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Abstract— This paper considers serial fusion as a mechanism
for collaborative signal detection. The advantage of this technique
is that it can use only the sensor observations that are really
necessary for signal detection and thus can be very communi-
cation efficient. We develop the signal processing mechanisms
for serial fusion based on simple models . We also develop a
space-filling curve-based routing mechanism for message routing
to implement serial fusion. We demonstrate via simulations that
serial fusion with curve-based routing performs better, both in
terms of detection errors and message cost, relative to commonly
used mechanisms such as parallel fusion with a tree-based
aggregation scheme.

I. INTRODUCTION

Sensor networks are often deployed for detection of a signal
generated by a certain physical process. The central issue
here is to identify the presence of a target signal in presence
of noise. This is typically done in a collaborative fashion
by combining multiple (possibly, a large number) sensors’
readings. Research on distributed detection using multiple
sensors has developed many collaborative signal processing
solutions to meet specific error constraints – such as probabil-
ity of missed detection or probability of false alarm – under
varying amounts of knowledge about the signal and noise
characteristics and with different communication costs.

Collaborative detection can be done in a parallel fashion
using a fixed set of sensors, or by serially combining the
observations from one sensor to the other. In the former, all
sensor observations (signal energy as sensed by the sensor) or
local decisions (decision by the sensor regarding the presence
or absence of target) are brought to a central fusion center
for an aggregate decision making. In the latter, observations
or decisions can be combined in an incremental fashion.
Communication costs must be optimized aggressively in a
sensor network, given that communication is the primary
consumer of the limited energy budget. This often makes
parallel solution expensive, as sensors need to relay data to
a central node for aggregation. While in-network aggregation
[1] is indeed possible, this may not always significantly reduce
the communication cost as we will see later. This makes
alternative approaches such as serial fusion attractive.

Serial fusion evaluates sensor data incrementally from ad-
ditional sensors depending on the state of a well-defined
detection process [2], [3]. Conceptually, this state is central-
ized, but in practice, this state can be carried from sensor to

sensor. Since this detection process can stop early, as soon as
sufficient evidence (e.g., regarding the presence of a signal)
has been collected, there is a strong potential for reduction in
communication costs. Any alternative technique must gather
all relevant sensor data to make a decision, while in some
cases much of these data may be unnecessary.

However, use of serial fusion requires computing a routing
path in the network that travels through each sensor. Thus, it
essentially boils down to a network graph traversal problem,
where the vertices of a given graph are to be traversed with a
minimum number of “hops.” Ideally, one would like to traverse
the graph only with N transmissions, where N is the number
of nodes in the graph. (This is only feasible if the graph has a
Hamiltonian path going through all nodes in the graph). One
of our goal is to develop practical traversal techniques in the
context of sensor networks that traverse the network with as
few additional hops as possible over N . Note that an ordinary
depth-first traversal can take 2(N − 1) hops in the worst case
because of backtracking involved.

To attain this goal, we use a geographically-based technique
based on the general notion of space-filling curve [4], where an
imaginary curve is drawn in the geographical region of interest
that fills that region. Now, the sensor network is traversed
along this curve to implement serial fusion. This technique
is essentially a depth-first traversal with some geographically-
based intelligence as to which unvisited neighbor should be
traversed next, where more than one is available. We will in
our work that such traversals, when implemented with right
parameters, can be very efficient.

In this paper we make two distinct contributions. We first
develop a serial fusion method applicable for multihop sensor
network by borrowing from collaborative signal detection
literature. We show empirically that number of sensor obser-
vations needed in a serial method is less than an equivalent
parallel method. Second, we develop a space-filling curve
based routing technique to actually implement serial fusion,
and show its robustness in spite of link failures.

The rest of the paper is organized as follows. Since the
mechanisms we present are intimately tied to collaborative
detection, we first present an overview of collaborative detec-
tion detailing the particular mechanisms we will use. This is
presented in Section II. In Section III we present the routing
approach using the notion of space-filling curve to implement
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serial fusion. In Section IV we present a detailed performance
evaluation. We conclude in Section V.

II. SIGNAL DETECTION USING MULTIPLE SENSORS

Distributed signal detection using multiple sensor informa-
tion has been researched for many years [2], [3], [5] for
applications involving detecting a signal that is distributed
over an area larger than the coverage area of an individual
sensor or for immunity from noise. For such cases, multiple
sensors with processing and communication capabilities may
be used to detect the signal in a distributed fashion. The
basic objectives of designing such distributed detectors are to
obtain a set of local processing (in each sensor) and distributed
data fusion algorithms so as to minimize the probabilities of
detection errors while meeting specified constraints on the
communication cost.

A. Overview of Collaborative Detection

Each sensor processes its local signal observations to gen-
erate a condensed output that can be transmitted using a
communication cost model. The fusion algorithm uses these
condensed data to determine the final decision about the ab-
sence or presence of the signal, represented by the hypotheses
H0 and H1, respectively. Noise in the sensor observations
may lead to two types of errors. The event in which the final
decision is the hypothesis H1 even when a signal is not present
is known as a false alarm, and the event in which the decision
is H0 when a signal is actually present is known as a missed
detection. For most practical signal detection problems, there
is a trade-off between these two error probabilities. One of
the optimization criteria used for designing a detector (which
we use in this work) requires that the probability of missed
detection Pmiss be minimized while maintaining the false
alarm probability PFA to be within a specified limit [6]. Note
that Pmiss = 1 − PDET , where PDET is the probability of
detecting an existing signal. Hence, this criterion implies that
the detection probability is maximized while the false alarm
probability is maintained within some acceptable limit.

Various different communication topologies may be con-
sidered amongst a set of sensors performing a distributed
detection task. The optimum solutions for the local processing
and fusion of the condensed outputs from each sensor depend
on the communication structure along with probability dis-
tribution (pdf) of the noise, the nature of the signal being
detected, and the communication constraints between sensors.
For instance, in a parallel fusion, all sensors process their
observations independently of one another and convey the
condensed information “directly” to a central fusion center.
The fusion center takes the final decision after receiving the
condensed information from all nodes. In serial fusion, a
tandem communication path is assumed between the sensors
and the condensed information is passed sequentially from
one sensor to the other. The final decision is taken by the last
sensor in the series. A hierarchical or tree fusion structure
using a combination of parallel and serial paths is also
possible, though not explored in this work.

1 2 N-1 N

Ny1−Ny2y1y

1u 2u 1−Nu
0u2−Nu

Fig. 1. Serial fusion.

In parallel fusion employing N sensors, it is assumed that
the i-th sensor employs the local mapping rule ui = γi(yi)
to obtain a quantized information ui (called local output or
local decision) from its observation yi. The set of N outputs
(u1, u2, · · · , uN ) are “directly”1 passed on to a fusion center
that applies a global decision rule u0 = γ0(u1, u2, · · · , uN ),
where u0 is either 1 (indicating the decision H1) or 0 (indicat-
ing the decision H0). Optimization of the distributed parallel
detector involves the joint optimization of the set of local
mapping rules γi(·), i = 1, 2, · · · , N , and the fusion rule γ0(·)
under the assumed optimization criteria. The communication
constraint is usually implemented by the number of quantiza-
tion levels allowed in the local outputs ui, i = 1, 2, · · · , N .
The computation of such joint optimal solutions is non-trivial
in the general case, and may be mathematically tractable only
under some simplifying assumptions, such as independence of
sensor observations and identical local mapping rules [2].

In serial fusion, it is assumed that the i-th sensor receives a
quantized information ui−1 from the (i−1)th sensor and uses
a mapping rule to generate its own quantized output ui from
its observation yi based on ui−1, i.e., ui = γi(ui−1, yi). The
last sensor in the tandem configuration takes the final decision
u0 = γN (uN−1, yN ), which is a binary value depicting either
of the two hypotheses H0 or H1. See Figure 1. In this case,
the globally optimum solution of γi(ui−1, yi) is a set of M
mapping rules for generating ui from yi, one for each value
of ui−1, where M is the number of quantization levels in ui,
i = 1, 2, · · · , N − 1. Even under the simplifying assumptions
mentioned above, it is viable to obtain the optimum solutions
in this case only when the quantization is binary at all sensors
and N is small [2].

Optimum solutions for more general communication topolo-
gies, such as the tree, yield more complicated solutions that
also involve solving a set of coupled equations. However, they
involve knowledge of the specific communication architecture
assumed [5]. Another interesting approach is that of parleying,
in which each sensor communicates a tentative local decision
to all other sensors. This information is processed to refine
the decision by each sensor, and communicated to all other
sensors again. The process continues until all sensors agree in
their decisions [7].

Although much work has been reported on designing opti-
mum detectors under various communication topologies and
applications, the theoretical design principles presented in

1Routing is ignored as common in signal processing literature; but will be
considered in our evaluations in the later sections.
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these works are not directly applicable in our context. This
is primarily due to the fact that it is not practical to define a
communication topology that is fixed a priori for performing
fusion in a sensor network. Moreover, the topology is likely
to change with time due to node and link failures. Hence, it
is not possible to determine the optimum local decision rules
that depend on a specific communication topology. Secondly,
our goal is to minimize energy consumption in the network by
implementing a detection scheme that involves only as many
sensors as are necessary for meeting the desired detection
criteria. This is different from the traditional approach used
where the models consider a fixed number of nodes with the
last (N -th) node taking the final decision.

Motivated by these considerations, we take the following
approach. Our primary goal is to explore serial fusion that can
stop as soon as possible. To be able to develop a comparison
point, we also develop a parallel fusion mechanism that
takes into account “all” available sensor observations into
consideration. We develop approaches for both methods by
fixing the local sensor decision rules a priori, and presenting
the corresponding optimization of the fusion rule. The assump-
tions and framework of the distributed detection methods are
described in the following subsection. Their performances will
be evaluated later in Section 6.

B. Proposed Detection Model

We assume that the observation at the i-th sensor is given
by,

under H0: Yi = Ni,

under H1: Yi = C + Ni, (1)

where C is the level of signal strength under H1 and Ni,
i = 1, 2, · · · , are independent and identically distributed (i.i.d.)
noise random variables (RV). We use upper-case letters to rep-
resent RVs and the corresponding lower-case letters to denote
specific realizations of the same. The above observation model
makes the signal and noise characteristics in all the sensors
similar. Such an assumption may not be valid for applications
involving targets that have a small signal coverage region or
when the signal and noise characteristics are location specific.
However, it is a reasonable assumption in many scenarios.
One example is the detection of groundwater contamination
over a chosen area, where the average contaminant density is
expected to be fairly constant over an extended region.

We also assume that each sensor has a local mapping rule
that is defined as a fixed binary quantizer as follows:

γi(yi) :
{

yi > τ −→ set ui = 1
otherwise −→ set ui = 0.

(2)

The above assumption makes the local outputs or decisions
Ui, i.i.d. for i = 1, 2, · · · , N . Assuming that noise (Ni) is
Gaussian, the optimum value of τ that minimizes the error in
generating the local outputs is τ = C

2 . We define p = P [Ui =
0|H0], and q = 1 − p. Then,

P [Ui = 1|H1] = p; P [Ui = 0|H1] = q;
P [Ui = 1|H0] = q; P [Ui = 0|H0] = p. (3)

0 CC/2

p1-p

pdf of Yi|H1pdf of Yi|H0

Fig. 2. Probability density functions for the local observation (Yi) in the
presence and absence of the signal (of level C). The optimum detection
threshold is C

2
.

See Figure 2.

Parallel Fusion Model: We first analyze the case where the
local decisions of K independent sensors Ui, i = 1, 2, · · · ,K
are available in one sensor for determining the final decision.
This would be the situation if all the local decisions are trans-
mitted to a common node without any intermediate fusion rule
being applied. Since node failures may result in the responses
from an indeterminate number of sensors, we consider K to be
an arbitrary number, K ≤ N , where N is the total number of
nodes in the network. Because of the independence condition,
the optimum fusion of Ui, i = 1, 2, · · · ,K is given by the
likelihood ratio test [6]:

g(u1, u2, · · · , uK)


> T (K) −→ decide H1

= T (K) −→ decide H1 with prob µ(K)
otherwise −→ decide H0

(4)

where g(u1, u2, · · · , uK) is the log of the likelihood ratio
function based on ui, i = 1, 2, · · · ,K, defined as

g(u1, u2, · · · , uK) = log
(

P [u1, u2, · · · , uK |H1]
P [u1, u2, · · · , uK |H0]

)

= (n+ − n−)∆+

= (2n+ − K)∆+ (5)

and ∆+ is given by

∆+ = log
p

1 − p
. (6)

Here, n+ be the number of ui’s out of K that are 1,
and T (K) and µ(K) are the threshold and randomization
probability, respectively, which can be determined on the basis
of the required false alarm probability PFA. Note that the
threshold test in Equation 4 can be shown to be equivalent
to a randomized threshold test on n+. The thresholds and
randomization probabilities for each possible value of K may
be determined off-line to provide the same desired value of
PFA. Naturally, the probability of missed detection achieved
with a specific threshold will depend on the number of sensors
K. A higher K will generate a lower probability of missed
detection and vice versa.

Serial Fusion Model: We propose a solution to the serial
fusion problem by using a technique that is based on the

0-7803-8797-X/04/$20.00 (C) 2004 IEEE



 

1 2 3 iN

τ1 

τ0 

2∆+  (if u2=1) 

∆+  (if u1=1) 

0 (if u2=0) 

Decide H1 

Decide H0 

LLR 

Fig. 3. Schematic representation of the variation of the LLR in a serial
fusion scheme with truncation at the N -th sensor.

sequential probability ratio test (SPRT) used for centralized
detection [8]. As described before, it is assumed that trans-
missions are performed serially following a specific path (see
Figure 1), and a decision is made after each transmission along
the path to either accept one of the hypotheses or continue
transmitting along the path. The test stops whenever a hypoth-
esis is accepted, and hence, the number of sensors involved
in the test is a random variable. As in the SPRT, the decision
rule at each stage of transmission can be designed such that
the final decision meets a specified PFA and PDET . (Note
that SPRT is conceptually a centralized process, where all
sensor observations are first gathered and then the fusion rule
is applied. However, we can trivially distribute the computation
in a serial fashion as in Figure 1). Consequently, if the number
of sensors in the network is sufficiently large (ideally infinity)
the SPRT based on the ui values can be described by the
following decision rule at the i-th sensor:

g(u1, u2, · · · , uK) = log
(

P [u1, u2, · · · , ui|H1]
P [u1, u2, · · · , ui|H0]

)



> log
(

β
α

)
−→ decide H1

< log
(

1−β
1−α

)
−→ decide H0

otherwise −→ go to the next sensor
for another sample.

(7)

Here, α and β are the desired PFA and PDET , respectively.
Because of the independence of Ui’s, the log-likelihood ratio
(LLR) on the left hand side of Equation 7 will either increase
or decrease by ∆+ at the i-th sensor, depending on whether
ui is 1 or 0, respectively. Hence, the LLR at the i-th sensor
can be represented by (2n+ − i)∆+, where n+ is the number
of sensors that have uj = 1 for j = 1, 2, · · · , i, and ∆+ =
log(p/q).

It is well known that under H0 and H1, the average num-
ber of observations required by an SPRT is (asymptotically)
smaller than that required by a detector using a fixed and

Xi

Xi+1

Xi-1
Xi+3

Xi+2
ti

ti-1

ti+1 ti+2

ti+3
Sensor node, k,
with location Xk

Curve index, tk,
for sensor k

Fig. 4. Sierpinski curve in two dimensions.

pre-determined number of observations taken together, both
designed to meet the same error probabilities [8]. Hence, the
serial fusion scheme described in Equation 7 is expected to
involve a smaller number of sensors on an average than that
required in parallel fusion under H0 and H1. However, in rare
cases such a serial fusion scheme can extend to a very large
number of sensors without termination. To limit the maximum
length of the serial fusion process, the test may be truncated
at a desired maximum number of nodes, where a threshold
test similar to Equation 4 may be implemented. A schematic
representation of this fusion process is shown in Figure 3.
The figure depicts that before the aggregation reaches the N -
th sensor, the test may be terminated if the LLR exceeds τ1

or drops below τ0 with decisions H1 and H0, respectively. If
the test reaches the N -th sensor, the final decision is H1 if the
LLR is greater than τ , and is H0 otherwise. The thresholds
τ1, τ0, and τ need to be designed so that the overall false
alarm probability and the detection probability are α and β,
respectively.

Now that we have developed the fusion mechanisms from
signal detection perspectives, we proceed onto describing
how sensor data can be routed so that serial fusion can be
implemented in practice.

III. SERIAL TRAVERSAL USING SPACE-FILLING CURVE

The idea of space-filling curves [4] can be traced about
hundred years back to mathematicians such as Peano, Hilbert
and Sierpinski. The curves are mathematically defined by a
mapping of the unit interval [0, 1] in one dimension to a
bounded region of a higher dimension space. These curves
are typically generated recursively and share an interesting
property that points that are close together on the curve
are also close together in the higher dimensional space the
curve is mapped to. Because of this property, such curves
have been used for applications that have interesting uses of
proximity in the high dimensional space. For example, it has
been used for very efficient heuristic solution of the traveling
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salesman problem in two dimensions [9]. Figure 4 illustrates
the Sierpinski curve in two dimensions.

The usefulness of the space-filling curves comes from the
existence of a mapping of any point in the space (in our case
space is two dimensional) to a corresponding point on the
curve. Mathematically, if Id denotes the unit interval in d-
dimensional space, and Fd(t) : I1 → Id is the space-filling
curve, any point Xi in Id is mapped to some ti on the curve,
such that Fd(ti) = Xi. We will call ti the curve index for
Xi. The properties of the curve guarantee that the Euclidian
distance between Xi and Xj is bounded by a small constant
factor of the difference between ti and tj , which is the main
source of interest in such curves. However, we will see later
in our empirical evaluation that this property does not play
any critical role in our application for the parameter space we
explored.

In our work, we are interested in traversing the sensor
network one node at a time to implement serial fusion. One
way to do this is to map each point in the two-dimensional
space (Xi) to its nearest point on the curve (ti). See Figure 4.
For a sensor network with N nodes (designated by 1, . . . , N ),
the locations of sensor nodes, say, X1,X2, . . . , XN , are thus
mapped to points on the curve t1, t2, . . . , tN . The ordering of
these ti’s defines an ideal order the nodes are to be traversed.
Thus, if ti1 ≤ ti2 ≤ . . . tiN

, then i1, i2, . . . , iN specify an ideal
traversal order. The hypothesis here is that if (i) the network
is connected, (ii) sensor nodes are distributed somewhat uni-
formly (but possibly randomly) in the two dimensional space,
and (iii) the curve is drawn with an appropriate density for the
network, two consecutive nodes ij and ij+1 in the traversal
order are also in close proximity in the physical space and
thus are likely to be within communication range. This makes
this ideal traversal order realizable in practice.

A practical aspect in dealing with space-filling curves is,
however, establishing a granularity. In our approach, we
assume that the space is continuous. This requires the curve be
drawn with enough density consistent with the spatial density
of the sensors. The following example demonstrates why this
matters.

In this example, we have chosen a simple curve called the
sweep curve for ease of illustration (Figure 5). The sweep
curve is not recursively generated, and is not known to
preserve the proximity property mentioned earlier. However,
it is certainly simpler to experiment with and computationally
easier for sensors to generate and compute mappings for. [We
will later see that this curve (and similar other variants) indeed
provides competitive performance with respect to curves that
preserves proximity properties as above.] In figure 5, the same
curve is used for two different densities of the network. The
different densities are solely due to different radio ranges. Note
that in the higher density case (Figure 5(a)), the entire network
can be traversed in the ideal traversal order. But this is not
true in the lower density case (Figure 5(b)). In the latter case,
when ij and ij+1 are not within communication range, another
neighboring node ik is visited after ij , where k > j+1 and ik
has not been visited before. If no such ik exist, the procedure
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Fig. 5. Illustrating varying density. Traversal involves occasional backtrack-
ing in the sparse case. Note that the communication radii of only certain nodes
are shown for clarity.

backtracks. The details of the traversal method is explained in
the following subsection.

A. Network Traversal

The traversal starts from a specific node in the form of a
message or an agent. It is assumed that each node knows its
neighbors, including their identifications and coordinates. This
information can be collected statically via one time beaconing
or hello messages, or periodically, if dynamic changes in the
topology is anticipated. Note that this neighbor discovery cost
is not specific to our technique. Any technique that needs to
forward a message to only one neighbor exclusively (i.e., a
link-layer unicast) must pay this neighbor discovery cost one
way or another.

When visiting a sensor node, say P , the agent orders all
unvisited neighbors of P by their curve indices (ti’s). The
curve indices can be computed by knowing their locations.
Then it visits the unvisited neighbor that is the next in this
order. This process repeats. If the agent finds itself at a node
P that does not have any unvisited neighbor it backtracks
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to the node it came from (the previous hop node), and
similarly looks for unvisited neighbors, backtracking further
if there is none. When it finds any unvisited neighbor, it
always visits it in the above order. The state information (such
as visited/unvisited nodes/neighbors) can be carried with the
agent, or retained on the individual sensor nodes, depending
on the implementation. Each node can easily keep track of the
visited/unvisited neighbors by snooping on the radio medium.
Any neighbor forwarding the message/agent is classified as a
visited neighbor.

The traversal terminates when the appropriate termination
condition is satisfied. The termination condition might be an
appropriate detection condition as detailed in the previous
section. It can also be based on the number of sensors
traversed. We view this as an application-specific condition.

Note that the traversal is similar to a depth-first traversal
of an unknown graph. The only difference is that when
visiting an unvisited neighbor, the neighbor to visit is not
arbitrarily picked when there are more than one possibilities.
The neighbor to visit is picked based on its index on the
curve. This imposes an a priori order for the traversal that
helps minimizing the the number of transmissions necessary
to complete the traversal. We will demonstrate this empirically
in the next section.

A discussion on the fault tolerance properties of the serial
paradigm is in order here. At the outset, it may appear that
the serial paradigm is not fault tolerant, as a single message
loss will lose the entire state of the serial fusion process.
While this is true, our experiments will show later that with a
reasonable retransmission-based scheme to tackle losses, the
serial paradigm performs significantly better than parallel tree-
based scheme even when the message loss probability is quite
high. The serial paradigm does, however, increase latency
as sensor observations are always combined in a sequential
fashion.

Curve-based routing is not new in sensor networking liter-
ature. In [10] authors considered various forms of trajectory-
based routing for different applications. Our method specifies
details of the actual nature of the curve that can be used for
a specific application, viz., serial fusion. In the next section,
we evaluate the performance of the curve-based routing when
used in serial fusion.

IV. PERFORMANCE EVALUATION

Two sets of performance evaluation have been performed.
In the first set, the performance of the curve-based routing
technique is evaluated in isolation. The goal here is to demon-
strate the efficiency of this routing mechanism irrespective of
any fusion or signal detection performance. Here, the routing
method is compared with (i) serial depth-first traversal and (ii)
tree-based data aggregation method in terms of communication
cost. In the second set, the performance of the entire technique
(i.e., serial fusion with curve-based routing) is compared with
alternative techniques (i.e., parallel fusion with tree-based
aggregation). Here, both the detector performance as well as
communication costs are evaluated.
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Fig. 6. Performance for varying density of the space-filling curve for sparse
and dense networks.

A. Curve-based Routing

The performance of the space-filling curve-based network
traversal method was evaluated using simulations. In the model
we have used, a varying number of nodes (1,000 – 10,000) are
randomly placed in a 10 × 10 square area. The connectivity
graph is constructed assuming two different values of the radio
range (R) that makes the network very sparse or very dense
showing two extremes of density. Various curve “densities” are
used to show their impact on the performance. For simplicity,
the first set of performance plots (Figure 6) use the sweep
curve with varying “periodicity” of the curve to control the
density. The period is represented in terms of the radio range R
as its relationship with R is important rather than its absolute
value.

Performance is measured in terms of the number of “addi-
tional hops” the traversal takes expressed as a percentage of
the total number of nodes (Figure 6). Note that this number
would be zero, if the agent traverses the network along
a hamiltonian path. Note also that the depth-first traversal
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works very poorly in relative terms. The curve-based method
performs significantly better, with the performance improving
as the curve becomes “denser.” Performance also improves, as
expected, as the network becomes denser – by increasing the
number of nodes or radio range.

Another set of performance results are obtained to demon-
strate the impact of the nature of the curve used. These
plots are shown in Figure 7. Here, three different curves
are compared in a similar setting for a dense (R = 2.0)
sensor network – (i) the sweep curve as before, (ii) the spiral
curve2 and (iii) the recursive Sierpinki curve. The goal here
is to evaluate whether some curve may perform better than
the others. Since a specific curve performs differently with
different densities, we use the same length of the curve when
we perform this comparison across curves. Increasing length
means higher density, thus better routing performance. Figure
7 shows that the difference between different curves of the
same length is minimal, with Sierpinski performing marginally
better than the other two. Note that Sierpinski is the only curve
evaluated here that has the proximity property mentioned in
Section III.

B. Serial Fusion with Curve-based Routing

In this subsection, our goal is to evaluate the performance
of the serial fusion described in Section II using the curve-
based routing paradigm. We also evaluate the parallel fusion
mechanism as a point of comparison. In the model used here,
we assume that the detector is designed to detect a signal at the
level of C = 0.3 in the presence of standard Gaussian noise
(mean = 0, variance = 1) with detection probability PDET =
0.95 and false alarm probability PFA = 0.01. The detector
design follows the description in Section II. The detector
performances are obtained by running a numerical simulation
evaluating their detection performances, i.e., the variation of
the detection probabilities with the actual signal level (C).
Note that the actual signal level may be different from what

2The spiral curve is described by a parametric equation r = aθ, where a
is linear function of θ. A larger constant produces a sparser curve.
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Fig. 8. Relative detection performance of parallel and serial fusion mecha-
nisms.

the detector has been designed for. We always kept the noise
characteristics the same as above.

The results are shown in Figure 8. Note the higher detection
probability for increasing signal level as expected. For signal
level C = 0, the detection probability actually represents the
probability of false alarm. Different curves for the parallel
fusion represents several values of K, the number of sensor
observation actually used. These particular values of K have
been chosen for a reason, to be explained momentarily. The
interesting point to note here is the difference between differ-
ent values of K for parallel fusion and their differences with
the serial fusion. For this set of experiments, serial fusion uses
between 109 and 263 sensor observations before stopping. The
lower values apply towards the extremes (as the decision is
“easier” with too low or too high levels of contamination); and
the higher value applies in the middle. Note that for similar
detection performance, serial fusion uses a lesser number
of sensor observations relative to parallel fusion. As can be
expected. the detector performance becomes better (the curve
has a sharper rise) with higher values of K for the parallel
detector.

The next set of results evaluate the message cost for the
two fusion mechanisms. For a meaningful evaluation, it is
assumed that the wireless communication link can be erro-
neous. Each wireless link is modeled with an independent
link failure probability that is varied over a wide range. Passive
acknowledgement is used to implement a retransmission-based
mechanism for reliable transmission. Exceeding a maximum
number of retransmission attempts (three in our simulations)
results in a message loss. In a such a case, the curve-based
routing simply uses the next best neighbor to visit assuming
the current link to be faulty or too unstable. Note that use
of such alternate paths to reroute makes the mechanism very
robust. Also, note that such rerouting is possible as routing
does not happen over a pre-defined topology.

The parallel fusion mechanism is implemented over a tree-
based routing scheme. Here, the initiator node (which is
also the fusion center) floods a request packet throughout
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Probability of K Total number of
link failure (p) transmissions

0.01 999 1014
0.05 996 1051
0.1 990 1107
0.2 963 1216
0.3 890 1273
0.4 754 1256
0.5 572 1143
0.6 385 961
0.7 207 690
0.8 85 427

Fig. 9. No. of sensor observations (K) reaching the fusion center and total
number of transmissions (counting retransmissions) for different link failure
probabilities for a 1000 node parallel detector with tree-based routing. A
communication radius of R = 2.0 is used for a 10 × 10 area. Actual signal
level = 0.3.

the network.3 Propagation of the flooded request message
builds a reverse-path tree via which the sensor observations
are routed back to the initiator node, which also acts as the
fusion center. This is very similar to flood-based route search
mechanisms in ad hoc network routing protocols [11]. The
sensor observations are aggregated at intermediate nodes into
a single message in order to save the number of transmissions.
This means that a tree node waits to hear from all its children,
aggregates all observations relayed by its children into a single
message, adding its own observation to this aggregate, and
then transmits this aggregate message to its parent. Unreliable
communication may prevent observations from all sensors
reaching the fusion center. This can happen when a link fails
for the maximum number of retransmission attempts. Thus,
for different link failure probabilities, the numbers of sensor
observations K reaching the fusion center (root) are different
and are shown in Figure 9. These are the K values that were
used to evaluate the the detection performance of the parallel
fusion mechanism in Figure 8.

The table in Figure 9 also shows the number of transmis-
sions (counting retransmissions) in the tree. Note that many
sensor observations that are transmitted may not reach the
fusion center because of message losses that disconnect the
tree. Thus, the number of transmissions is larger than K, with
the differential increasing with higher link failure probability.
With large enough link failure probability, the number of
transmissions is less than the number of nodes (1000 here)
because of severe message losses disconnecting the tree, with
nodes failing to transmit when one or more of its children fail
to respond.

Figure 10 shows a side-by-side comparison of the serial
curve-based (Sierpinski is used with a very high density)
and parallel tree-based detector in terms of number of trans-
missions for varying link-failure probability. Note the much

3The extent of the flood could be restricted within a particular region,
if needed, using a TTL-based mechanism, or using geographic location
information. This optimization is orthogonal to the technique described.
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Fig. 10. Communication performances of the serial and parallel fusion
mechanisms for a 1000 node sensor network. Parameters are the same as
in Figure 9.

superior communication performance of the serial detector
which has opportunity to stop early. Given the competitive
detection performance of the serial fusion mechanism (Figure
8), undoubtedly it is a much more communication efficient
design.

C. Varying Signal Levels

In this section, we consider an interesting case where the
signal level varies across the field. This could happen when
there is a point source for the signal (say, a light source) and
the signal decays with distance. Note that noise is still present
in the system and is modeled as a Gaussian random number
as before. We address the problem of detection of such signals
using the serial fusion mechanism. The optimum fusion rules
are unknown in this situation. However, we can investigate
heuristics that should work well in practice.

Unlike the previous approach where the “initiator” node can
be any node in the sensor network region we are interested
in, for efficiency reasons here we choose the initiator to be
the node that observed the maximum signal level. However,
for any node in the network that observed the signal, it is not
possible to judge whether its own observation is the highest
and whether it should initiate the fusion process. To solve
this problem, we propose a timer-based initiation mechanism,
where each sensor node, after making an observation, will
start a timer with the timer value inversely proportional to
the observed signal value. Thus the node with the highest
observation will fire the timer first and will initiate serial
fusion. If the timer value choices are scaled appropriately (a
design parameter) the serial fusion process can be made to
complete before a second timer fires. Note that more than one
timer firing does not affect the correctness of this approach;
it simply affects efficiency as more than one serial fusion
processes will be created.

Since the sensors closer to the signal source are likely to
receive higher signal strengths relative to those farther away,
an efficient fusion approach should first involve the nodes
close to the signal source. One way to achieve this would
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Fig. 12. Performances of geometric and curve-based spiral routing with
varying signal level model.

be to implement the traversal process in a “spiral” fashion
around the initiator node. We can simply do a spiral curve-
based routing as before. But in this special case, we can also do
a “spiral geometric routing,” where the fusion process is routed
progressively outwards from the initiator node by visiting from
each node the unvisited neighbor that is closest to the initiator
node (Figure 11). The advantage of this technique relative to
the spiral curve-based technique is that since no curve is used
for routing, the density of the curve is not of any concern.

In Figure 12 we present detection performance for this
approach. Here, we consider a 1000 node network as before.
It is assumed that there is a signal source of level 0.3 in
the middle of network. The signal level decays according
to the inverse square of distance. The noise is Gaussian
with mean and standard deviation = 1. The probability of
detection is shown for various source signal values with
noise characteristics unchanged. Note that the spiral geometric
routing method proposed here performs better or as good as
the spiral curve-based method. For the latter four different
densities have been experimented with. The highest density

performs competitively with the geometric approach. For a
sparse curve, the performance is not good because higher
sparsity deflects the spiral away from the initiator too early
thus missing the observations from some sensors with high
observed values. This worsens the probability of detection.

V. CONCLUSIONS

In this work, we presented serial fusion methods for collabo-
rative signal detection in a sensor network using a space filling
curve-based routing paradigm. The goal is to perform fusion
with small error and with high communication efficiency.
We demonstrated that such curve-based routing can traverse
a sensor network very efficiently relative to simple depth
first search. If one evaluates detection performance, serial
fusion based on such routing method is very communication
efficient relative to methods based on parallel fusion using
an aggregation-tree based routing. It also provides a better
detection performance.
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