusion were

morphologically distinct from conventionally penetrating nerve bundles

Stromal nerve bundles that interacted with the epithelium were comprised of penetrating

nerves only or a mixture of penetrating and fusing nerves. In addition to their more electron

dense axoplasm, the diameter of penetrating nerve bundles was noticeably smaller than their

fusing counterparts (Fig 7A and 7B). This resulted in a marked difference in their surface-to-

volume ratio (Fig 7C). Stromal nerve bundles that only penetrated the basal lamina and

extended into the epithelium exhibited a small diameter and a high surface-to-volume ratio

that was more than twice that of nerve bundles containing fusion. The smaller surface-to-vol-

ume ratio of the fused nerve bundles was consistent with the “swollen” appearance of their

axoplasm (Fig 7B). Despite the marked differences in surface-to-volume ratios, the basal lam-

ina pore size through which penetrating or fusing nerve bundles passed through was not dif-

ferent (Fig 7D).

Volumetric and surface data was extracted from the 3D reconstruction of fusion and con-

ventional penetration seen in Figs 5 and 6. Over the same length of reconstructed nerve, the

Fig 4. Neuronal-epithelial cell fusion involved mixed bundles of fusing and penetrating axons. Four examples of

neuronal-epithelial cell fusion (A-D). The electron translucent portion of each nerve bundle (�) was fused with a basal

epithelial cell. Penetrating nerves that continued into the epithelium (visible in Panel A) contributed to the sub-basal

plexus and were recognized by their greater electron density (arrow). Scale bar = 2 μm.

https://doi.org/10.1371/journal.pone.0224434.g004
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volume of axons penetrating into the epithelium was comparable, with a volume of 28.58 μm3

in the conventional penetration event and 24.64 μm3 in the fusing nerve bundle. However, the

volume of fusing axons within the fusing nerve bundle accounted for three-fourths of the total

nerve volume, with a volume of 75.42 μm3.

Axons fused to basal epithelial cells lacked microtubules and mitochondria

proximal to sites of fusion

In penetrating axons, mitochondria were distributed throughout the axoplasm of the stromal

nerve as well as the ramified epithelial projections (Fig 8A and 8B). This was true whether the

nerve bundle consisted of only penetrating axons or whether the penetrating axons were

Fig 5. 3D reconstruction of nerve penetration through the epithelial basal lamina. A series of SBF-SEM images

showing a penetrating electron dense corneal nerve (�; A-F) that entered the epithelium through a discontinuity in the

basal lamina (Panels B-E; arrows). A continuous basal lamina was present on either side of the penetration point (A &

F). 3D reconstruction of the penetrating nerve (white) as it passed through the basal lamina (green; G & H). The nerve

bifurcated prior to penetration (H; arrowheads). After penetrating into the corneal epithelium, both nerve branches

underwent ramification. Scale bar = 2 μm.

https://doi.org/10.1371/journal.pone.0224434.g005
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grouped alongside fusing axons, (i.e., a mixed nerve bundle). Fusing nerves contained mito-

chondria but only in locations distal to the fusion site (Fig 9). The axoplasm in close proximity

to the fusion site was always devoid of mitochondria (Fig 8C). At higher resolution, the trans-

mission electron microscope revealed the axoplasm of penetrating nerves was not only rich in

mitochondria, but also microtubules (Fig 10A and 10B). By comparison, the axoplasm of

fused nerves lacked microtubules near the site of fusion; the axoplasm appeared to be com-

posed solely of dispersed and unidentifiable material (Fig 10C and 10D).

Fig 6. 3D reconstruction of neuronal-epithelial cell fusion at the epithelial basal lamina. A series of SBF-SEM

images showing a mixed nerve bundle in which fusing (�) and penetrating axons (arrows) were evident (A-F). The

electron dense penetrating axons passed through the basal lamina and contributed to the sub-basal plexus (F). 3D

reconstruction of a mixed nerve bundle showing fusing (purple) and penetrating (white) axons (G). A large fusion area

(blue) denotes neuronal fusion involving three separate epithelial cells and both penetrating (H) and fusing (I) axons.

Scale bar = 2 μm.

https://doi.org/10.1371/journal.pone.0224434.g006
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Anterograde labeling confirms corneal nerve fusion with the basal

epithelium

SBF-SEM imaging had proved useful for documenting nerve fusion at an ultrastructural mor-

phologic level. Because of the novelty of the observation, we sought to confirm it using a func-

tional method. The ultrastructure suggests the plasma membrane of the nerve fuses with the

plasma membrane of the basal epithelial cell (Fig 3) and predicts that a lipid membrane dye,

DiI, applied to the nerve should be able to diffuse into the lipid membrane of the fused epithe-

lial cell. DiI is a commonly used neuronal tracer because it diffuses along the plasma mem-

brane [34, 35] and cannot pass from the neuron to another cell in fixed tissue unless their

plasma membranes are contiguous and this only occurs at sites of cell-cell fusion [36].

We placed the lipophilic dye DiI at the trigeminal ganglia of 6 C57BL/6J mice and allowed

it to diffuse along and label neuronal projections that reached into the cornea. (Fig 11). DiI

labeling revealed axons penetrating the corneal basal lamina, ramifying, and giving rise to the

sub-basal plexus (Fig 11A). Importantly, DiI labeling was also seen in the plasma membrane

of a sub-population of basal epithelial cells associated with stromal nerves at the level of the

basal lamina (Fig 11B–11D). DiI labeled basal epithelial cells were found primarily in the cen-

tral 2 mm of each cornea. Single labeled cells as well as clusters of labeled cells were observed

(Fig 12). Cross-sectional projections of DiI labeled epithelial cells revealed the continuity of

DiI labeling from stromal nerve to basal epithelial cell (Fig 12D).

Discussion

The purpose of this study was to describe and compare two types of neuronal-epithelial inter-

actions, conventional neuronal penetration into the corneal epithelium and the novel neuro-

nal-epithelial cell fusion that also occurs between corneal neurons and basal epithelial cells. To

Fig 7. Fusing nerves had smaller surface-to-volume ratios than penetrating nerves. A penetrating nerve bundle

which has passed through the epithelial basal lamina giving rise to the sub-basal plexus (A). The axoplasm was electron

dense and contained numerous mitochondria. A nerve bundle containing fusion that has merged with a basal

epithelial cell (B). The axoplasm was electron translucent and devoid of mitochondria. The surface-to-volume ratio of

nerve bundles containing fusion were significantly smaller than that of penetrating nerve bundles consistent with their

“swollen” appearance (C). The diameter of the basal lamina pores through which these nerves interact with the corneal

epithelium was similar (D). Scale bars = 2 μm.

https://doi.org/10.1371/journal.pone.0224434.g007
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our knowledge, this is the first study to document fusion between neurons and basal epithelial

cells in the cornea. Segmentation and reconstruction of serial images collected using SBF-SEM

allowed us to unequivocally identify neuronal-epithelial cell fusion events as the merging of

neuronal and epithelial plasma membranes and respective cytoplasms. Plasma membrane

fusion was independently confirmed by fluorescence microscopy imaging of lipid membrane

dye transfer from the neuronal plasma membrane to the epithelial cell plasma membrane.

Documenting neuronal-epithelial cell fusion in the mouse cornea adds a new layer of complex-

ity to our understanding of corneal innervation and offers new insight into the regulation of

corneal nerve patterning.

Using SBF-SEM we were able to visualize the penetration of stromal nerves through the epi-

thelial basal lamina to contribute to the epithelial plexus. These nerves were electron dense,

had a high surface-to-volume ratio, and contained abundant microtubules as well as mito-

chondria. The high surface-to-volume ratio of these penetrating nerves is characteristic of

nerves throughout the body, and conducive to the cellular processes required for neuronal sig-

naling [37–39]. Often, nerve bundles approaching the epithelium consist of a mixed bundle of

penetrating and fusing neurons. Despite the intimate contact between penetrating and fusing

axons within these bundles, no obvious morphological changes were seen in the penetrating

axons. Whatever the mechanism responsible for neuronal-epithelial cell fusion, it is selective

even within the same nerve bundle. Penetrating axons within a bundle containing fusion

appear morphologically indistinguishable from axons present within penetrating bundles.

Fig 8. 3D reconstruction confirmed fusing axons lack mitochondria at the site of fusion. Segmentation and 3D

reconstruction of penetrating and fusing nerves (A-D). Mitochondria (yellow), penetrating axons (white), fusing axons

(purple), and basal lamina (green) are shown. Conventional nerve penetration of the basal lamina involving multiple

axons (A) or a single axon (B). In both cases, mitochondria were present throughout the nerve bundle on either side of

the basal lamina. Mixed nerve bundle at the basal lamina showing penetrating and fusing axons (C). Mitochondria are

clearly absent from the fusing axons. Isolation of the penetrating axons shows mitochondria to be distributed

throughout the axoplasm (D).

https://doi.org/10.1371/journal.pone.0224434.g008
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Despite the termination of fusing axons, these fusing bundles are still able to contribute to the

epithelial plexus through their subpopulation of penetrating axons.

Within the cornea, neuronal-epithelial cell fusion is fairly common and occurs primarily in

the central cornea between stromal nerves that are morphologically distinct from nerves that

simply penetrate into the epithelium. Fusing nerves were shown to have a significantly lower

surface-to-volume ratio, an electron translucent appearance, and a distinct lack of microtu-

bules and mitochondria in close proximity to sites of fusion. Fusion was defined as the conti-

nuity between neuronal and epithelial plasma membrane such that the epithelial cytoplasm

and neuronal axoplasm are in direct contact.

While this study is the first to our knowledge to describe heterotypic neuronal-epithelial

fusion in normal adult tissue, the history of cell-cell fusion can be traced back to Schwann in

1839. Ironically, given that Schwann contributed so much to the study of neurons and their

associated cells, he noted this cell-cell fusion between myoblasts while studying superficial dor-

sal muscle in pig embryos [40]. Cell-cell fusion has since been described in many other cellular

systems [41–47]. A search of the literature reveals that neuron fusion has been reported to

Fig 9. 3D reconstruction showed mitochondria are present within the distal portion of fusing axons. Serial images

show three levels (A-C) within the 3D reconstruction (D) of the distal portion of the mixed nerve bundle shown in Fig

4. The most distal portion of the nerve within the image series (A) was located ~60 μm distal to the site of fusion and it

contained numerous mitochondria and an electron dense axoplasm. As the nerve bundle approached the fusion site, it

increased in diameter (B & C). At ~35 um distance from the fusion site, mitochondria (blue) were no longer present in

the fusing axons whereas mitochondria (yellow) were retained within the penetrating axons (D). White arrowheads

denote the locations of panels A-C within the reconstructed nerve.

https://doi.org/10.1371/journal.pone.0224434.g009
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occur between neurons in the central nervous system [44], as well as between nerves and mes-

enchymal stem cells during development [48]. Neurons can fuse with themselves or neighbor-

ing neurons after injury, while stem cells can fuse with neurons in what is thought to be a

method of cell reprogramming [45]. Giant cell formation among fusing macrophages is central

to granuloma formation [49, 50] and fusion also plays a central role in sperm-egg dynamics

during sexual reproduction [51, 52]. The importance of cell-cell fusion in development and

disease cannot be overstated, being involved in a wide array of biological processes, ranging

from fertilization to the development of bone, muscle, and placenta, it has been implicated in

the immune response, tumorigenesis, as well as aspects of stem cell-mediated tissue regenera-

tion [53–62]. Regarding heterotypical cell-cell fusion, the fusion between neurons and stem

cells during development is particularly noteworthy in relation to the fusion events outlined in

this paper. Within the cornea there is a population of cells known as transient amplifying cells

(TACs) which retain stem-like properties. TACs retain the ability to divide as they migrate

towards the cornea center [63]. While it is not known whether these fused epithelial cells are in

fact TACs, this is a possibility that warrants further study.

Neuronal-epithelial cell fusion occurs within nearly half of all nerve bundles penetrating the

epithelial basal lamina in the central cornea. To our knowledge, no prior electron microscopic

study has identified neuronal-epithelial cell fusion in either the cornea or other tissues within

the body. Two factors likely account for this, and the first is the sparse and random nature of

sampling inherent in transmission electron microscopy. To this point, in 2005 it was estimated

that if all material that had ever come into focus in all of the transmission electron microscopes

worldwide were gathered together the total tissue volume would account for less than one

Fig 10. High resolution TEM showed an absence of microtubules in fusing neurons. A conventional stromal nerve

bundle (A) in which the inset is enlarged (B) to show cross-sectional views of microtubules identified by their size and

distinctive hollow-ring appearance (arrows). Mitochondria are also present and identified by their double-membranes

and internal cristae (�). A fusing nerve bundle (C) with an electron translucent axoplasm in which the inset is enlarged

(D) to show the distinct lack of microtubules and mitochondria. Scale bar for panels A & C = 2 μm. Scale bar for panels

B & D = 0.2 μm.

https://doi.org/10.1371/journal.pone.0224434.g010
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cubic centimeter of volume [29]. The likelihood of a section passing through a corneal nerve

bundle just as it penetrates or fuses with the epithelium is rare given the small size of the nerve,

the small size of the tissue block and the random nature of sampling. The second factor is the

2D nature of routine transmission electron microscopy and the uncertainty of identifying a

cell profile as a neuron rather than an epithelial cell, a leukocyte or a keratocyte. The interpre-

tation of a single electron micrograph is often subjective and always open to criticism. Such is

not the case with SBF-SEM where the three dimensional context allows, for the first time, accu-

rate and unambiguous ultrastructural detection of the neuron and its interaction with the

basal epithelium.

Regarding light microscopy, the lack of a body of literature on neuronal-epithelial cell

fusion can be linked to two primary factors. First, without an ultrastructural understanding of

the morphology of fusing nerves, any detection of neuronal-epithelial cell fusion at the light

Fig 11. DiI applied to the trigeminal ganglion labeled corneal axons and a sub-population of basal epithelial cells.

While conventional nerve penetration (A) showed DiI labeling extending from the stromal nerve to the sub-basal

plexus, the overlying basal epithelium remained unlabeled. In addition, DiI-labeled stromal nerves approached the

epithelium and labeled a sub-population of basal epithelial cells (B-D). DAPI staining confirmed the basal location of

these epithelial cells and the arrows (column 1) denote nuclei belonging to DiI labeled basal epithelial cells (column 2).

Scale bar = 2 μm.

https://doi.org/10.1371/journal.pone.0224434.g011
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microscopic level would be difficult to interpret as such. For example, Al-Aqaba et al. may

have observed neuronal fusion when noting “the termination of sub-basal nerves into charac-

teristic bright bulb-like thickenings” roughly the size of basal epithelial cells using confocal

microscopy in human corneas [64]. These characteristic bulb-like thickenings are visible, but

not discussed, in several other published confocal images [65–68]. Second, the common fluo-

rescent markers used to locate and study corneal nerves typically do not target membranes

(e.g. Thy1-YFP and anti-beta-tubulin III antibody). Towards this point, detection of neuronal-

epithelial cell fusion using fluorescence microscopy necessitates using a continuous plasma-

membrane bound dye or antibody specific to the neuronal lipid bilayer within the corneal tis-

sue. And while DiI administered at the trigeminal ganglion fulfills this requirement, the tech-

nical and temporal requirements for this methodology are a limiting factor in its use. For most

studies of corneal nerves an endogenous fluorescent marker such as Thy1-YFP, or an easily

applied fluorescent antibody such as beta-tubulin III suffice for nerve localization, are well

established methodologies within the tissue, and require marginal time and effort to use [69,

70]. For this reason, anterograde DiI labeling of corneal nerves remains an esoteric technique.

However, given the extensive use of DiI in the literature for studying cell-cell fusion, this meth-

odology was uniquely suited for our purposes [71–76].

Fig 12. Orthogonal projection confirmed DiI transfer from corneal neuron to a single basal epithelial cell. Two

fluorescence images from a Z-stack showing a DiI (red) labeled basal epithelial cell (A) located above a DiI labeled

stromal nerve (B). An orthogonal slice through the stack taken between the two dashed lines is shown in panel (C)

where the DiI labeling extended uninterrupted from the neuronal plasma membrane into the epithelial cell membrane.

DAPI (blue) staining denotes cell nuclei. Scale bars = 10 μm.

https://doi.org/10.1371/journal.pone.0224434.g012
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When viewed using electron microscopy, fusing nerve bundles are morphologically distinct

from nerve bundles simply penetrating into the basal epithelium. Fusing neurons exhibit an

electron translucent “salt and pepper” axoplasm that is devoid of mitochondria and microtu-

bules in the cytoplasm immediately surrounding the site of fusion. Stromal nerves involved in

fusion have a significantly smaller surface-to-volume ratio, indicative of a large or swollen

axon. Distal to the site of fusion however, these nerve bundles are morphologically indistin-

guishable from other stromal nerves, containing both mitochondria and microtubules. These

observations may be linked to a calcium effect. It is well known that membrane fusion is often

accompanied by an increase in intracellular calcium near the site of fusion [77–80]. Increased

levels of intracellular calcium have been shown to lead to the breakdown of microtubules and

the inability of mitochondria to associate with kinesin and dynein (motor proteins responsible

for intracellular transport), which may explain why neither mitochondria nor microtubules

are present proximal to sites of neuronal-epithelial cell fusion, but can be seen in abundance

distal to sites of fusion [81–83]. Without mitochondrial support or functional microtubules to

traffic mitochondria and intracellular proteins near the site of fusion, axonal swelling occurs.

However, the fate of these fusing axons is not known [84]. Given that fusing nerves appear

morphologically typical distal to sites of fusion, the fate of these neurons cannot be assumed.

In fact, similar axonal responses have been seen to be both transient and reversible in a variety

of models [85–89]. It is possible that fusion with basal epithelial cells denies a subpopulation of

stromal nerves the ability to innervate the epithelium, causing them to undergo a form of Wal-

lerian degeneration followed by continued growth, and subsequent attempts to penetrate into

the basal epithelium [90].

While the lack of mitochondria and microtubules near sites of fusion suggest the fused

axons may be neurologically inactive, it is important to consider this alternative. If fused axons

are neurologically active, gap junction communication between a fused basal epithelial cell

and its neighbors would surely “short-circuit” transmission unless the gap junctions switched

to a “closed” state. The switch from an “open” to a “closed” state can occur in response to a

variety of stimuli, including changes in the levels of intracellular calcium, pH, transjunctional

applied voltage, phosphorylation, and in response to activation of membrane receptors [91–

93]. Gap junction closure would also serve to mitigate the risk of infectious agent and/or toxin

transfer from basal epithelial cells into fused stromal axons. If fused axons are capable of creat-

ing action potentials, then the fused epithelial cell may function as its terminal.

While the function of neuronal-epithelial cell fusion in the cornea is open to speculation,

we favor the idea that this interaction plays a role in limiting and shaping the neuronal net-

work. The rationale behind this idea comes from noting that although the stromal nerve plexus

does not change with age, the basal and epithelial nerve plexuses are constantly in flux, chang-

ing tortuosity and losing density as we age [94–99]. This suggests that axonal rearrangement

occurs even in the normal, uninjured cornea. Given the relatively high frequency of fusion in

the normal mouse cornea, it seems reasonable to suppose that neuronal-epithelial cell fusion is

a determinant of axonal patterning which in turn would affect corneal sensitivity and epithelial

proliferation (e.g., through neuropeptide release). Additionally, as the corneal epithelial cells

migrate towards the central cornea, the subbasal and epithelial plexuses are dragged along with

them [65]. This creates the possibility of overabundant or improper innervation of the central

cornea and the necessity of neuronal rearrangement. It is possible that neuronal-epithelial

cell fusion plays a role in this, and this may account for the localization of fusion events within

the central cornea. Rather than the complete degeneration and loss of a neuron spanning the

distance between trigeminal ganglion and corneal surface, neuronal-epithelial cell fusion

would allow a neuron to maintain the integrity of its soma during the process of axonal

rearrangement.
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Conclusion

Here we provide evidence for the novel neuronal-epithelial cell fusion event within the cornea.

This event is primarily defined by the fusion between the plasma membrane of a stromal nerve

with that of one or more basal epithelial cells such that axoplasm and cytoplasm are no longer

separate. This event is morphologically distinct in that fusing nerves exhibit electron translu-

cency, a lack of mitochondria and microtubules proximal to the site of fusion, and a signifi-

cantly smaller surface-to-volume ratio. This cell-cell interaction may play a role in regulating

neuronal patterning changes that accompany aging and tissue damage. Conceivably, within

the cornea, neuronal fusion may influence corneal sensitivity and epithelial homeostasis

throughout the life of an individual.
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S1 Movie. Serial imaging and reconstruction of conventional nerve penetration.

(MP4)

S2 Movie. Serial imaging and reconstruction of neuronal-epithelial cell fusion.

(MP4)

S1 Fig. The resolution of membrane profiles using SBF-SEM. Stromal nerve bundle fusion

with a basal epithelial cell (A). This image was taken at 9 kV in high vacuum. A spot size of 4.9

nm and pixel size of 7.3 nm were used, with a magnification of 37,000x. Enlargement of the

uppermost inset of panel A reveals the double membrane of the nuclear envelope (white

arrow), the single membrane of the endoplasmic reticulum (black arrow), as well as a section

of the interdigitating double membrane present at the cell-cell border between the fused epi-

thelial cell and its neighbor (black arrowheads) (B). Enlargement of the middle inset in panel

A reveals a continuation of the double membrane of the nuclear envelope (white arrow), an

additional portion of the single membrane of the endoplasmic reticulum (black arrow), as well

as the double membrane of a mitochondrion (white arrowhead) with visible internal cristae

(C). Enlargement of the bottommost inset in panel A reveals a lack of membrane between the

two cells at the site of fusion, a finding common to all serial images of fusion events. If mem-

branes were present, they would be visible as the double membrane of an axonal and epithelial

cell border. The slight electron density visible is most likely accounted for by the organized

cytoskeleton seen above the hemidesmosomes (Panel A, �) which appears to extend across the

fusion site. Scale bars = 500 nm.

(TIF)

S1 File. Surface-to-volume ratio and basal lamina pore diameter data.
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