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Abstract

This study has investigated how the clustering of wintertime extra-tropical cyclones depends on the vorticity
intensity of the cyclones, and the sampling time period over which cyclone transits are counted. Clustering
is characterized by the dispersion (ratio of the variance and the mean) of the counts of eastward transits of
cyclone tracks obtained by objective tracking of 850 hPa vorticity features in NCEP-NCAR reanalyses. The
counts are aggregated over non-overlapping time periods lasting from 4 days up to 6 month long October-
March winters over the period 1950–2003. Clustering is found to be largest in the exit region of the North
Atlantic storm track (i.e. over NE Atlantic and NW Europe). Furthermore, it increases considerably for the
intense cyclones, for example, the dispersion of the 3-monthly counts near Berlin increases from 1.45 for all
cyclones to 1.80 for the 25 % most intense cyclones. The dispersion also increases quasi-linearly with the
logarithm of the length of the aggregation period, for example, near Berlin the dispersion is 1.08, 1.33, and
1.45 for weekly, monthly, and 3-monthly totals, respectively. The increases and the sampling uncertainties in
dispersion can be reproduced using a simple Poisson regression model with a time-varying rate that depends
on large-scale teleconnection indices such as the North Atlantic Oscillation, the East Atlantic Pattern, the
Scandinavian pattern, and the East Atlantic/West Russia pattern. Increased dispersion for intense cyclones is
found to be due to the rate becoming more dependent on the indices for such cyclones, whereas increased
dispersion for longer aggregation periods is related to the small amounts of intraseasonal persistence in the
indices. Increased clustering with cyclone intensity and aggregation period has important implications for the
accurate modelling of aggregate insurance losses.

Zusammenfassung

Die vorliegende Studie analysiert den Zusammenhang zwischen der seriellen Häufung von winterlichen ex-
tratropischen Zyklonen und der Wirbelstärkeintensität der Zyklonen sowie der Länge des Zeitintervalls, über
das die Zyklonendurchgänge akkumuliert werden. Dabei wird die serielle Häufung charakterisiert durch die
statistische Dispersion (dem Quotienten aus Varianz und Mittelwert) in der Anzahl der ostwärts ziehenden
Zyklonen. Diese Anzahl kann durch objektive Verfolgung der Eigenschaften der 850 hPa-Wirbelstärke in
NCEP-NCAR-Reanalysen ermittelt werden. Die Akkumulation der Anzahl erfolgt über disjunkte Zeitinter-
valle von minimal 4 Tagen bis maximal 6 Monaten (Oktober bis März) im Zeitraum von 1950 bis 2003.
Die serielle Häufung ist am größten im Endgebiet des nordatlantischen Sturmkorridors (nordöstlicher At-
lantik und nordwestliches Europa). Ausserdem kann ein erheblicher Zuwachs der seriellen Häufung bei
stärkeren Zyklonen beobachtet werden; so wächst zum Beispiel die statistische Dispersion in der An-
zahl der Zyklonen bei 3-Monats-Zeitintervallen von 1,45 für alle Zyklonen auf 1,80 für die 25 % stärk-
sten Zyklonen an. Des weiteren wächst die statistische Dispersion etwa linear mit dem Logarithmus der
Länge des Akkumulationszeitintervalls; nahe Berlin beträgt die statistische Dispersion zum Beispiel 1,08 für
Wochen-, 1,33 für Monats-, und 1,45 für 3-Monats-Zeitintervalle. Sowohl die Zunahme als auch die Unsicher-
heit der statistischen Dispersion kann reproduziert werden mittels einfacher Poisson-Regressions-Modelle mit
zeitabhängigen Raten, welche wiederum von großskaligen Telekonnektionsindizes (Nordatlantische Oszilla-
tion, Ostatlantisches Muster, Skandinavisches Muster und Ostatlantisches/Westrussisches Muster) abhängen.
Die zunehmende statistische Dispersion bei starken Zyklonen kann durch die zunehmende Abhängigkeit
dieser Raten von den Telekonnektionsindizes erklärt werden, wohingegen die zunehmende statistische Dis-
persion bei zunehmender Länge des Akkumulationszeitintervalls durch die langreichweitige serielle Korrela-
tion der Telekonnektionsindizes erklärt wird. Zunehmende serielle Häufung bei zunehmender Zyklonenstärke
und Länge des Akkumulationszeitintervalls spielt eine wichtige Rolle bei der zuverlässigen Modellierung von
akkumulierten Versicherungsschäden.

1 Introduction

Intense extratropical cyclones are a major cause of in-
sured loss in Europe. A recent example is windstorm
Kyrill1, which on 18th January 2007 affected the United
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Kingdom, Germany, the Netherlands, Belgium, Austria,
the Czech Republic and Poland. An insured loss of¤1 B
(1.000 millions) for residential business was estimated
by the German Insurance Association (GDV). Estimates
for the overall insured market for this single event vary
between ¤3.5 B (Swiss Re) and ¤5-7 B (Munich Re,
Hannover Re), see WILLIS ANALYTICS (2007).

Clusters of intense windstorms are particularly threat-
ening. A cluster is a group of windstorms occurring in
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a short time span: this may affect either the same geo-
graphical region or, from an insurer viewpoint, the same
portfolio of insured properties. An example is provided
by the December 1999 windstorms Anatol, Lothar and
Martin, which caused a total in excess of $15 B of dam-
age, of which nearly $11 B insured (MAILIER, 2007).
Given the typical structure of non-proportional reinsur-
ance contracts, the net impact of a series of losses to an
insurance company depends not only on the total loss
but also on the number of distinct loss events. A cluster
of events can cost an insurance company (after reinsur-
ance) much more than a single event with the same total
loss (before reinsurance). The reinsurance industry uses
computer catastrophe (CAT) models to estimate poten-
tial losses for a portfolio of policies. CAT models tra-
ditionally assumed2 that catastrophic events occur inde-
pendently of each other at a constant rate (average event
frequency in time). These assumptions lead to underes-
timation of temporal clustering and related risk. Another
factor for insurers is that regulatory capital requirements
are increasingly moving towards being set as a high per-
centile (e.g. 99.5 %) of the modelled distributon of total
losses. Clustering of ETCs can have an important impact
on this distribution at such percentiles.

Temporal clustering of extratropical cyclones has re-
cently been noted in the scientific literature by MAILIER

et al. (2006); MAILIER (2007). They examined Oct-
Mar winter cyclone tracks in the NCEP-NCAR reanal-
ysis and found two large regions with significant clus-
tering: in the central North Pacific and near the exit of
the North Atlantic storm track. KVAMSTØ et al. (2008)
found that cyclone clustering is substantially underesti-
mated by the ARPEGE general circulation model near
the storm track exit region. In these studies, clustering is
measured by a dispersion statistic defined as the ratio of
variance to mean of monthly counts of cyclones cross-
ing ‘barriers’ along meridians (or parallels). The main
mechanism proposed to explain the overdispersion is the
time-varying effect of the large-scale flow on the indi-
vidual cyclone tracks.

The present work is motivated by the following more
detailed questions:

1. How does clustering behave for more intense cy-
clones (rather than all cyclones)?

2. How does clustering depend on the period over
which the cyclone transits are aggregated?

3. How does clustering depend on the width of the
‘barriers’?

2A recent upgrade of RMS Simulation Platform (www.rms.com/)

incorporates clustering of weather events. Also see www.air-

worldwide.com/ public/html/air currentsitem.asp?ID=1425 for AIR

research on the subject.
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Figure 1: Portion of time series of cyclone transits (c) and associated

vorticities (a) at a gridpoint near Nova Scotia (60◦W,45◦N), during

extended winter October 1990-March 1991. A horizontal dotted line

in (a) marks the 90 % quantile of the vorticity distribution at that

gridpoint (value is 10.4 × 10−5s−1), corresponding transits are

marked in (b).
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Figure 2: Same as Fig. 1 for a gridpoint near Berlin (12.5◦E,52◦N).

The 90 % vorticity quantile is here 7.7 × 10−5s−1.

The results presented here indicate that in the northeast-
ern Atlantic and in northwestern Europe the clustering
increases considerably for more intense cyclones and
with the barrier width. Also clustering increases with the
length of aggregation period in a spatially coherent way.
The time-varying effect of four teleconnection indices
(for the North Atlantic Oscillation, east Atlantic pattern,
Scandinavian pattern, east Atlantic-western Russian pat-
tern) accounts for the above behaviour to a large extent.

2 The extratropical cyclone database

The same database of Northern Hemisphere cyclone
tracks as in MAILIER et al. (2006) is used here.
This covers 53 extended winters (October-March), from
Oct 1950 to Mar 2003 and is obtained from the
NCEP/NCAR reanalysis dataset (KALNAY et al., 1996).
Cyclone centres are identified as maxima of the relative
vorticity ξ850 of the wind field at 850-mb. The tracking
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Figure 3: Total number of extended winter cyclone transits through

a gridpoint near Berlin (12.5◦E,52◦N) as a function of the vorticity

threshold used to select the intense cyclones. Thresholds of relative

vorticity at 850 hPa and corresponding quantiles are given in the

top horizontal axis, whereas the bottom axis reports windspeeds at

r = 500 km distance from the centre, according to (2.1).

of the cyclones across consecutive 6-hourly timesteps
is performed by Hodges’ algorithm (HODGES, 1994,
1995, 1996, 1999). We refer to MAILIER (2007, Chap-
ter 3) for details.

Given the focus on western Europe, the domain
considered here is (125◦W,45◦E) in longitude and
(20◦N,80◦N) in latitude. For each point on a grid with
spacing 2.5◦, a time series of cyclone transits is con-
structed in the same way as MAILIER et al. (2006): east-
ward cyclone transits across the local meridian within
±10◦ of latitude from the gridpoint are first identified.
For each cyclone, only the first eastward transit is re-
tained, to exclude the occurrence of multiple counts
arising from the same recurving cyclone. Indeed, due
to the definition of “events” in reinsurance contracts,
recurving storms are not identified as distinct events.
Moreover, multiple counts due to recurving cyclones are
rare MAILIER et al. (2006). The time and relative vor-
ticity of each transit are computed by linear interpola-
tion between the nearest points along the cyclone trajec-
tory on each side of the crossed meridian. Examples are
given in Figs. 1 and 2, for gridpoints near Nova Scotia
and Berlin, respectively. Cyclone transits can occur in a
regular fashion (Fig. 1) or in clusters (Fig. 2).

Our main aim is to quantify the dependence of such
clustering on cyclone intensity, with a rough measure
of intensity provided by the relative vorticity ξ850. For
a fixed gridpoint, an intensity threshold is chosen as a
quantile of the distribution of ξ850 for all cyclone tran-
sits at that gridpoint. The transit time series is then
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Figure 4: Time series of extended winter totals of cyclone transits

through the approximate location of Berlin (12.5◦E,52◦N), for three

different values of the 850 hPa relative vorticity threshold ξ̄850 used

to select the intense cyclones: ξ̄850 = 1.2×10−5s−1, 4.6×10−5s−1

and 7.7× 10−5s−1, corresponding to 0 %, 50 % and 90 % quantiles

of the vorticity distribution at that gridpoint.

“thinned” by selecting cyclones whose vorticity exceeds
the threshold. This is illustrated in Fig. 2, where a dot-
ted line represents the threshold ξ̄850 = 7.7 × 10−5s−1,
corresponding to the 90 % quantile of the vorticity dis-
tribution at that gridpoint. The above procedure is re-
peated for the same gridpoint near Berlin as in Fig. 2,
for values of the vorticity threshold ξ̄850 ranging from
0 % to 99.4 %. The corresponding relative vorticity dis-
tribution is shown in Fig. 3. Values of ξ̄850 are plotted
in the top horizontal axis (corresponding quantiles in
parentheses). The number of cyclones whose vorticity
exceeds the threshold specified on the horizontal axis is
plotted in the vertical axis. A coarse measure u of equiv-
alent windspeed is derived by considering the cyclone as
a rotating solid disk of air with radius r in the 850 mb
geopotential surface: an application of Stokes’ theorem
(see (MAILIER, 2007, Sec. 4.5.3.4)) gives

2πu = πr2ξ850, (2.1)

from which u can be derived as a function of ξ850. The
bottom horizontal axis of Fig. 3 displays windspeeds
ū equivalent to vorticity thresholds ξ̄850 (top horizontal
axis) through (2.1) with r = 500 km. Note that this mea-
sure of windspeed strongly underestimates the observed
peak gust velocities: for example, the maximum equiv-
alent windspeed for the December 1999 freak storms
Lothar and Martin is u = 26 and 16 ms−1, respectively,
against observed peak gust velocities of u = 50 and 48
ms−1, respectively (BRESCH et al., 2000).

The time series of transits as in Fig. 1 are turned into
time series of transit counts by fixing an aggregation pe-
riod ∆t and counting all transits occurring within con-
secutive time intervals of width ∆t: this is a sort of “bin-
ning in the time axis” for the all 53 extended winters.
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Figure 5: (a) Average cyclone transit rate at each gridpoint, using the whole cyclone database and a 3-monthly aggregation period. (b) same

as (a), where for each gridpoint only the cyclones exceeding the 80 % quantile of the vorticity distribution at that gridpoint are retained

(“v.t.” stands for vorticity threshold, “lat.w.” for latitudinal width of the barrier). (c),(d) dispersion statistic of the cyclone count series of (a)

and (b), respectively. (e),(f) same as (c),(d) with an aggregation period of 1 month. (g),(h) same as (c),(d) with a barrier of 10◦ latitudinal

witdh.
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Notice that ∆t was fixed to 1 month in MAILIER et al.
(2006): both shorter periods (such as 2, 7 and 14 days)
and longer periods (2 and 3 months, as well as the whole
extended winter from 1 October to 31 March, which is
182 days long in non-leap years) are considered here.
This is illustrated for the same gridpoint near Berlin as
in Fig. 2: the time series of the transit counts in each
extended winter in the database (that is for ∆t = 182)
is shown in Fig. 4, for three values of the relative vor-
ticity threshold ξ̄850. Strong interannual variations occur
for each threshold value and a slight increasing trend is
visible.

3 Dispersion of counts: a measure of
clustering

The occurrence of pointwise events in the time axis,
such as those in Fig. 1, can be modelled by a Pois-
son stochastic process (COX and ISHAM, 1980). A sim-
ple homogeneous Poisson process (SHPP) is a collec-
tion {Nt, t ≥ 0} of random variables, where Nt is
the number of events that have occurred up to time t,
starting from 0 and satisfying certain properties (see
e.g. MAILIER et al. (2006, Appendix)): among them, the
memorylessness implies that the number of arrivals in
any bounded interval after time t is independent of the
number of arrivals occurring before time t. Therefore,
this independence assumption amounts to complete se-
rial randomness in time.

The procedure of aggregating cyclone transits into se-
quences of transit counts (see previous section) leads to
consider the Poisson distribution: an integer-valued ran-
dom variable Y is Poisson distributed when the proba-
bility of observing a count of k ≥ 0 is equal to

P [Y = k] = e−µμk/k! (3.1)

for some μ > 0. In loose words, the Poisson distribution
is obtained from the Poisson process by “binning” in the
time axis, as described in the previous section. More pre-
cisely, if the average rate of arrival in a SHPP is λ > 0,
then the number Nt1 − Nt0 of arrivals during the time
interval ∆t = t1 − t0 is Poisson distributed with mean
μ = λ∆t.

The Poisson distribution is characterised by equal-
ity of mean and variance (equidispersion): Var(Y ) =
E(Y ) = μ. This is a fairly strong restriction: observed
count data are seldom equidispersed (CAMERON and
TRIVEDI, 1998). Overdispersion (Var(Y ) > E(Y ))
is often found, whereas underdispersion (Var(Y ) <
E(Y )) is less common. Following the approach by
MAILIER et al. (2006), a sample dispersion statistic ψ
is introduced:

ψ = Var(Y )/E(Y ) − 1. (3.2)

Clustering of cyclone transits is characterised by the dis-
persion statistic (3.2), which quantifies deviation from
equidispersion (Poissonianity) of the distribution of

transit counts. Clustering is of relevance to the insurance
industry due to the typical structure of non-proportional
reinsurance contracts and the capital requirements dis-
cussed in the Introduction. For example, assume that an
insurance company buys reinsurance covering 2 events
per year, with an exceedance probability level of 15 %.
If events are Poisson distributed (ψ = 0) then the prob-
ability p3 of having more than two events per year is
0.1 %. However, if events are distributed according to a
negative binomial (CAMERON and TRIVEDI, 1998) with
ψ = 0.5, then p3 = 0.8 %, corresponding to an eight-
fold increase of the probability of a non-risk-managed
situation.

In MAILIER et al. (2006) it has been shown that large
regions in the Northern Hemisphere are characterised by
overdispersion of the cyclone transit counts: the grid-
point of Fig. 2 falls in this class. Underdispersion is also
found, although it is confined to regions of strong baro-
clinic development. The gridpoint in Fig. 1 is contained
in one of these regions.

4 Dependence of dispersion on cyclone
intensity and aggregation period

The three questions at the end of the Introduction are
now dealt with. It is shown that overdispersion is larger
for the more intense cyclones in Northern Europe near
the exit of the storm track is larger. Overdispersion also
increases for larger values of ∆t and decreases for nar-
rower latidudinal barriers. The variation of dispersion
with cyclone intensity has a more regional character.

For each gridpoint cyclone transit are aggregated over
a period of 3 months (see Sec. 2), that is for each Oct-
Nov-Dec and Jan-Feb-March period, yielding series of
length 106. Fig. 5 (a) show the average transit rate at
each gridpoint, defined as the ratio between the total
number of transits and the total length of the time se-
ries. Fig. 5 (b) shows the transit rate of cyclones whose
vorticity exceeds the 80 % quantile of the vorticity dis-
tribution at that gridpoint. For shortness, these will be
referred to as “intense cyclones” throughout the rest of
the paper. This definition is purely empirical: it has been
chosen as a compromise between having as high thresh-
old as possible, while still retaining a number of cy-
clones which is sufficient for statistical analysis.

The region near the entrance of the North Atlantic
storm track is characterised by underdispersion, whereas
overdispersion is found near the exit of the storm track
(centre and bottom rows of Fig. 5). This holds both for
the monthly and the 3-monthly aggregation period and
was already observed in MAILIER et al. (2006) for the
monthly period. An increase of dispersion with inten-
sity is observed in the 3-monthly counts for intense cy-
clones near the end of the storm track: compare Fig. 5 (c)
and (d). This region includes a part of Europe around
the North Sea, comprising the eastern side of the British
Isles, a large part of the Scandinavian peninsula and
Denmark. The southern edge of this region includes
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Figure 6: Dispersion statistic (solid line) and 90 % bootstrap confi-

dence interval (dashed) of the 3-monthly cyclone counts at the ap-

proximate location of Berlin (12.5◦E,52◦N) as a function of the 850

hPa relative vorticity threshold used to select the most intense cy-

clones. Thick dots: values of φ which are significant according to

a Katz test at the 10 % confidence level (see Appendix). The rela-

tion between vorticity and equivalent windspeeds is (2.1), compare

Fig. 3.

part of Northern Germany and France, as well as the
Benelux countries. In this same region, overdispersion
also increases when passing from the monthly to the 3-
monthly aggregation period, compare panels (c) (d) to
panels (e) (f), respectively, in Fig. 5. This is observed
for both the whole cyclone dataset (panels (c) (e)) and
when restricting to the intense cyclones (panels (d) (f)).
Raising the vorticity threshold induces a decrease in dis-
persion in North East Canada and part of Southern Eu-
rope including Spain and Italy, both for the monthly and
3-monthly aggregation periods (Fig. 5 (c)–(d)).

A general increase of dispersion with aggregation
period is observed: the spatial coherence of this phe-
nomenon is larger than that of the increase of dispersion
with cyclone intensity, which has a more regional char-
acter (see above). The dispersion increases for larger ag-
gregation periods in nearly the whole selected domain:
compare Fig. 5 (c) and (e) (where all cyclones are taken
into account). The increase is more pronounced at the
sides of the North Atlantic storm track, particularly so
in a large region comprising North East Canada, Iceland
and bordering the Scandinavian peninsula and in nearly
all gridpoints in continental Europe. Lastly, the disper-
sion decreases for narrower latitudinal barriers (panels
(g) (h)), although it remains large around the North Sea
also for the intense cyclones.

Fig. 6 shows the dispersion statistic ψ as a function
of the vorticity threshold ξ̄850, for the same gridpoint as
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Figure 7: Dispersion statistic ψ (points) of the cyclone transit counts

versus aggregation period ∆t, at the approximate location of Berlin

(12.5E,52N). Logarithmic scale is used in the horizontal axis. 90 %

confidence intervals (solid lines) are computed as quantiles of a

bootstrap sample for each ∆t. A linear regression fit of ψ versus

log(∆t) is added (dashed line; the point with ∆t = 182 was not

included in the regression).

Fig. 3. Notice that a different transit count time series is
constructed for each threshold value. The dispersion ini-
tially increases with the threshold, then remains roughly
constant up to vorticity quantiles of about 80 %. The
point estimates of the dispersion range from 0.4 to nearly
0.8: these are very large values from the point of view of
risk management. At the 90 % quantile the dispersion
is 0.38. For quantiles between 0.9 and 0.97 ψ varies be-
tween 0.2 and 0.34 (most of these values are significant
according to a Katz test at the 10% confidence level,
see Appendix); ψ and it drops down to about 0.2 for
larger quantiles. Uncertainties are here extremely large:
for a threshold ξ̄850 of 85 %, the confidence interval of
ψ ranges, approximately, from 0.4 to 1.17. This large
amount of uncertainty poses serious problems from the
point of view of risk management. Confidence intervals
are computed by bootstrap (DAVISON and HINKLEY,
1997): for each threshold value, a sample of 400 repli-
cates is generated from the the corresponding count se-
ries and the 5 % and 95 % empirical quantiles of this
sample define a 90 % confidence interval (dashed lines
in Fig. 6). This is in fact block-bootstrap, since the ag-
gregate counts in each period are shuffled, not the indi-
vidual cyclone occurrences.

Fig. 7 shows a plot of ψ as a function of ∆t for the
same gridpoint as above (using all cyclones). The under-
dispersion occurring at the smaller periods (3/4 days) is
due to inhibition (see MAILIER (2007, Sec. 4.5.3.3)):
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Figure 8: Dispersion statistic ψ (solid line) for all cyclones and 90 %

confidence interval (dashed) versus width of the latitudinal barrier

used to define the cyclone transits (same gridpoint as Fig. 7). Thick

dots: values of φ which significant according to a Katz test at the

10 % confidence level (see Appendix).
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Figure 9: Same as Fig. 8 for the cyclones whose vorticity exceeds a

threshold of 90 % of the vorticity distribution.

consecutive cyclone transits cannot occur indefinitely
close to each other due to the spatial extension of the
extratropical cyclones (typically, 1,000–2,000 km in di-
ameter). Correspondingly, the lag-1 and lag-2 autocor-
relations of the transit counts for the shorter aggregation
periods are significantly different from zero (not shown).

For larger aggregation periods, e.g. 14 days, the lag-2
autocorrelation is not significantly different from zero at
the 5 % confidence level (whereas the lag-1 autocorrela-
tion is).

A linear scaling of the form ψ = a log(∆t) + b is
obeyed to a good approximation for ∆t ranging from
a few days up to three months. A linear fit of ψ ver-
sus log(∆t) is superimposed to Fig. 7: for this fit, only
values of ∆t up to 90 days have been used. In other
words, the value of ψ obtained for ∆t = 182 (corre-
sponding to the whole extended winter) is treated as an
outlier and removed from the dataset. Robust linear re-
gression with M-estimators (VENABLES and RIPLEY,
1994), performed including this value as well, gives a
comparable result. Uncertainty is very large for ∆t =
182: the confidence interval ranges from below –10 %
to nearly 60 % in Fig. 7. The corresponding sample is
small: it consists of only 53 datapoints. Care should al-
ways be observed when finding indications of a scaling
law: a rule of thumb (RUELLE, 1990) prescribes that a
scaling should hold for at least three orders of magnitude
and this is not true in our case. The features illustrated in
Figs. 6 and 7 have been observed in several other loca-
tions, including gridpoints near Paris, Copenhagen, Lon-
don. The increase of clustering with aggregation period,
as well as the drop for the whole extended winter, occurs
coherently in many locations (see Fig. 5).

Fig. 8 shows the dependence of ψ on the width of
the latitudinal barrier used to define the cyclone transits.
The overdispersion is nearly always statistically signifi-
cant according to a Katz test at the 10 %, although un-
certainty is very large. Fig. 9 shows that cyclone tran-
sits with vorticities above the 90 % threshold are gener-
ally underdispersed for widths up to 10 degrees whereas
they are overdispersed for widths larger than 15 de-
grees approximately. Arguably the upper 90 % of the
vorticity distribution identifies (damaging) windstorms.
Fig. 9 suggests that windstorms exhibit serial clustering
only on sufficiently wide spatial extensions. Therefore,
windstorm clustering seems to be of concern for com-
panies (such as reinsurance or large insurance groups)
with spatially extended insurance portfolios. However,
insurers with a more spatially localised portfolio might
be affected by the accumulation of risk due to clustering
of lower intensity storms (ξ̄850 = 80%,) indicated by
Fig. 5 (d),(h). This is also relevant in view of the capital
requirements discussed in the Introduction.

5 Can large-scale flow variations
account for cyclone clustering?

In MAILIER et al. (2006) it has been shown that the
time-varying effect of the large-scale atmospheric flow
largely accounts for overdispersion in the monthly cy-
clone counts. Does the large-scale flow explain the in-
crease of clustering with cyclone intensity displayed in
Fig. 6? Does it explain the increase with aggregation pe-
riod ∆t, displayed in Fig. 7? The results of the present
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Figure 10: Residual dispersion of the Poisson regressions for each gridpoint, for the whole cyclone dataset (a) and for cyclones with vorticity

above the 80 % quantile of vorticity distribution at that gridpoint (b). (c),(d) coefficient β6 of the time trend in the Poisson regression, see

Equation (5.2). (e),(f) same as (c),(d) for the coefficient β5 of the seasonality. Only values significantly different from zero (according to a

t-test at the 5 % confidence level) have been plotted.

section indicate so, across a range of cyclone intensities
and aggregation periods.

A stochastic model as in MAILIER et al. (2006) con-
structed by Poisson regression (see the Appendix) is
used to analyse the effect of the large-scale atmospheric
flow on the cyclone transit count. In this study, we
use daily values of the teleconnection indices for the
the Northern Hemisphere, kindly provided by the Cli-

mate Prediction Center3. Rotated Principal Component
Analysis (BARNSTON and LIVEZEY, 1987) is applied
to monthly mean 700-mb geopotential height anomalies
between January 1964 and July 1994. For every month
of the year the 10 leading empirical orthogonal functions
(EOFs) are selected and the amplitudes are standardised

3http://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml
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Figure 11: Same as Fig. 10 (c),(d) for the coefficients β1, . . . , β4 of the teleconnection indices in (5.2) (from top to bottom).
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to zero mean and unit variance. These indices are mu-
tually uncorrelated by construction, which makes them
particularly suitable for use as explanatory variables in
the Poisson regression. Given the results of MAILIER

et al. (2006) and after further testing, only the following
indices have been retained: North Atlantic Oscillation
(NAO), East Atlantic pattern (EA), Scandinavian Pattern
(SCA) and East Atlantic/West Russia pattern (EA/WR).
Terms accounting for season and for linear time trend
have been included. For the 3-monthly count time series
Y = {Yj , j = 1, . . . , nY }, we use the following Poisson
Generalised Linear Model with log-link (see Apendix
for explanation):

Y |X1,X2, . . . ,Xk ∼ Poisson(μ), (5.1)

log(μ) = β0 +
k

∑

i=1

βiXi, (5.2)

with k = 6, where X1, . . . ,X4 are the above telecon-
nection indices, X5 is an indicator for the season (equal
to 1 in October-December and 0 in January-March) and
X6 is a term expressing the logarithm of time j (suitably
normalised between 0 and 1).

The Poisson model (5.1)-(5.2) captures the overdis-
persion in the cyclone transit counts, both for all cy-
clones and for the most intense ones: residual overdis-
persion is statistically significant, according to a Katz
test at the 10 % level (see the Appendix), only in a few
locations, see Fig. 10 (top row). One of these is a small
area in Northern Germany: this is at the southern bound-
ary of the region with strong overdispersion, surround-
ing the North Sea, described in the previous section. Co-
herently with MAILIER et al. (2006), residual underdis-
persion is found in a broad area within the North At-
lantic, roughly centred around the locations where un-
derdispersion occurs in the data, compare with Fig. 5,
middle panel. However, much less residual underdisper-
sion is found for the intense cyclones.

Pronounced non-stationarity is found for the intense
cyclones. The linear trend coefficient β6 is plotted in
Fig. 10 (c),(d): for the intense cyclones β6 is markedly
positive over a large part of Northern Europe, including
the Scandinavian peninsula, the British Isles, and North-
ern France and Germany (only values which are signifi-
cant according to a t-test at the 5 % level have been plot-
ted). Fig. 10 (d) suggests considerable upward trend in
the average rate of intense cyclone transits: this is a po-
tential indication of climatic change which is of partic-
ular relevance for the insurance industry and the society
in general. However, the reader is warned that this might
be an artifact of the inhomogenities which are found in
reanalysis data (STERL, 2004). For example, such inho-
mogenities are the reason proposed by A. SMITS (2005)
for the discrepancy in sign between the trends in stormi-
ness observed in station and in reanalysis data for the
Netherlands. Seasonal variability also has very large ef-
fects on the cyclone transit rates (Fig. 10 (e),(f)): positive
effects of the Oct-Dec indicator X5 (see (5.1)-(5.2)) are

found throughout Northern Europe, whereas the subrop-
ical region is characterised by strong negative effects.

The variation of clustering with cyclone intensity
shows a clear link with the large-scale atmospheric flow:
the coefficients of the four teleconnection indices NAO,
EA, SCA, EA/WR are significantly different from zero
over large areas in the domain, see Fig. 11. In many
cases it is found that the absolute value of the coeffi-
cients increases with the vorticity threshold (coefficients
are plotted only if they are significant at the 5 % con-
fidence level according to a t-test). An important issue
in regression is selecting an appropriate subset of co-
variates from an initial set. The main criterion adopted
here is according to whether the covariates contribute to
explain clustering (overdispersion) in the count data (al-
ternative approaches exist, such as Akaike’s information
criterion, or significance based on Wald or t-tests). In-
clusion of the Polar-Eurasian (POL) index (which was
used in MAILIER et al. (2006)) does not significantly
improve the Poisson model fit over Europe: indeed the
Poisson model in (5.1)–(5.2) performs well, as indicated
by the residual dispersion plot in Fig. 10. Exclusion of
any of the other four teleconnection indices yields de-
terioration of the model performance in capturing the
overdispersion.

The effect of the large-scale flow on cyclone clustering
is analysed in Fig. 12 for the same gridpoint as in Fig. 7,
for several values of the vorticity threshold ξ̄850: for each
of these, Poisson regression as in (5.1)-(5.2) is carried
out on the corresponding sequence of cyclone transit
counts. The dispersion predicted by the Poisson model
is separately computed for each threshold by a paramet-
ric bootstrap approach; this method also gives estimates
for the uncertainty in the dispersion, see the Appendix
for details. The Poisson model captures several features
of the behaviour in Fig. 6: the confidence intervals of
the dispersion have roughly the same amplitude as for
the data, see Fig. 12. The point estimate of the disper-
sion initially increases with the threshold, followed by a
gradual decrease for the intense cyclones. The point es-
timates of dispersion for the data are nearly wholly con-
tained in the 90 % confidence intervals of the Poisson-
simulated dispersion and vice versa. However, the Pois-
son model does not fully capture the dispersion present
in the data for thresholds between 20 % and 70 %: the
discrepancy in the point estimates is fairly large there
(up to 0.3). This is not an effect of seasonal dependence
or long-term trend alone, although both are present (see
Fig. 10 (d)). Removing the trend term from the covari-
ates has little effect, whereas removing the seasonal term
slightly reduces the amount of modelled overdispersion
(not shown). Therefore, these terms alone do not explain
the overdispersion in the observed data.

Monthly aggregation periods are used in Fig. 13.
The shape of the dispersion as a function of the thresh-
old ξ̄850 is similar to Fig. 12: an initial increase is fol-
lowed by a decrease for large thresholds. However, the
confidence intervals are smaller for the monthly counts.
A Poisson regression model is set-up for the monthly
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Figure 12: Same as Fig. 6 (solid lines), where the dispersion sim-

ulated by the Poisson regression model is added (dashed line) and

its 90 % bootstrap confidence intervals for each threshold value are

rendered with grey shading.
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Figure 13: Same as Fig. 12 for the monthly cyclone counts.

counts as in MAILIER et al. (2006): five seasonal indica-
tors are used for the months October-February (instead
of the single term X5 used for the 3-monthly counts).
This model captures the dispersion in the monthly
counts in a reasonable way: Poisson-based confidence
intervals include nearly all the point estimates for the
data and viceversa. Also, the width of the Poisson-based
confidence intervals is comparable to that of the data.
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Figure 14: Same as Fig. 13 for the yearly cyclone counts.

In this case as well (compare the above discussion for
Fig. 12), linear time trend does not account for the
overdispersion, since its removal from the covariates re-
duces the amount of modelled dispersion by only a slight
amount (not shown). On the other hand, removal of the
indicators for the months sensibly reduces the amount of
overdispersion captured by the model.

A very large amount of clustering in the extended
winter totals is suggested by Fig. 14. The dispersion first
increases with the threshold, reaching values of above
1.0 for cyclones above the 60th quantile of vorticity,
then decreases again. Uncertainty is here very large: at
threshold ξ̄850 = 0 (ξ̄850 = 0.6), the 90 % confidence
interval of ψ ranges from about 0 to 0.8 (respectively,
0.4 to over 1.4). A Poisson regression model is con-
structed as above, with the only difference that no sea-
sonal indicators are used (that is, k = 5 in (5.2) and
X5 is a linear time trend). This model captures all of
the features described above: in fact, the performance,
as shown in Fig. 14, is better than for the monthly or
3-monthly counts. Indeed confidence intervals largely
overlap and the point estimate of the dispersion in the
Poisson model is close to the point estimate for the data.
Also in this case, removal of the linear trend from the
covariates does not significantly reduce the amount of
modelled dispersion. The dispersion is much smaller
(not shown), though still positive, if the extended win-
ter transits are aggregated by calendar year, that is, if
the Oct/Nov/Dec transits of a given year are aggregated
with the Jan/Feb/Mar of the same year instead of the
next. This aggregation procedure matches the way most
reinsurance is purchased in Europe (although other parts
of the world have significant renewals at other times).
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Figure 15: Same as Fig. 7 for a gridpoint near Berlin (solid lines).

The dispersion simulated by a Poisson regression model fitted on the
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Figure 16: Autocorrelations of the time series of the daily Poisson

predictor μ at Berlin with coefficients βi estimated from a monthly

model.

The large-scale flow also accounts for the depen-
dence of the dispersion statistic on the aggregation pe-
riod. Fig. 15 shows a plot, similar to Fig. 7, where the
Poisson-simulated dispersion is also added (represented
by grey shading). Notice that a different Poisson mod-
els is fitted for each value of ∆t on the horizontal axis.

No seasonal indicator is included, as too many terms
would be required for the shorter aggregation periods.
These Poisson models reproduce the increasing trend of
clustering with ∆t as well as the magnitude of the un-
certainty around the point estimate. Agreement is par-
ticularly good for aggregation periods between 14 and
90 days, whereas uncertainty increases for larger peri-
ods and is the dominant feature for 182 days (whole ex-
tended winter). Underdispersion appears for short aggre-
gation periods (∆t below 7 days approximately). Here
a limitation of the Poisson regression becomes obvi-
ous: Poisson models can only be equi- or over-dispersed.
Hence, the dispersion simulated by the Poisson models
is markedly larger than the observed dispersion for short
aggregation periods.

The increase of clustering with aggregation period is
potentially explained by small amounts of long-lead se-
rial correlation in the teleconnection indices. The pre-
dictor μ in (5.2) is a time series μj , j = 1, . . . , nY ,
where nY is the length of the time series Y = {Yj} and

log(μj) = β0 +
∑k

i=1
βiX

j
i . A monthly timescale ∆t

is selected and a Poisson model is constructed with sea-
sonal indicators (see above), but without the time trend.
The coefficients βi are estimated from the time series of
monthly counts at a gridpoint near Berlin. The time se-
ries μj is then generated using (5.2) with the daily tele-
connection indices Xi and with the βi from the monthly
Poisson model. The autocorrelation of the daily time se-
ries μj drops to non-significant values within 15-20 days
(Fig. 16). The same holds for the autocorrelation of the

NAO index time series Xj
1

(not shown). However, the
autocorrelations of μj increase above significance from
a lag of about 100 days. This feature is robust with re-
spect to the aggregation period: values of ∆t of 14 days
and 1 year have also been examined, yielding consistent
results. This is not an artifact of the exponentiation re-
quired to invert (5.2), since the same is obtained using
the time series log(μj). The long-lead serial correlation
might possibly be a result of seasonality or intraseasonal
persistence in the teleconnection indices. However, the
monthly indicators included in the Poisson regression
should account for the first effect, leaving the second as
a potential mechanism explaining the increase of clus-
tering with aggregation period.

In summary, the plots in Figs. 12 up to 15 illustrate
the following features:

• overdispersion is present for all intensity thresholds:
it initially increases with ξ̄850 and eventually de-
creases for large values of ξ̄850;

• increase of the dispersion with aggregation period
(see the previous section) occurs coherently for a
wide range of vorticity thresholds;

• uncertainty increases with aggregation period and is
very large for the extended winter totals;
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• the large-scale flow accounts for these features, since
Poisson regression based on teleconnection indices
captures the above characteristics.

These features are common among other locations: grid-
points near Paris, Copenhagen and London have been
examined (figures not shown), yielding similar results.
In fact, for these gridpoints the performance of the Pois-
son model is even better than that of the Berlin gridpoint
presented above: in these cases, not only does the width
of the confidence interval agree for the data and for the
model-simulated dispersion, but also the point estimates
are much closer, consistently for the monthly, 3-monthly
and extended winter aggregation periods.

6 Conclusion

This study has investigated the dependence of clustering
of wintertime extra-tropical cyclones on:

1. the vorticity (intensity) of the cyclones and

2. the length of the time period over which cyclone
transits are counted.

3. the width of the latitudinal barrier used to define the
cyclone transits.

Clustering is characterized by a dispersion statistic ψ de-
fined as the deviation from unity of the ratio of variance
to mean of the counts of eastward transits of cyclone
tracks across meridian segments. Cyclone intensity is
ranked according to the relative vorticity of the wind at
850 hPa. Intense cyclones are defined as those whose
relative vorticity exceeds a fixed threshold ξ̄850, defined
as a quantile of the vorticity distribution at each grid-
point.

Clustering is found to be largest for intense cyclones
near the exit of the North Atlantic storm track. This
region includes Scandinavia, UK, the Benelux coun-
tries, northern Germany and France. For a gridpoint near
Berlin the dispersion statistic of the 3-monthly counts
increases from 0.45 for all cyclones (threshold ξ̄850 = 0)
to 0.8 for cyclones with intensity in the upper 25 % of the
vorticity distribution (ξ̄850 = 75 %). The dispersion is
positive for all considered threshold values. A 90 % con-
fidence interval for ψ is bounded away from zero up to a
threshold ξ̄850 = 90 %. Uncertainties are large: a 90 %
confidence interval for ψ is (0.16, 0.76) for all cyclones
and (0.4, 1.17) for intensity threshold ξ̄850 = 85 %.

The dispersion of the cyclone counts also increases
with the length of the period ∆t used to aggregate the
transits. For ∆t = 4 days the dispersion of the counts is
−0.05 with 90 % confidence interval (−0.09, 0): com-
pare this with the values ψ = 0.45 and confidence in-
terval (0.16, 0.76) obtained for ∆t = 3 months (see
above). The dispersion scales linearly with the loga-
rithm of ∆t up to ∆t = 3 months. For ∆t equal to
the whole extended winter, the dispersion drops to a

smaller (though still positive) value. However, uncer-
tainty is very large: the 90 % confidence interval is here
(−0.15, 0.6). All these features are consistent across a
number of locations in northern Europe, including grid-
points near London, Paris and Copenhagen.

Increased clustering with cyclone intensity and aggre-
gation period has important implications for the accu-
rate modelling of aggregate insurance losses. Our re-
sults suggest that windstorm clustering is of concern for
companies with spatially extended insurance portfolios,
such as (typical) reinsurance companies or large insur-
ance groups. However, insurers with a more spatially lo-
calised portfolio might be affected by the accumulation
of risk due to clustering of intense cyclones even if these
do not qualify as catastrophic windstorms, also in view
of the capital requirements discussed in the Introduction.

The time-varying effect of large-scale atmospheric
flow largely accounts for the increases in dispersion
discussed above. Four of the main teleconnection in-
dices affecting atmospheric variability in the Northern
Hemisphere are used as covariates in nonlinear Pois-
son regression models. The teleconnection indices used
here are the North Atlantic Oscillation, the East At-
lantic Pattern, the Scandinavian pattern, and the East At-
lantic/West Russia pattern. The Poisson models repro-
duce both the increases and the sampling uncertainties
in the dispersion when either intensity threshold or ag-
gregation period is varied. Increased dispersion for more
intense cyclones is explained by an increased effect of
the indices on the cyclone transit rates. Increased dis-
persion for longer aggregation periods is related to small
amounts of serial correlation which are found in the in-
dices and in the transit rate predictor at long lags (> 100
days).

A limitation of the present approach is that separate
Poisson models must be fitted for different values of
the vorticity threshold and of the aggregation period:
this means that some information is being discarded.
Future research will aim at constructing models, based
on marked non-stationary Poisson processes in the time
axis (COX and ISHAM, 1980), which can simultaneously
account for the complex features described above.
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A Poisson regression

Cyclone count data are often modelled by Poisson re-
gression (ELSNER and SCHMERTMANN, 1993; MC-
DONNELL and HOLBROOK, 2004), see CAMERON and
TRIVEDI (1998); MCCULLAGH and NELDER (1989) for
general introductions. A time series Y of count data is
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assumed to be a sample of a Poisson distribution whose
mean is conditional on the value of k time-varying fac-
tors X1,X2, . . . ,Xk. For cyclone counts, equation (5.2)
means that the rate of cyclone arrivals depends on the
time-varying effect of the explanatory factors Xi. Equa-
tion (5.1) prescribes the variability of the cyclone counts
around the conditional mean μ: this is aleatory (random,
stochastic) variability, with the shape of a Poisson dis-
tribution.

The dispersion captured by the Poisson model (rep-
resented with grey shading in Fig. 12) is computed by
parametric bootstrap: a value of the threshold ξ̄850 is
fixed and a Poisson model as in (5.1)- (5.2) is fitted to the
corresponding time series of aggregate counts. Seasonal
factors and a linear time trend are added to the covari-
ates since overdispersion might be accounted for by non-
stationary effects (rather than by the large-scale flow).
The fitted value of μ is a sequence {μj , j = 1, . . . , nY }
with one conditional mean for each observation yj in
Y = {yj , j = 1, . . . , nY }. For each j, a sample of
length one is drawn from a Poisson distribution with
mean {μj}: this gives a sequence of numbers which is

a realisation Ȳ of the variable (5.1). Mean and variance
are computed for Ȳ , from which an estimate ψ̄ of the
dispersion statistic is obtained. This process is iterated,
producing a sample of values of ψ̄. The mean of this
sample is plotted with a dashed line in Fig. 12 and a
90 % confidence interval, determined by the 5 % and
95 % quantiles of the same sample, is rendered with grey
shading. The same approach is used for Fig. 15: in this
case, a different Poisson model is fitted to the count time
series obtained for each ∆t.

Significance of the dispersion statistic is determined
by LM tests for overdispersion against the Katz sys-
tem (CAMERON and TRIVEDI, 1998, Sec. 5.4.1), where
the test statistic is:

TLM =
1

2

nY
∑

j=1

[

(yj − μj)2 − yj

]

/

√

√

√

√

1

2

nY
∑

j=1

μj2 .
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