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of Forecasts 

Francis X. Diebold 
Division of Research and Statistics, Board of Governors of the Federal Reserve System, 
Washington, DC 20551 

It is shown that regression-based methods of forecast combination lead to serially correlated 
combined prediction errors. The form of the serial correlation is characterized, and specification, 
estimation, and prediction are treated. A fully optimal combined predictor, which exploits the 
serial correlation, is developed and compared with existing regression-based methods in a 
numerical example, leading to decreases in mean squared prediction error. 
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1. INTRODUCTION 

The theory of forecast combination, which deals with 
optimal ways of combining different forecasts of the 
same future variable, was developed by Bates and 
Granger (1969) and extended by many others, including 
Granger and Ramanathan (1984). Availability of more 
than one forecast is the rule rather than the exception 
in many applied forecasting situations. For reasons that 
will shortly become clear, I refer to the Bates-Granger 
approach as the variance-covariance method and the 
Granger-Ramanathan approach as the regression-based 
method. The regression-based approach makes all of 
the standard results for the linear model immediately 
applicable to forecast combination, but to date little 
attention has been paid to the properties of residuals 
from combining regressions. [One exception is Diebold 
and Pauly (1987), who explored the effects of structural 
change of unknown form on the combining weights and 
developed weighted and time-varying coefficient meth- 
ods of forecast combination.] Although it is true that 
ordinary least squares (OLS) regression-based com- 
bined forecasts have smaller within-sample mean squared 
prediction error than variance-covariance combina- 
tions, if the errors from the combining regression are 
nonwhite we should be able to exploit that fact to obtain 
better combined predictors. In fact, Granger and Ra- 
manathan (1984) noted in passing that "Even if a pair 
of forecasts is combined, and each has white noise fore- 
cast errors, there is no reason to suppose that the com- 
bination will have white noise errors" (p. 203), and they 
suggested that the area is ripe for future research. In 
this article, the results of such an investigation are pre- 
sented. 

The possible presence of serial correlation in the com- 
bined prediction errors is an important issue for at least 
two reasons. First, if serial correlation is present, OLS 
estimates of the combining weights are inefficient and 
their associated standard deviation estimates are incon- 

sistent. Second, if serial correlation is present, then the 
combined forecast is no longer the best unbiased linear 
combination. Rather, best linear unbiased prediction 
requires prediction of the disturbance process as well 
(e.g., Goldberger 1964). 

To fix ideas and notation, Section 2 begins with a 
brief literature review. In Section 3, the conditions un- 
der which serial correlation will arise in combining 
regressions are determined, and it is shown that the 
serial correlation problem is likely to be quite common. 
In Section 4, the form of the serial correlation is char- 
acterized. In Section 5, estimation and prediction with 
serially correlated combining regressions are treated, 
and a convenient (and optimal) approximation to the 
true serial correlation structure is developed. Section 6 
contains a numerical example that illustrates the results, 
and Section 7 concludes the article. 

2. THE THEORY OF COMBINING 

2.1 The Variance-Covariance Method 

Suppose that we have two competing unbiased fore- 
casts of Yt made at time t - 1, t-f 1, and t_lf2, and 
suppose that we restrict ourselves to combined forecasts 
of the form 

,-lft = 4? t,-lf + (1 - 0) ,-if2, 4 ER. (1) 

(The general case of K-step-ahead forecasts poses no 
additional problems.) Note that the combining weights, 
although summing to unity, are not necessarily convex. 
It is easily verified that the one-step-ahead combined 
prediction error satisfies the same equality: 

el = qe1 + (1 - q5)e2. (2) 

Thus, 

var ec = 02Cl2 + (1 - 4)2o2 + 24b(1 - b)a:2, (3) 
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where a and a2 are the one-step-ahead prediction error 
variances of f1 and f2, respectively, and a12 is their 
covariance. 

Minimizing var(ec) with respect to 4, the optimal 
combining weight is given by 

= (a2 - al2)/(a2 + a - 
2a12); (4) 

hence the name "variance-covariance method." By in- 
serting (4) into (3), we have 

2in = 2 2(1 
- 

p2)/(a12 + 2 - 2pa1a2), (5) 

which is the minimum attainable combined prediction 
error variance. Note that acin < min(a2, a2), unless 
p = 1/7o2 or p = a2/o1, in which case 2in = min(a2, 
a22). Thus we have nothing to lose by combining and 
much to gain. 

Maintaining the restriction of unbiasedness of the 
primary forecasts but allowing for an arbitrary finite 
number (m) of them, Reid (1969) and Granger and 
Newbold (1974) showed that the optimal combining 
weight vector ?* is given by 

(*mxl) = (fl 1)/(i'f-Qi), (6) 

where fl is the variance-covariance matrix of one-step- 
ahead forecast errors and i is a conformable column 
vector of ones. In practice, I estimate O* by replacing 
f with an estimate hf, where f,ii = 1/T 2 e,ej,, Tis the 
sample size, and the summation runs from t = 1, . . . 
T, Thus, for example, in the two-variable case we have 

* = (2_ 
- 12)/(al + Oa - 2l12), (7) 

where 61 = 1/T e2, a = 1/T et, and a12 = 1/T 
ele2t. 

2.2 The Regression Method 

Granger and Ramanathan (1984) showed that the 
preceding forecast combination theory has a regression 
interpretation, because 4* is the least squares param- 
eter vector estimate in the constrained regression 

m 

Yt = E fi t-lft + Et, 
i=1 

where miC= 1 fi = 1. In the case of two primary foreca 
for example, the restriction may be conveniently 
posed by writing 

(Yt- t-lf2) = (t ifl 
- 

-_f2) + Ec r-f) yrt1 t t tr iei 

variance-covariance weight leads to an unbiased com- 
bined forecast if the component forecasts are unbiased, 
but the imposition of the constraint leads to a higher 
sum of within-sample squared prediction errors than 
would otherwise occur. 

Failure to impose the /, = 1 constraint in the 
regression method (with no intercept) leads to a com- 
bined forecast that is biased unless (a) E t-if = Yt (i = 
1,... ., m) and (b) 2 y/, = 1, which is highly unlikely. 
It is well known, however, that under quadratic loss 
there is nothing necessarily undesirable about a biased 
forecast, and, as mentioned, the sum of within-sample 
squared prediction errors will be lower than if the con- 
straint had been imposed. In addition, any bias that 
may be present in the component forecasts may be elim- 
inated by including an intercept in the combining regres- 
sion; the resulting combined forecast will be unbiased 
and have a smaller sum of within-sample squared pre- 
diction errors than the forecast obtained by any other 
combining method. 

The unrestricted regression method amounts to the 
inclusion of one more forecast among those to be com- 
bined-the unconditional mean. It is therefore required 
that the variable being forecast be stationary; other- 
wise, an appropriate transformation should be per- 
formed prior to analysis. Inclusion of an intercept then 
is much more than a "bias correction"; an unrestricted 
regression-based combination may offer substantial 
benefits relative to a restricted combination even for 
unbiased forecasts. On the other hand, noisy economic 
data tend to produce volatile combining weights, so the 
incorporation of some prior information may provide 
valuable robustness (see Clemen and Winkler 1986; Kang 
1986). 

3. SERIAL CORRELATION IN THE 
COMBINING REGRESSION 

Consider the usual combining regression: 
m 

Yt = fAo + fi t-lfi + et. 
i=i (8) 

The combined forecast is given by 
m 

t-lft = o0 + E fi t-lf, 
i=l 

(10) 

(11) 

(9) and the combined prediction error is 

where e (yt - ,_tf) - (tG-if - t-1ft). It is im- 
portant to note that this is a homogeneous regression. 

Estimation of ' by OLS then yields a result numer- 
ically identical to 0* in the preceding. I will refer to 
the calculation of the optimal weights in this fashion as 
the regression method. The important point, however, 
is that the relaxation of a number of implicit restrictions 
(no intercept, slope coefficients sum to 1) that have 
been imposed so far leads to a combined within-sample 
mean squared prediction error even lower than the one 
resulting from the variance-covariance method. The 

(t-l f - Y,) = fo + Yt _ Ai - 

m 

+ E Ai (t-lft -Yt) 
i=1 

m 

+ E fii 
i=i 

- A + Yt - 
i) + vt, 

\i=i 

o + (i A - 1) 

(12) 
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where v, = iLt= iE and = t-lf - Yt. Although the 

presence and importance of serial correlation in the 
combined prediction errors may be approached in a 
number of ways, perhaps the most instructive is char- 
acterization of the conditions under which the combined 

prediction errors are not serially correlated. It is easily 
seen from (12) that, in general, if i=,i i 1, then the 
combined prediction errors are serially uncorrelated only 
if (a) y is serially uncorrelated and (b) ei is serially 
uncorrelated (i = 1, . . ., m). 

The highly stringent nature of these conditions is at 
once apparent. Similarly, it is easy to show that for the 
case in which I /3, = 1 the combined prediction errors 
are serially uncorrelated only if Ei is serially uncorrelated 

(i = 1, . . ., m). 
By manipulating (12), we can easily obtain a general 

combined prediction error decomposition. Multiplying 
by -1, we have 

(Yt - t-l f) 
m m 

= -3o - yt - + E i Agi, (13) 
'=l i=l 

where ei = (y, - t-1fS). Granger and Ramanathan (1984) 
showed that the combined predictor is unbiased, so 

E(y, - -ft) 
m m 

= - lo- Ai- i u + E ]ibi = 0, (14) 
i=l i=1 

where b, is the mean of the ith prediction error, E(y - 

fi), and p = E(y). Thus, 
m ) m 

- E i + 
/ Eibi. 

i=l i=l 
Ao = , (1 

Substituting this into (13), we obtain 

(yt - t-lf) 
m m 

- E A)i (Yt 
- p) + E A(Ei(i - bi). (16) 

i=l i=1 

This shows that the combined prediction error may be 

decomposed into a linear combination, with weights 
summing to unity, of the prediction errors of the un- 
conditional mean forecast and the bias-corrected pri- 
mary forecast errors. 

These results suggest that serial correlation is likely 
to play a much more important role in unrestricted 

regression-based forecast combination than in vari- 
ance-covariance combination (equivalent to regression 
combination with no intercept and subject to the con- 
straint that the weights sum to unity) or constrained 
regression combination in which an intercept is included 
but the other weights are still constrained to sum to 

unity. To see this, consider either of the latter two ap- 
proaches to forecast combination. The combined pre- 
diction errors will be serially correlated if one or more 
of the Ei (i = 1, . . . , m) is serially correlated. This 

may be viewed as rather unlikely, however, given that 
a common criterion of model adequacy is absence (or 
near absence) of serial correlation in the prediction er- 
rors. Thus it is likely that the combined prediction errors 
will display little, if any, serial correlation. On the other 
hand, the unrestricted regression-based combined pre- 
diction errors will be serially correlated (with proba- 
bility 1) if (a) y is serially correlated or (b) E, (i = 

1, .. ., m) is serially correlated. Although (b) is again 
likely to be of small importance, (a) is likely to be of 

great importance. In fact, if y is not serially correlated, 
then it is (linearly) unpredictable, and there is no point 
in trying to forecast it. Note, however, that the nature 
and extent of the serial correlation induced in (fc - y) 
(as well as our ability to detect it) depends critically on 

i=j p,i as well as the variance-covariance structure of 
the primary forecast errors. 

The intuition behind the appearance of serial cor- 
relation in the combined prediction errors is easily seen 
by considering a simple special case, which will also 

appear later in a simulation example. Suppose the pri- 
mary forecasts f1 and f2 have zero-mean prediction 
errors e1 and e2, and suppose that these errors are both 

contemporaneously and serially uncorrelated and nor- 
mally distributed with identical variances. Then it is 

easily seen that the unconstrained regression-based 
combination will be such that (at least asymptotically) 
31 = 32, but that we do not necessarily have 1i + 
f/2 = 1. By unbiasedness of the combined forecast and 

primary forecasts, then 8o = (1 - 13i - /2)u. Thus, 
the more weight given to the primary forecasts, the less 

given to p, and vice versa. It should also be noted that 
the "split" of the weights between f', f2, and p is de- 
termined by a2, the common prediction error variance 
of the two forecasts. If a2 is very large relative to the 
innovation variance of y, then a great deal of weight 
will be placed on p, with correspondingly little weight 
placed on f1 and f2. The opposite is true for small a2, 
in which case we would expect p, and P2 to be close to 
2, with Bo close to 0. 

Consider the extreme case of il = p2 = 0 and po = 
p. It is immediately clear that this combined forecast 
fc = p has serially correlated errors, because the au- 
toregressive moving average (ARMA) representation 
of y is defined by (y, - ,) = ARMA(p, q). But (Yt - 

p) is exactly the "combined" prediction error! In more 
standard situations, in which all weights are nonzero so 
that some weight is given to fl and f2 in addition to 
,u, serial correlation is still induced in the combined 
prediction errors (although to a lesser extent) by virtue 
of the fact that some weight, however small, is given 
to P. 

By making use of my earlier result (16), we can get 
an informative decomposition of the combined predic- 
tion error: 

(y - fc) = /ie1 + j2E2 + (1 - i1 - fl2)(Y - P). 

(17) 

(1 
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Thus the combined prediction error is a linear combi- 
nation of the prediction error from the unconditional 
mean and the prediction errors of the primary forecasts. 
It is a weighted sum of the ARMA process (y, - ,) 
and the white noise processes ei and, therefore, an ARMA 
process as well. 

4. ON THE NATURE OF THE 
SERIAL CORRELATION 

Because we may write the combined prediction er- 
ror as 

(1 - /li)(y - ) + E Ai(i - bi), (18) 

we may view it as the sum of (m + 1) possibly non- 

independent zero-mean time series processes. If (y - 

p) and (ei - bi), i = 1,... ., m, follow ARMA(p, q) 
processes (in which p, q, or both could be 0), then the 
combined prediction error will generally follow an 
ARMA(p, q) process, where bothp and q are nonzero. 

Specifically, it is easily seen that unless both (y - 

,u) and all of the (ei - bi), i = 1, .. ., m, follow 
(possibly degenerate) finite moving averages, the com- 
bined prediction error will follow an ARMA(p, q) process 
with both p, q > 0. This follows from the aggregation 
theorem of Granger and Morris (1976), who showed 
that 

N 

> ARMA(pj, qj) = ARMA(x, y), 
j=l 

(19) 

where x < E'i= pj and y < max(x - pj + qj, j = 

1, . . . , N). 
The inequalities arise because of the possible pres- 

ence of common factors. For example, if 

Yit = PlYl,t-i + Et, 

is either AR or ARMA. One situation that is likely to 
arise in practice is 

y ~ ARMA(p, q), Ei - (0, a2). 

Then 

m m 

(fc_ y) = y lSi - 
1 + ,ici 

i=l i=1 
(23) 

is the sum of an ARMA(p, q) process and white noise, 
which is ARMA(p, max(p, q)). Our ability to detect 
this serial correlation and exploit it for predictive pur- 
poses critically on the variance of y relative to the var- 
iance of the white noise, as well as the nature of the 
serial correlation in y. 

5. SPECIFICATION, ESTIMATION, 
AND PREDICTION 

It will be convenient to assume first that a generalized 
combining model, 

y = Ffl + e, e ~ ARMA(p, q), (24) 

has been properly specified and estimated and consider 
the prediction problem. Specification and estimation 
will be treated subsequently. 

Rewrite the preceding model as 

m 

Yt = fo + E Ai t-lf + et, 
i=l 

(24') 

where e, = [O(L)I/(L)]v,, O(L) = (1 - 01L - .** 
- OqLq), D(L) = (1 - 01L - ... - pLP), and the 
innovation sequence {vt} is white noise. Thus, 

y, = (o Y2t = P2Y2,t-1 + e2, 

m 

+ EAi t-lfJ + [O(L)/D(L)]vt, 
i=l 

(25) 

so IP1\ < 1, IP21 < 1, Pl -, P2, 

1 - (0, a2), 2 (0, 2), (20) 

then xt (Ylt + Y2t) is an ARMA(2, 1) process: 

(1 - b0L - 42L2)Xt = Vt + vt,_1, 

v,- (0, o2), (21) 

where 01, 42, 0, and a2 depend on pl, P2, , and a2, 
and L is the lag operator. If, however, we have a com- 
mon factor (pi = P2 = p), then xt = AR(1) because 

(Yit + Y2t) = P(Yl,t-1 + Y2,t-1) + t, (22) 

where t, = (E1 + e2) - (0, a2 + a2). It is unlikely that 
a common factor will occur, however, so in general the 
results hold with equality. 

The aggregation theorem is valid for non-indepen- 
dent as well as independent component processes. The 
critical point is that the combined prediction error is 
the sum of (m + 1) processes, which by the Granger- 
Morris theorem will in general be a nondegenerate 
ARMA(p, q) process if any of those (m + 1) processes 

m 
D(L)y, = ?(L) (io + Ait-lfi + O(L)vt, 

i=ln 
which can be rewritten as 

Yt = 
(fib 

+ E flu -if) + D*(L)c, + O(L)v,, 

(26) 

(27) 

where ?*(L) = (01L + -** + bpLP). Leading this 
equation by one period and expanding, we obtain 

Yt+l = flo + E fli tf+1 + 1lt * + p+ pEt-p+i 

+ Vt+ - 1vt - *.. - 
OqUt-q+ l (28) 

which, when projected on the information set available 
at time t, yields the optimal combined predictor with 
estimated parameters: 

tftC+l - .O ..{.. Z ~ 
i 

i tf+1 = B + P i tf+l + 1,i + 2+ )pt-p+i 

- - 1t- - .Oq -q+1. (29) 
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This expression makes clear that [unless O(L) = 1] the 
combined forecast arising from a combining regression 
with serially correlated residuals is dependent on all past 
residuals. We may approximate the optimal predictor, 
however, by setting v0 = 0 (i.e., its unconditional mean) 
and then solving recursively. For example, if the dis- 
trubance in (24) follows an MA(1) process, 

E, = , - Ovt_l, (30) 

then estimation yields /, (i = 0, . . , m) and 0. We 
set b0 = 0 and then obtain V, = v, + Oi-,_ over the 

sample. Then 
m 

f t= io + S i f+ - s,. (31) 
i=1 

On the other hand, if the disturbance is a pure AR(p) 
[corresponding to the case of O(L) = 1, as mentioned 
previously], then the component of the one-step-ahead 
combined forecast arising from prediction of the dis- 
turbance will depend on only the p most recent resid- 
uals. Consider, for example, an AR(1) disturbance: 

m 

Yt = t3o + fi 3-lf + Et, 
i=i 

et = Pet-1 + Vt. (32) 

In that case the optimal combined forecast is given by 
m 

,ff, = fJ + S Aj t,+ + P, (33) tf t++ 1 flo + Z/i tft+ 1 +PEt. 

(33) 

i=1 

Now let us consider the specification problem. One 
obvious, although cumbersome, approach is to make 
use of the earlier prediction error decomposition. Be- 
cause the OLS composite prediction errors are a weight- 
ed sum of the (m + 1) primary prediction errors (in- 
cluding that from the unconditional mean), I could use 
standard methods to determine the stochastic structure 
of the primary prediction errors and then deduce the 
appropriate form of the composite prediction error. Such 
an approach, in addition to being tedious, is likely to 
be suboptimal in the sense that, in the presence of com- 
mon (or nearly common) factors, it will lead to over- 
parameterized models. 

A more convenient approach is the use of consistent 
model specification procedures, such as the Schwarz 
(1978) information criterion (SIC). I select the distur- 
bance process for which 

SIC = In 2ML + In TIT(k) (34) 

is minimized, where Tis the sample size, k is the number 
of estimated parameters, anda ML is the maximum like- 
lihood (ML) estimate of the innovation variance. 

Another approach to the specification of the distur- 
bance term, convenient for both estimation and pre- 
diction, is approximation as a finite-order autoregres- 
sion. Let the stationary invertible process followed by 
ec be given by 

V(L)8c = O(L),t. (35) 

Then the (generally infinite) AR representation is given 
by 

O-I(L)V(L)Ef = 1t (36) 

or 
' 

0 bisE-i = at. We can approximate this infinite 
autoregression to any desired degree of accuracy by a 
finite (pth order) autoregression. In addition, even very 
low-order autoregressions, such as AR(2), are capable 
of capturing a wide variety of stochastic structures, in 
the sense that the range of possible shapes of the as- 
sociated spectral density is very broad (see Granger 
1966). As shown previously, prediction in combining 
equations with AR(p) disturbances is also a straight- 
forward task, because only the p most recent obser- 
vations contain information relevant for prediction. 
This is in marked contrast to predictions in models with 
MA or ARMA disturbances, in which complicated 
transformations or approximate recursions are needed 
for prediction. 

The problem of optimal order selection for the au- 
toregressive approximation is easily solved by applying 
a result of Shibata (1980), who showed that if the Akaike 
(1974) information criterion (AIC) is used to fit an AR 
model to a process that in fact does not have a finite 
AR representation, then the chosen AR model asymp- 
totically attains the minimum mean squared prediction 
error in the class of AR models. The AIC is given by 

AIC = In 2ML + 2k/T. (37) 

6. AN EXAMPLE 

To illustrate the results, two forecasts were generated 
for the AR(1) process: 

(yt - 20) = .9(ytl - 20) + e,, 

Etd N(0, 1), t = 1,. . . 100, (38) 

as flt = Yt + uit (i = 1, 2) and f2 = Yt + vit (i = 1, 
2). The exercise was repeated two times, with 

lit NID(0, 6), 

2t - NID(0, 3), 

vl, - NID(0, 6) 

2t ~ NID(0, 3). (39) 

The successively smaller forecast-error variances asso- 
ciated with cases 1 and 2 should lead to progressively 
smaller intercepts in the combining equation, with more 
weight attached to the primary forecasts. Thus, as we 
move from case 1 to case 2, we would expect the sum 
of the combining weights to approach unity, with a 
corresponding decrease in serial correlation in the com- 
bined residuals. As indicated by earlier results then, I 
would expect large increases in combined forecasting 
performance for the first data set because of modeling 
of the serial correlation, with less forecasting enhance- 
ment in data set 2. The results, contained in Table 1, 
illustrate these points. [In each case, the combining 
regression was run over the first 80 observations, with 
the remaining 20 used as a "holdout sample" for mean 
squared prediction error (MSPE) comparison.] 
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Table 1. Ordinary Least Squares and Autoregressive 
Combining Results 

Data set 1 Data set 2 

OLS AR OLS AR 

fAo 9.16 14.95 5.66 11.07 
(7.21) (12.92) (4.91) (8.90) 

A, .24 .14 .32 .23 
(4.92) (3.64) (6.00) (5.03) 

/2 .30 .13 .40 .22 
(5.55) (3.48) (6.95) (4.89) 

ii~~~p ~.72 .64 
(8.96) (7.30) 

DW 1.08 1.89 1.30 1.95 
MSPE(f1) 6.44 3.22 
MSPE(f2) 7.50 3.75 
MSPE(fC) 5.71 1.56 2.98 1.45 
MSPE(fR) 3.38 1.69 
MSPE(fAV) 3.27 1.63 
z(1, 2) -.03 -.03 
z(AR, 1) -3.86 -2.81 
z(AR, 2) -3.95 -2.89 

NOTE: t statistics are in parentheses; f1 is the primary forecast 1, f2 is the primary 
forecast 2, fC is the unrestricted combined forecast (OLS or AR), fR is the OLS restricted 
combined forecast, fAv is the simple average combined forecast, and DW represents the 
Durbin-Watson statistic. 

Consider first the OLS regressions. All coefficients 
are highly significant, and, as expected, the weight given 
to the unconditional mean is smaller (and the weights 
on the primary forecasts larger) for data set 2. Fur- 
thermore, the OLS combined forecast outperforms the 
best primary forecast in terms of MSPE in both data 
sets. Note also the very low Durbin-Watson statistics 
and that the DW for data set 1 is substantially smaller 
than that of data set 2. 

As discussed earlier, both the SIC and AIC were used 
to identify an appropriate ARMA(p, q) model for the 
disturbance, where both p and q were allowed to range 
from 0 to 4. A simple model with AR(1) disturbances 
was unambiguously selected. The estimation results for 
the serially correlated combining regressions are also 
contained in Table 1. As before, all coefficients are 
highly significant, and the estimates f/, and f2 are smaller 
with a corresponding increase in f/. The first-order se- 
rial correlation coefficients are highly significant for both 
data sets, and, as expected, p, > P2. Dramatic increases 
in forecasting performance are obtained when this serial 
correlation is taken into account. 

For comparative purposes, the results for the re- 
stricted OLS combined forecast (fR) and the simple 
arithmetic average combined forecast (fAV) are also 
reported in Table 1. It should be noted that we have 
"stacked the deck" in favor of fAV and fR, since both 
primary forecasts are unbiased and the optimal com- 
bining weights should in fact be equal, because of equal 
primary forecast error variances within each data set. 
In spite of this, the autoregressive combined forecast 
maintains clear superiority in each data set. fAV and fR 

do beat the simple unrestricted OLS combined forecast 
in this example, however, illustrating the gains that can 
be made by imposing (valid) prior information. 

We can formally test the null of equality of MSPE's 
for different forecasting methods, as follows (see Gran- 
ger and Newbold 1977): Because 

E(81 + E2)(1 
- 

82) 
= a - oa, (40) 

we know that the expectation on the left is 0 iff the 
difference of variances is also 0. But the zero left-side 
expectation is equivalent to a zero correlation between 
(e1 + 82) and (e1 - 

e2). Thus the usual sample corre- 
lation coefficient may be used to test the null hypothesis 
of equal prediction error variances. Since ln[(1 + p)/ 
(1 - p)] is approximately normal with mean ln[(1 + 
p)/(l - p)] and variance 1/(T - 3), the test statistic 

z = VT - 3/2 ln[(1 + 5)(1 - p)/(l - p)(1 + p)] 

(41) 

is approximately N(0, 1), where T is the sample size 
used for predictive comparison. 

These test statistics, denoted by z(i, j), where i and 
j are the forecasts being compared, are also given in 
Table 1. Although (as expected) we cannot reject the 
null that MSPE1 = MSPE2, we reject the null of equal 
MSPE between either of the primary forecasts and the 
combined forecasts from the regression with AR(1) dis- 
turbances. The decreases in MSPE caused by modeling 
the serial correlation in the combining regression are 
clear. 

7. CONCLUSIONS AND DIRECTIONS FOR 
FUTURE RESEARCH 

It has been shown that regression-based combined 
forecast errors are likely to be serially correlated and 
that explicit modeling of the serial correlation can lead 
to improved combined predictors. In work in progress, 
the results of this article are applied to forecasting a 
variety of economic time series. Because proper eval- 
uation can be achieved only by examining a large cross- 
section of representative time series, the task is quite 
complex and appropriately reserved for a future article. 

Furthermore, the results indicate that attention must 
be paid to the method by which the time series are 
made stationary, since inappropriate differencing leads 
to a unit root in the moving-average lag operator 
polynomial of the combined prediction error, rendering 
it noninvertible. Methods of discriminating between 
trended and integrated processes in the context of fore- 
cast combination are therefore being developed and 
applied. 

Finally, and more generally, the regression-based de- 
velopment of the forecast-combining problem leads to 
the direct applicability of techniques such as time-vary- 
ing parameter models, robust estimation methods, in- 
trinsically nonlinear combinations, and nonparametric 
prediction interval calculation (e.g., by the bootstrap). 
All of these directions are currently being explored. 
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