
SERIAL C0~OSITION OF 2-WAY FINITE-STATE TRANSDUCERS

AND SIMPLE PROGRA~ ON STRINGS

Nicha! P. Chytii

Vojt~ch J~kl

Charles University

Malostransk4 n&m. 25

ll8 00 Praha 1 - M. Strana

Czechoslovakia

Introduction

Hopcroft and Ullman ~i] described an algorithm for reverse run

of deterministic generalized sequential machines. This algorithm

does not go beyond abilities of 2-way finite automata. The algorithm

was then used [2] in the proof of the fact that serial composition

of a deterministic gsm A 1 and a 2- way deterministic finite-state

transducer A 2 can be replaced by a single 2-way deterministic finite-sta-

te transducer, say A 3. Let us recall the main idea of the proof

(c.f. fig. i).

wl I

wl l

L

F- 2 1

f

L Ibuffer ~]

I • A 3

r w3 i
7

I w3 7
V ~

Fig. i

136

A 3 in fact simulates step by step the computation of A 2 on the tape

w 2. A 3 has not, however, all the tape w 2 at his disposal. It has only

a segment of w 2 stored in a finite buffer. It is the segment which is

in the given moment scanned by A 2. The input head of A 3 is placed at

the square of w I which was translated by A 1 into the segment of w 2

currently stored in the buffer. If A 2 moves its head to the right, A 3

updates the content of the buffer moving its head rightwards ~nd

simulating one or more following steps of A 1. If A 2 moves its head

leftwards, then A 3 updates the content of the buffer employing the

algorithm for reverse run of A 1 and reconstructs one or more preceding

steps of A 1.

In this paper we introduce an algorithm for reverse run of more

general kind of machines, so called quasideterministic gsms. This

algorithm is th~ employed in the proofs of some results about 2-way

finite-state transducers and the functions computed by them.

The fact that the functions computable by 2-way finite transdu-

cers an closed under composition is then used in investigation of

simple programs on strings.

Quasideterministic devices

A nondeterministic gsm A is quasideterministic if for every input

w there is at most one computation over w beginning in an initial

state and reaching a final state.

Then for every mapping (as defined e.g. in ~3]) A:X ~--~ ~(Y ~)

performed by a quasideterministic gsm A is cardA(w) ~ 1 for every

w EX* . Such a mapping can be in an obvious way identified with

a (partial) mapping A:X~--~ y~ . Every mapping of this kind will be

called quasideterministic gsm-mapping in this paper.

Example 1. Let g be a 1-1 mapping computable by a sequential machine.

Then the inverse mapping g-1 is a quasideterministic gsm mapping.

Outline of the proof. In the state diagram of the Mealy sequen-

tial machine ~ performing g "reverse arrows" and interchange the

role of input and output symbols. The results is a quasideterministic
-1

gsm for g •

Example 2.
This example is connected with deterministic 2-way finite-state

transducers.

137

By a deterministic 2-way finite-state transducer (2-DFT) we

shall mean a deterministic device with finite-state control unit,

2-way read - only input head and a 1-way output head. The output head

can print a word in an output alphabet in every step of computation.

We suppose that the input words are bounded by a pair of endmarkers

#,~. Every computation starts in the initial state on the left end-

marker. It stops by leaving the input tape. Every 2-DFT determines

a (partial) function computable by 2-DFT.

By the history for 2-DFT ~ and an input word #Xl...Xn~

we mean a word

Hist(~,w)=

= (#,qol,qo2,...,qoro)(Xl,qll,.-.,qlrl) -.- (~,qn+l,1,-.-,qn+l,rn+l),

where qijg Q x ~L,R~ • qij= (q,L) (or qij= (q,R)) means that

visiting the i-th square for the j-th time, M is in state q and

enters the square from the left (or from the right).

If the computation of ~ on w is nonterminating, then Hist(M,w)

is undefined.

Lemma 1 . The mapping

w ~ Hist(~,w)

is a quasideterministic mapping for every 2-DFT M

Outline of the proof. By records we shall mean the elements

composing histories, i.e. records are sequences of the form

(x, ql,...,q2) , where x ~ X u {#,~} and q~Q x ~L,R ~ .

For arbitrary ~ there is only a finite number of records which can

occur in some terminating computation, because no square can be visi-

ted two times in the same state. The set R of these admissible re-

cords is therefore finite.
Let us construct a gem G whose state-space and output alphabet

are both equal to R. The control function ~ of G is defined as

follows:

[(x,q!,...,qs),(x, ql,---,qr)] ~ ~((x, ql,''',qr)'z) <~}df
• • r

<%f x = z [(x, ql,...,qs) can oocur as the right neighbour]
of (x, ql,...,qr) in some history of a computation

In every pair (rl,r2) 6 ~(....) , r I represents the next state and

r 2 the symbol to be printed.
The set S c R of the initial states of G is formed by all

records with the first component equal to ~ and the final set

138

F ~ R of G is formed by all records with the first component equal to ~.

Every successful computation of G for input w outputs a history

of a successful computation of M over w. Since M is deterministic, there

is at most one such a computation. Different computations of G yield

different outputs and therefore there is at most one successful compu-

tation for any input w. G is quasideterministic. []

A nondeterministic gem G 1 is dual to a nondeterministic gem G 2 iff

the state diagram of G 1 can be obtained from the state diagram of G 2

by reversing arrows and interchanging the role of initial and final

states.

The following lemma is obvious.

Lemma 2. The nondeterministic gem dual to a quasideterministic gem is

quasideterministic.

Let us describe the algorithm for reverse run of quasideterministic

gem.

Let G 1 be a quasideterministic gem, Q, X, Y, ~ , S and F its state-

space, input alphabet, output alphabet, control function, initial and

final set, respectively. Let G 2 be the gem dual to G 1. G 2 is quasideter-

ministic by Lemma 2. Let D 1 be the deterministic finite acceptor derived

from G 1 by the standard subset construction, D 2 the deterministic accep-

tor derived by the subset construction from G 2.

Then the state of D 1 after reading #Xl...xi_ 1 is equal to the set

i ~(S, #x 1. .xi_ l) = ~q e Q; q is accessible by Q from an initial

K1 = " state by reading ~Xl...Xi_l]

The state of D 2 after scanning ~XnXn_l...x i is equal to the set

K 2 q ~ Q; G 2 can access q from a state of F by reading ~Xn...x i

i i
Since G 1 is quasideterministic, card (K~ ~ K~) ~ 1. The set K 1 ~ K 2

contains one element iff there exists a successful computation of G 1

for input #Xl...Xn~ (of. Fig. 2).

Now it is easy to see how the algorithm for the reverse run of G 1

works It keeps K[and K~ in its finite memory, when the head is visi-

. i _ ~i ~^~nrmines uniouely the state of G I during ting zne i-~n square. ~l ~ ~2 ~

thesuccessful computation, if there is any.

To reconstruct the situation of G 1 at the i-1 -th square, it is

139

i
K 1

l,lxl xill xilx, l xol]

F

Fig. 2

sufficient to simulate one step of the deterministic automaton D 2 -

- K~ -1 is constructed - and to reconstruct K~ -I. Since D 1 is determinis-

tic, K~ -1 can be reconstructed employing the algorithm of Hopcroft and

Ullmanmentioned in the introduction to this paper.

All this apparently can be done by a 2-DFT. Evaluation of the next

state of G 1 is the same problem as computing one step in the reverse

run of G 2 and is solved by the dual procedure.

The algorithm starts by computing K~ and K 2. -~ It makes no problem,

as K{ = ~ (S, #) is a fixed set and K~ is computed by scanning the tape

backwards and simulating D 2.

Theorem 1. If g is a quasideterministic gsm mapping and if f is a

mapping computable by a 2-DFT, then f o g is computable by a 2-DFT.

The proof of the theorem is quite analogous to the proof of the

theorem by Aho, Hopcroft and Ullman [2 3 outlined in the introduction.

It suffices to replace the algorithm for reverse run of deterministic

gsm by the above described algorithm.

Recall a lemma from [4] .

Lemma 3 (Aho, Ullman). Let N~be a 2-DFT computing a function f. Let

g be another function computable by 2-DFT. Then there is a 2-DFT ~2

computing a function h such that

h(Hist(Ml,w)) = g o f(w), for all w.

140

Lemma l, Theorem 1 and Lemma 3 immediately imply the following theorem.

Theorem 2. (Aho, Ullman [4~) The class of functions computable by

2-DFT is closed under composition of functions.

We close the paragraph by two results which can be proved analogous-

ly to Theorem 2 using appropriate modifications of Lemma 1.

Corollary. Let f be a function computable by a deterministic bounded-

crossing transducer (cf. [5~) and let g be a function computable by

2-DFT. Then g o f is computable by 2-DFT.

By quasideterministic 2-way finite transducer (2-QFT) we shall

mean a nondeterministic 2-way finite transducer with the property that

for every input word ~w~ there is at most one terminating computation

starting on ~ in an initial state.

Corollary. Let f be computable by 2-QFT and let g be computable

by 2-DFT. Then g o f is computable by 2-DFT.

Consequently, a function is computable by 2-QFT iff it is computable

by 2-DFT.

Simple programs on strings

Various kinds of automata have been investigated as devices for

recognizing and generating languages. On the other hand, D. Scott (6J

expressed the idea that ,,functions are better than sets", i.e. that

investigation of functions computable by automata could prove to be in

some aspects more fruitful approach. The results of this paragraph

support the idea.
We shall define a simple programming language LOOP 2 which is a

little more powerful than the language LOOP and the language LOOP with

waak sum introduced and studied by Ausiello ~7] and Ausiello Moscarini

~8~ . We shall prove that the functions programmable in LOOP 2 are

exactly the functions computable by 2-DFT. The existence of such a lan-

guage bears upon the fact that the class of functions is closed under

composition. For, if P1;P2 should be a program whenever P1 and P2 are

programs, then the closure under composition of functions is usually

unavoidable.

141

To express the semantics of LOOP 2 - programs, we have to consider

each identifier in a program to be the name of a register containing

a word in a given alphabet. We assume, besides, the existence of a spe-

cial control register, which is used during execution of loops. Single

symbols of strings in the control register are accessible for inspecting

(but not rewriting) through a "window" which can be moved backwards and

forwards.

Then the LOOP 2 programs operating on strings in an alphabet X =

= {Xl,...,Xnl can be defined inductively as follows. We explain the

semantics paralelly with the syntax of the programs.

l) elementary statements

a) ~id> := E

b) <idl> :: <id2>
c) <id > :: <id >o"~const}" :

d)

(We shall refer to statements

statements.)

lef___~t

e) right

clear register (id

store the content of (id2> in (idl~

compute the right < const) -successor

of the word contained in < id>

(i.e. the word consisting of the word

from ~id) followed by < const) ,

where ~const > is a word in ~ and

store the result in <id) .

of the types a) - c) as to basic

: move the window of the control regis-

ter one position leftwards

: move the window one position right-

wards

f) (conditional statements)

i_~f <id} /~ then S1;...;S n

els____e Sn+l;...;S m fi ,

where S1,...S m are elementary

statements

if <id > /g then S 1;...~S m fi

2) elementary programs

: if the register ~ id> is

nonempty then the sequence

of statements S1,...,S n is

executed, Sn+l;..;S are exe-

cuted otherwise.

An elementary program Is every program of the form S1;...Sn, where

S~,..~S n are elementary statements.

3) LOOP 2 programs

LOOP 2 programs willbe also called simple programs in the sequel.

A simple program~is each program satisfying one of the following

conditions.

142

i) P is an elementary program,

ii) P is of the form LOOP ~id~

Xl: P1
o , i

Pn
END ,

where Pl''" " 'Pn are elementary programs,

iii) P is of the form P1;P2, where Pl' P2 are simple programs.

The program LOOP (id)

Xl: P1

o a o

Xn: Pn
E N D

is interpreted in the following way:

- the content of (id) (a string w) is stored in the control register

and the control window is moved to the first symbol of the string w;

- while the window is attached to some symbol of w execute

all the program Pi' if the window displays the symbol x i (i.e.

the statements ~ and left within Pi do not influence the

running execution of Pi).

Theorem 3.

LOOP 2.

All functions computable by 2-DFT can be programmed in

Proof. Let M be a 2-DFT and Q = ~qo,...,qm~ , X l, X 2,

* ~left, right~ and qo : Q ~ X1 ,~ Q x X 2 ~ its state space, in-

put alphabet, output alphabet, control function and the initial state,

respectively. Denote X = X 1 u X 2 = ~ Xl,..,Xn~ . Then the following

simple program evidently computes the same function as M.

IN U; OUT V;

Qo ~= Xl;

LOOP U
Xl : P1

Pn
END

~declaration of input and output register - U contains

the input string at the start of the computations, the

other registers are empty. V contains the output word at

the end of the computation

simulation of N

(end of the program~ , where

143

for x i ~ X 1 is Pi = left; r__ig~_t linfinite cycle

for x i ~ X 1 is Pi = Sio;''';Sim and

= V: -V • "v" Sij i_~f Qj /~ then Qj:=E ; Qk:= Xl; - ; S f_i

S E {ri_~h_~t, lef__~t ~ and k, v and S are such that

Y(qj,x i) = (qk,v,S).

where

Theorem 4. All functions programmable in LOOP 2 are computable by 2-DFT.

Proof. Let P be a simple program and X1,...,X m all identifiers

occurring in P. Suppose that all the identifiers are declared as input

and at the same time as output ones. Then P defines a partial transfor-

mation of (X*) m.

We shall construct a 2-DFT Ap performing the same transformation

as P in the following sense: input and output tapes of Ap have m tracks.

Input m-tuple of strings (Wl,...,w m) is encoded on the input tape as

indicated in Fig. 3-

w I empty

empty empty w 2

empty w 3 empty

I mt i ml

Fig. 3

The output m-tuple is encoded in the same way.

Let us describe the construction of Ap inductively, following the

inductive definition of simple programs.

l) P is elementary

We shall describe three 2-DFT A1,A2,A 3 such that the serial compo-

sition of A1,A 2 and A 3 will perform the same transformation as P.

Automaton Al: A 1 has the program P stored in its finite control unit.

144

It also disposes of an auxiliary m-bit memory E. In every moment, the

i-th bit of E is set to 1 iff the register X i of P is nonempty in a

corresponding moment of the execution of P.

At the beginning of the computation, A 1 inspects the input tape

and learns which tracks are completely empty. This information is stored

in E.

Then it prints out the input tape. After it (i.e. on the right of

the string w m in the m-th track), it prints a sequence of basic state-

ments S1,...,S r. This sequence describes step by step all actions of P

changing the content of registers. A 1 constructs the sequence as follows:

it goes step by step through the program P stored in its finite

memory and

- when it reaches a basic statement S in P, it prints S. Basic statements

can clear a nonempty register or vice versa. Therefore A 1 updates E

when printing S;

- it omits statements right and left (because they have no meaning in

elementary programs);

- when a conditional statement is to be executed in P, A 1 decides (by

inspecting E) whether the test condition of the statement holds or

not and enters the corresponding branch of the program P.

The final form of the output tape is illustrated by Fig. 4.

w I

w2 I

Fig. 4

Automaton A2: A 2 disposes of an auxiliary finite memory R divided into

m squares. Each of the squares can contain one of the symbols 1,2,..°

..,m, erase. The content of R will be interpreted as references of re-

gisters to other registers. Denote the content of the i-th square by x i.

Then e.g. the reference x i = j means that X i should be treated as Xj.

At the beginning of the computation, A 2 sets x i = i for all i.

Then A 2 is scanning the input tape leftwrds and executing the statements

Sr,...,S 1 (in this order). Execution or more precisely interpreting of

the statements of the type Xi:= £ and Xj:=X k consists in changing

145

the content of the memory R while the remaining type of basic statements,

i.e. Xi:=Xio"<const>" causes an output printing. More precisely:

- scanning Xi:= g , A 2 assigns erase to each x k such that x k = i and

makes a left shift,

- scanning Xi:= Xj, A 2 executes assignements Xk:= j, for all x k equal

to i and makes a left shift,

- scanning Xi:= Xio"u" , A 2 prints u in the k-th track, for all k such

that xk=i and also proceeds leftwards.

When A 2 reaches the segment of the tape on the left of S1, then it con-

tinues going leftwards and in each step the symbol which is in the k-th

track on the input tape is printed into the i-th output track whenever

x i = k; blank is printed into the i-th track for x i = erase.

Let us summarize the main idea of this procedure. If the program P

assigns Xi:= Xj in the s-th step of computation, then all the history

of X i up to the s-th step is in fact cancelled and replaced by the histo-

ry of Xj up to the s-th step. Similarly, the statement X:= ~ means that

X is cleared irrespective of all its history up to the s-th step.
l

Therefore, the automaton A 2 traverses the history of the execution

of P backwards and if it has x i = j in its table of references R when

scanning S s then for its following computation in the i-th track, the

computation in the j-th track is authoritative. If x i = erase, then

the remaining segment of the i-th track is to be erased.

When A 2 finishes its work, its output tape contains the final con-

tent of X i in the i-th output track (1 ~ i ~ m). The output, however,

need not be in the desired normalized form and blank segments can be

scattered between symbols in each track.

Automaton A3: A 3 rearranges the tape in the normalized fashion, i.e.

it prints out the content of the first input track into the first out-

put track omitting the blanks, then it prints the content of the second

track and so on. (Recall Fig. 3.)

The serial composition of A1,A2,A 3 performs the same transformation

of (X*) m as P. By Theorem 2, the serial composition of A1,A 2 and A 3

can be replaced by a single 2-DFT Ap.

2) P is of the form LOOP X 1

Xl: P1

Xn:
END

146

The equivalent 2-DFT Ap can be again described by a serial compositi-

tion o~ three 2-DFTs A1,A2,A 3. A 2 and A 3 are the same as in the pre-

ceding case. A 1 is a modification of A 1. It starts by initializing E

and by reprinting the input tape in the same way as A 1. Then A~ moves

its head to the first symbol of w 1. If the first symbol is xi, it starts

by executing Pi similarly as A 1 executes all P with the exception that

the statements ~ and left are not neglected as in the previous case.

They are inerpreted as instructions controlling the moves of the head.

If the way through Pi is accomplished then the symbol currently scanned

by the head is used to determine which subroutine Pj is to be executed
t

next. If the head is out of w 1 in such a moment, A 1 stops.

3) P is of the form P1;P2

where P1 and P2 are simple programs. Fictive variables can be introdu-

ced into P1 and P2 (e.g. using statements of the form X:= X) so that

P1 and P2 contain the same identifiers as P. Then 2-DFT AP1 and AP2

equivalent to P1 and P2' respectively, exist by the induction assumption.

The serial composition of Ap and Ap is equivalent to P and this com-

position can be replaced by ~ single22-DFT by Theorem 2.

We have proved that for every program P there is an equivalent

2-DFT, provided all variables were declared as input and output ones.

For the general case when variables Xil,...,Xir are declared as the

input ones and variables Xol,...,Xos as the output ones, it suffices

to construct the serial ccmpositkn of 2-DFTs Ain,Ap,Aou t, where Ain

performs the input encoding (x~)r---~ (X~) m for Ap by printing the in-

put values into the appropriate tracks and leaving the remaining tracks

empty, Aou t on the other hand picks up the output values.

The serial composition of the automata performs the same mapping

(x~)r__-> (X*) s as P and can be replaced by a single 2-DFT.

References

1. J.E. Hopcroft and J.D. Ullman, An Approach to a Unified Theory of
Automata, The Bell System Technical Journal 46 (1967), 1793-1829.

2. A.V. Aho, J.E. Hopcroft and J.D. Ullman, A General Theory of Trans-
lation, Mathematical Systems Theory 3 [1969), 195-z21.

3- J.E. Hopcroft and J.D. Ullman, Formal Languages and Their Relation

147

to Automata, Addison-Wesley 1969

4. A.V. Aho and J.D. Ullman, A Characterization of Two-Way Determinis-
tic Classes of Languages, ~CSS 4 (1970), 523-538.

5. V. Rajlich, Bounded-Crossing Transducers, Information and Control
27 (1975), 329-335.

6. D. Scott, Some Definitional Suggestions for Automata Theory,
JCSS 1 (1967), 187-212.

7. G. Ausiello, Simple Programs on Strings and Their Decision Problems,
University of Rome, R.75-17, 1975.

8. G. Ausiello and M. Moscarini, On the Complexity of DecisionProblems
for Classes of Simple Programs on Strings, Proceedings of GI - 6.
Jahrestagung ~1976), Informatik - Fachberichte, Springer Verlag,
1976.

