SERIAL COMPOSITION OF 2-WAY FINITE-STATE TRANSDUCERS AND SIMPLE PROGRAMS ON STRINGS

Michal P. Chytil
Vojtěch Jákl
Charles University
Malostranské nám. 25
11800 Praha 1 - M. Strana
Czechoslovakia

Introduction

Hopcroft and Ullman [1] described an algorithm for reverse run of deterministic generalized sequential machines. This algorithm does not go beyond abilities of 2-way finite automata. The algorithm was then used [2] in the proof of the fact that serial composition of a deterministic gsm A_{1} and a 2- way deterministic finite-state transducer A_{2} can be replaced by a single 2-way deterministic finite-state transducer, say A_{3}. Let us recall the main idea of the proof (c.f. fig. l).

A_{3} in fact simulates step by step the computation of A_{2} on the tape $w_{2} \cdot A_{3}$ has not, however, all the tape w_{2} at his disposal. It has only a segment of w_{2} stored in a finite buffer. It is the segment which is in the given moment scanned by A_{2}. The input head of A_{3} is placed at the square of w_{1} which was translated by A_{1} into the segment of w_{2} currently stored in the buffer. If A_{2} moves its head to the right, A_{3} updates the content of the buffer moving its head rightwards and simulating one or more following steps of A_{1}. If A_{2} moves its head leftwards, then A_{3} updates the content of the buffer employing the algorithm for reverse run of A_{1} and reconstructs one or more preceding steps of A_{1}.

In this paper we introduce an algorithm for reverse run of more general kind of machines, so called quasideterministic gsms. This algorithm is then employed in the proofs of some results about 2 -way finite-state transducers and the functions computed by them.

The fact that the functions computable by 2 -way finite transducers an closed under composition is then used in investigation of simple programs on strings.

Quasideterministic devices
A nondeterministic gsm A is quasideterministic if for every input w there is at most one computation over w beginning in an initial state and reaching a final state.

Then for every mapping (as defined e.g. in [3]) $A: X^{*} \rightarrow P\left(Y^{*}\right)$ performed by a quasideterministic gsm A is cardA(w) ≤ 1 for every $w \in X^{*}$. Such a mapping can be in an obvious way identified with a (partial) mapping $A: X^{*} \rightarrow Y^{*}$. Every mapping of this kind will be called quasideterministic gsm-mapping in this paper.

Example l. Let g be a l-l mapping computable by a sequential machine. Then the inverse mapping g^{-1} is a quasideterministic gsm mapping.

Outline of the proof. In the state diagram of the Mealy sequential machine M performing g "reverse arrows" and interchange the role of input and output symbols. The results is a quasideterministic gsm for g^{-1}.

Example 2.
This example is connected with deterministic 2-way finite-state transducers.

By a deterministic 2-way finite-state transducer (2-DFT) we shall mean a deterministic device with finite-state control unit, 2-way read - only input head and a l-way output head. The output head can print a word in an output alphabet in every step of computation. We suppose that the input words are bounded by a pair of endmarkers $\not 0, \not \subset$. Every computation starts in the initial state on the left endmarker. It stops by leaving the input tape. Every 2-DFT determines a (partial) function computable by $2-$ DPT.

By the history for $2-$ DPT M and an input word $\not \subset x_{1} \ldots x_{n} \not p$ we mean a word
$\operatorname{Hist}(\mathbb{M}, \mathrm{w})=$
$=\left(\not x, q_{01}, q_{02}, \ldots, q_{0 r_{0}}\right)\left(x_{1}, q_{11}, \ldots, q_{1 r_{1}}\right) \ldots\left(\not p, q_{n+1}, \ldots,{q_{n+1}, r_{n+1}}\right)$, where $q_{i j} \in Q \times\{I, R\}$. $q_{i j}=(q, L) \quad$ (or $q_{i j}=(q, R)$) means that visiting the i-th square for the j-th time, M is in state q and enters the square from the left (or from the right).

If the computation of \mathbb{M} on w is nonterminating, then Fist (\mathbb{M}, w) is undefined.

Lemma 1. The mapping

$$
\mathrm{w} \longrightarrow \text { Hist }(M, w)
$$

is a quasideterministic mapping for every $2-$ DPI M.
Outline of the proof. By records we shall mean the elements composing histories, ie. records are sequences of the form $\left(x, q_{1}, \ldots, q_{2}\right)$, where $x \in X \cup\{\not, \phi\}$ and $q \in Q x\{I, R\}$. For arbitrary H there is only a finite number of records which can occur in some terminating computation, because no square can be visited two times in the same state. The set R of these admissible records is therefore finite.

Let us construct a gsm G whose state-space and output alphabet are both equal to R. The control function δ of G is defined as follows:

$$
\left[\left(x, q_{1}^{\prime}, \ldots, q_{s}^{\prime}\right),\left(x, q_{1}, \ldots, q_{r}\right)\right] \in \delta\left(\left(x, q_{1}, \ldots, q_{r}\right), z\right) \Leftrightarrow d f
$$

$\Leftrightarrow_{d f} \quad x=z \&\left[\left(x^{\prime}, q_{1}^{\prime}, \ldots, q_{s}^{\prime}\right)\right.$ can occur as the right neighbour of $\left(x, q_{1}, \ldots, a_{r}\right)$ in some history of a computation]
In every pair $\left(r_{1}, r_{2}\right) \in \delta(\ldots), r_{1}$ represents the next state and r_{2} the symbol to be printed.

The set $S \subseteq R$ of the initial states of G is formed by all records with the first component equal to \notin and the final set
$F \subseteq R$ of G is formed by all records with the first component equal to $\not \subset$.
Every successful computation of G for input w outputs a history of a successful computation of M over w. Since M is deterministic, there is at most one such a computation. Different computations of G yield different outputs and therefore there is at most one successful computation for any input w. G is quasideterministic.

A nondeterministic gsm G_{1} is dual to a nondeterministic gsm G_{2} iff the state diagram of G_{1} can be obtained from the state diagram of G_{2} by reversing arrows and interchanging the role of initial and final states.

The following lemma is obvious.
Lemma 2. The nondeterministic gsm dual to a quasideterministic gsm is quasideterministic.

Let us describe the algorithm for reverse run of quasideterministic gsm.

Let G_{1} be a quasideterministic gsm, Q, X, Y, δ, S and F its statespace, input alphabet, output alphabet, control function, initial and final set, respectively. Let G_{2} be the gsm dual to $G_{1} . G_{2}$ is quasideterministic by Lemma 2. Let D_{1} be the deterministic finite acceptor derived from G_{1} by the standard subset construction, D_{2} the deterministic acceptor derived by the subset construction from G_{2}.

Then the state of D_{1} after reading $\not \subset x_{1} \ldots x_{i-1}$ is equal to the set $K_{1}^{i}=\delta\left(S, \not \subset x_{1} \ldots x_{i-1}\right)=\{q \in Q ; q$ is accessible by Q from an initial state by reading $\left.\phi x_{1} \ldots x_{i-1}\right\}$

The state of D_{2} after scanning $\nRightarrow x_{n} x_{n-1} \ldots x_{i}$ is equal to the set $K_{2}^{i}=\left\{q \in Q ; G_{2}\right.$ can access q from a state of F by reading $\left.\not \subset x_{n} \ldots x_{i}\right\}$ Since G_{I} is quasideterministic, card $\left(K_{1}^{i} \cap K_{2}^{i}\right) \leq 1$. The set $K_{1}^{i} \cap K_{2}^{i}$ contains one element iff there exists a successful computation of G_{1} for input $\not \subset \mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{n}} \not \mathrm{P}^{(c f .}$. Fig. 2).

Now it is easy to see how the algorithm for the reverse run of G_{1} works. It keeps K_{1}^{i} and K_{2}^{i} in its finite memory, when the head is visiting the i-th square. $K_{1}^{i^{2}} \cap K_{2}^{i}$ determines uniquely the state of G_{1} during the successful computation, if there is any. To reconstruct the situation of G_{1} at the $i-1$-th square, it is

\notin	x_{1}	x_{i-1}	x_{i}	x_{i+1}	x_{n}

Fig. 2
sufficient to simulate one step of the deterministic automaton $D_{2}-$ $-K_{2}^{i-1}$ is constructed - and to reconstruct K_{1}^{i-1}. Since D_{1} is deterministic, K_{l}^{i-1} can be reconstructed employing the algorithm of Hopcrof't and Ullman mentioned in the introduction to this paper.

All this apparently can be done by a 2-DFI. Evaluation of the next state of G_{1} is the same problem as computing one step in the reverse run of G_{2} and is solved by the dual procedure.

The algorithm starts by computing K_{1}^{1} and X_{2}^{1}. It makes no problem, as $K_{1}^{1}=\delta(S, \not \subset)$ is a fixed set and K_{2}^{1} is computed by scanning the tape backwards and simulating D_{2}.

Theorem 1. If g is a quasideterministic gsm mapping and if f is a mapping computable by a $2-D F T$, then $f \circ g$ is computable by a $2-D F T$.

The proof of the theorem is quite analogous to the proof of the theorem by Aho, Hopcroft and Ullmen [2] outlined in the introduction. It suffices to replace the algorithm for reverse run of deterministic gsm by the above described algorithm.

Recall a lemma from [4].

Lemma 3 (Aho, Ullman). Let M_{1} be a 2-DFT computing a function f. Let g be another function computable by 2-DFT. Then there is a $2-D F T M_{2}$ computing a function h such that

$$
h\left(\text { Hist }\left(M_{1}, w\right)\right)=g \circ f(w), \quad \text { for all } w
$$

Lemma 1，Theorem 1 and Lemma 3 immediately imply the following theorem．

Theorem 2．（Aho，Ullman 〔4〕）The class of functions computable by $2-$ DFT is closed under composition of functions．

We close the paragraph by two results which can be proved analogous－ ly to Theorem 2 using appropriate modifications of Lemma 1.

Corollary．Let f be a function computable by a deterministic bounded－ crossing transducer（cf．［5〕）and let g be a function computable by $2-D F T$ ．Then $g \circ f$ is computable by $2-D F T$ ．

By quasideterministic 2－way finite transducer（2－QFT）we shall mean a nondeterministic 2－way finite transducer with the property that for every input word $\neq w$ there is at most one terminating computation starting on $\not \subset$ in an initial state．

Corollary．Let f be computable by $2-Q P T$ and let g be computable by $2-$ DFT．Then $g \circ f$ is computable by $2-D P T$ ．

Consequently，a function is computable by $2-Q F I$ iff it is computable by $2-$ DFT．

Simple programs on strings

Various kinds of automata．have been investigated as devices for recognizing and generating languages．On the other hand，D．Scott（6］ expressed the idea that＂functions are better than sets＂，i．e．that investigation of functions computable by automata could prove to be in some aspects more fruitful approach．The results of this paragraph support the idea．

We shall define a simple programming language LOOP 2 which is a little more powerful than the language LOOP and the language LOOP with weak sum introduced and studied by Ausiello（7］and Ausiello Moscarini ［8］．We shall prove that the functions programmable in LOOP 2 are exactly the functions computable by 2－DFT．The existence of such a lan－ guage bears upon the fact that the class of functions is closed under composition．For，if $P_{1} ; P_{2}$ should be a program whenever P_{1} and P_{2} are programs，then the closure under composition of functions is usually unavoidable．

To express the semantics of LOOP 2 －prograns，we have to consider each identifier in a program to be the name of a register containing a word in a given alphabet．We assume，besides，the existence of a spe－ cial control register，which is used during execution of loops．Single symbols of strings in the control register are accessible for inspecting （but not rewriting）through a＂window＂which can be moved backwards and forwards．

Then the LOOP 2 programs operating on strings in an alphabet $X=$ $=\left\{x_{1}, \ldots, x_{n}\right\}$ can be defined inductively as follows．We explain the semantics paralelly with the symtax of the programs．

1）elementary statements
a）$\langle i d\rangle:=\varepsilon \quad$ clear register $\langle i d\rangle$
b）$\left\langle i d_{1}\right\rangle:=\left\langle i d_{2}\right\rangle$ ：store the content of $\left\langle i d_{2}\right\rangle$ in $\left\langle i d_{1}\right\rangle$
c）$\langle i d\rangle:=\langle i d\rangle_{0} "\langle c o n s t\rangle ":$ compute the right 〈const〉－successor of the word contained in 〈id〉
（i．e．the word consisting of the word from 〈id〉 followed by 〈const〉， where＜const＞is a word in X ）and store the result in 〈id〉．
（We shall refer to statements of the types a）－c）as to basic statements．）
d）left
e）right
f）（conditional statements）
if $\langle i d\rangle \neq \varepsilon$ then $S_{1} ; \ldots ; S_{n} \quad$ if the register $\langle i d\rangle$ is
else $S_{n+1} ; \ldots ; S_{m} f i$
where $S_{1}, \ldots S_{m}$ are elementary statements
if 〈id〉 $\neq \varepsilon$ then $S_{1} ; \ldots ; S_{m} f i$
：move the window of the control regis－ ter one position leftwards
：move the window one position right－ wards

2）elementary programs
An elementary program is every program of the form $S_{1} ; \ldots S_{n}$ ，where S_{1}, \ldots, S_{n} are elementary statements．

3）LOOP 2 programs
LOOP 2 programs willbe also called simple programs in the sequel． A simple programis each program satisfying one of the following conditions．
i）P is an elementary program，
ii）P is of the form LOOP 〈id〉

$$
\begin{gathered}
x_{1}: P_{1} \\
\cdots \\
x_{n}: P_{n} \\
\text { END },
\end{gathered}
$$

where P_{1}, \ldots, P_{n} are elementary programs，
iii）P is of the form $P_{1} ; P_{2}$ ，where P_{1}, P_{2} are simple programs．
The program LOOP 〈id〉

$$
x_{1}: P_{1}
$$

$$
x_{n}: P_{n}
$$

END
is interpreted in the following way：
－the content of 〈id〉（a string w）is stored in the control register and the control window is moved to the first symbol of the string w；
－while the window is attached to some symbol of w execute
all the program P_{i} ，if the window displays the symbol x_{i}（i．e． the statements right and left within P_{i} do not influence the running execution of P_{i} ）．

Theorem 3．All functions computable by 2－DFT can be programmed in LOOP 2.

Proof．Let M be a $2-D F I$ and $Q=\left\{q_{0}, \ldots, q_{m}\right\}, X_{1}, X_{2}$ ，
$\delta: Q \times X_{1} \longrightarrow Q \times X_{2}^{*} \times\{$ left，right $\}$ and q_{0} its state space，in－ put alphabet，output alphabet，control function and the initial state， respectively．Denote $X=X_{1} \cup X_{2}=\left\{x_{1}, \ldots, x_{n}\right\}$ ．Then the following simple program evidently computes the same function as M ．

IN U；OUT V ；\｛declaration of input and output register－U contains the input string at the start of the computations，the other registers are empty．V contains the output word ait the end of the computation $\}$
$Q_{0}:=x_{1} ;$
LOOP U \｛simulation of M \}

$x_{n}: P_{n}$
END ${ }^{n}$ \｛end of the program \} , where
for $X_{i} \notin X_{1}$ is $P_{i}=$ left; right \{infinite cycle\}
for $X_{i} \in X_{1}$ is $P_{i}=S_{i o} ; \ldots ; S_{i m}$ and

$S \in\{$ right, left $\}$ and k, V and S are such that $\delta\left(q_{j}, x_{i}\right)=\left(q_{k}, v, S\right)$.

Theorem 4. All functions programmable in LOOP 2 are computable by 2-DPT.

Proof. Let P be a simple program and X_{1}, \ldots, X_{m} all identifiers occurring in P. Suppose that all the identifiers are declared as input and at the same time as output ones. Then P defines a partial transform mation of $\left(X^{*}\right)^{m}$.

We shall construct a $2-D F T A_{p}$ performing the same transformation as P in the following sense: input and output tapes of A_{P} have m tracks. Input m-tuple of strings $\left(w_{1}, \ldots, w_{m}\right)$ is encoded on the input tape as indicated in Fig. 3.

w_{1}	empty		
empty	w_{2}	empty	
empty	w_{3}	empty	
$\ldots .$.			
		w_{m}	

Fig. 3

The output m-tuple is encoded in the same way.
Let us describe the construction of A_{P} inductively, following the inductive definition of simple programs.

1) P is elementary

We shall describe three $2-D F T A_{1}, A_{2}, A_{3}$ such that the serial composition of A_{1}, A_{2} and A_{3} will perform the same transformation as P.

Automaton $A_{1}: A_{1}$ has the program P stored in its finite control unit.

It also disposes of an auxiliary m-bit memory E. In every moment, the i-th bit of E is set to I iff the register X_{i} of P is nonempty in a corresponding moment of the execution of P.

At the beginning of the computation, A_{1} inspects the input tape and learns which tracks are completely empty. This information is stored in E .

Then it prints out the input tape. After it (i.e. on the right of the string w_{m} in the m-th track), it prints a sequence of basic statements S_{1}, \ldots, S_{r}. This sequence describes step by step all actions of P changing the content of registers. A_{1} constructs the sequence as follows:
it goes step by step through the program P stored in its finite memory and

- when it reaches a basic statement S in P, it prints S. Basic statements can clear a nonempty register or vice versa. Therefore A_{1} updates E when printing S;
- it omits statements right and left (because they have no meaning in elementary programs);
- when a conditional statement is to be executed in P, A_{1} decides (by inspecting E) whether the test condition of the statement holds or not and enters the corresponding branch of the program P.
The final form of the output tape is illustrated by Fig. 4.

Fig. 4

Automaton $A_{2}: A_{2}$ disposes of an auxiliary finite memory R divided into m squares. Each of the squares can contain one of the symbols $1,2, \ldots$ \ldots, m, erase. The content of R will be interpreted as references of registers to other registers. Denote the content of the i-th square by x_{i}. Then e.g. the reference $X_{i}=j$ means that X_{i} should be treated as X_{j}.

At the beginning of the computation, A_{2} sets $x_{i}=i$ for all i. Then A_{2} is scanning the input tape leftwrds and executing the statements S_{r}, \ldots, S_{1} (in this order). Execution or more precisely interpreting of the statements of the type $X_{i}:=\varepsilon$ and $X_{j}:=X_{k}$ consists in changing
the content of the memory R while the remaining type of basic statements, i.e. $X_{i}:=X_{i} 0^{\prime \prime}$ 〈const>" causes an output printing. More precisely:

- scanning $X_{i}:=\varepsilon, A_{2}$ assigns erase to each x_{k} such that $x_{k}=i$ and makes a left shift,
- scanning $X_{i}:=X_{j}, A_{2}$ executes assignements $X_{k}:=j$, for all X_{k} equal to i and makes a left shift,
- scanning $X_{i}:=X_{i}$ "u", A_{2} prints u in the k-th track, for all k such that $x_{k}=i$ and also proceeds leftwards.
When A_{2} reaches the segment of the tape on the left of S_{1}, then it continues going leftwards and in each step the symbol which is in the k-th track on the input tape is printed into the i-th output track whenever $\mathrm{x}_{\mathrm{i}}=\mathrm{k}$; blank is printed into the i -th track for $\mathrm{X}_{\mathrm{i}}=$ erase.

Let us summarize the main idea of this procedure. If the program P assigns $X_{i}:=X_{j}$ in the s-th step of computation, then all the history of X_{i} up to the $s-t h$ step is in fact catelled and replaced by the history of X_{j} up to the s-th step. Similarly, the statement $X:=\varepsilon$ means that X_{i} is cleared irrespective of all its history up to the s-th step.

Therefore, the automaton A_{2} traverses the history of the execution of P backwards and if it has $x_{i}=j$ in its table of references R when scanning S_{S} then for its following computation in the i-th track, the computation in the j-th track is authoritative. If $x_{i}=$ erase, then the remaining segment of the i-th track is to be erased.

When A_{2} finishes its work, its output tape contains the final content of X_{i} in the i-th output track ($1 \leq i \leq m$). The output, however, need not be in the desired normalized form and blank segments can be scattered between symbols in each track.

Automaton $A_{3}: A_{3}$ rearranges the tape in the normalized fashion, i.e. it prints out the content of the first input track into the first output track omitting the blanks, then it prints the content of the second track and so on. (Recall Fig. 3.)

The serial composition of $\mathbb{A}_{1}, A_{2}, A_{3}$ performs the same transformation of $\left(X^{*}\right)^{m}$ as P. By Theorem 2, the serial composition of A_{1}, A_{2} and A_{3} can be replaced by a single $2-D F T A_{P}$.

[^0]The equivalent $2-D F T A_{P}$ can be again described by a serial compositition of three 2-DFIs $A_{1}^{\prime}, A_{2}, A_{3}, A_{2}$ and A_{3} are the same as in the preceding case. A_{1}^{\prime} is a modification of A_{1}. It starts by initializing E and by reprinting the input tape in the same way as A_{1}. Then A_{1}^{\prime} moves its head to the first symbol of w_{1}. If the first symbol is x_{i}, it starts by executing P_{i} similarly as A_{1} executes all P with the exception that the statements right and left are not neglected as in the previous case. They are inerpreted as instructions controlling the moves of the head. If the way through P_{i} is accomplished then the symbol currently scanned by the head is used to determine which subroutine P_{j} is to be executed next. If the head is out of w_{1} in such a moment, A_{1} stops.

3) P is of the form $P_{1} ; P_{2}$

where P_{1} and P_{2} are simple programs. Fictive variables can be introduced into P_{1} and P_{2} (e.g. using statements of the form $X:=X$) so that P_{1} and P_{2} contain the same identifiers as P. Then $2-D F P A_{P_{1}}$ and $A_{P_{2}}$ equivalent to P_{1} and P_{2}, respectively, exist by the induction assumption. The serial composition of $A_{P_{1}}$ and $A_{P_{2}}$ is equivalent to P and this composition can be replaced by $\frac{1}{a}$ single ${ }^{2} 2-D F T$ by Theorem 2 .

We have proved that for every program P there is an equivalent 2-DFT, provided all variables were declared as input and output ones. For the general case when variables $X_{i_{1}}, \ldots, X_{i_{r}}$ are declared as the input ones and variables $X_{o_{1}}, \ldots, X_{o_{S}}$ as the output ones, it suffices to construct the serial composition of $2-D F T s A_{i n}, A_{P}, A_{\text {out }}$, where $A_{i n}$ performs the input encoding $\left(X^{*}\right)^{r} \rightarrow\left(X^{*}\right)^{m}$ for A_{P} by printing the input values into the appropriate tracks and leaving the remaining tracks empty, A out on the other hand picks up the output values.

The serial composition of the automata performs the same mapping $\left(X^{*}\right)^{r} \rightarrow\left(X^{*}\right)^{s}$ as P and can be replaced by a single $2-$ DFF.

References

1. J.E. Hopcroft and J.D. Uliman, An Approach to a Unified Theory of Automata, The Bell System Technical Journal 46 (1967), 1793-1829.
2. A.V. Aho, J.E. Hoperoft and J.D. Ullman, A General Theory of Translation, Mathematical Systems Theory 3 (1969), 193-221.
3. J.E. Hopcroft and J.D. Ullman, Formal Languages and Their Relation
to Automata, Addison-Wesley 1969
4. A.V. Aho and J.D. Ullman, A Characterization of Two-Way Deterministic Classes of Languages, JCSS 4 (1970), 523-538.
5. V. Rajlich, Bounded-Crossing Transducers, Information and Control 27 (1975), 329-335.
6. D. Scott, Some Definitional Suggestions for Automata Theory, JCSS 1 (1967), 187-212.
7. G. Ausiello, Simple Programs on Strings and Their Decision Problems, University of Rome, R.75-17, 1975.
8. G. Ausiello and M. Moscarini, On the Complexity of Decision Problems for Classes of Simple Programs on Strings, Proceedings of GI - 6 . Jahrestagung (1975), Informatik - Fachberichte, Springer Verlag, 1976.

[^0]: 2) P is of the form LOOP X_{1}
 $x_{1}: P_{1}$
 $x_{n}: P_{n}$
 END
