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Given a collection of fossil sites with data about the taxa that occur in each site, the task in biochronology is to find
good estimates for the ages or ordering of sites. We describe a full probabilistic model for fossil data. The parameters
of the model are natural: the ordering of the sites, the origination and extinction times for each taxon, and the
probabilities of different types of errors. We show that the posterior distributions of these parameters can be
estimated reliably by using Markov chain Monte Carlo techniques. The posterior distributions of the model parameters
can be used to answer many different questions about the data, including seriation (finding the best ordering of the
sites) and outlier detection. We demonstrate the usefulness of the model and estimation method on synthetic data and
on real data on large late Cenozoic mammals. As an example, for the sites with large number of occurrences of
common genera, our methods give orderings, whose correlation with geochronologic ages is 0.95.
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Introduction

Seriation, the task of temporal ordering of fossil occur-
rences by numerical methods, and correlation, the task of
determining temporal equivalence, are fundamental prob-
lems in paleontology. Fossils have been used for both tasks
since the very beginnings of modern paleontology [1,2].
However, the recent advent of large fossil databases [3] and
the increased emphasis on quantitative analysis of biological
patterns in deep time (e.g., [4–7]) has to some extent changed
both the nature and the primary purpose of these activities.
The rules and procedures of conventional paleontological
seriation (biostratigraphy) [8,9] are not easy to apply in a
satisfactory way to large datasets compiled from a wide
variety of sources, often without associated data concerning
the local distribution of fossil taxa in the rock sequences from
which they derive. Conversely, occasional but valuable data
regarding lithostratigraphic superposition, geochronologic
age estimates, etc., are frequently available but difficult to
apply in a global setting. The increasing use of large datasets
in paleontological research implies a growing need for
methods that do not only order the sites into a temporal
sequence based on the distribution of taxon occurrences, but
also can make use of a variety of other kinds of readily
available stratigraphic information. This need is perhaps
most acute in situations such as the continental record of the
Eurasian Cenozoic (ca 23 million to 2 million years ago),
where the majority of localities are from isolated quarries
outside a rock-context and stratigraphic superposition there-
fore cannot be directly determined (e.g., [10,11]).

In the past several decades, both seriation and correlation
of fossil occurrences by numerical methods have in fact
become practically feasible alternatives to conventional
biostratigraphy. The computational solutions that have been
developed for correlation and seriation have much in
common, but the implementations differ depending on the
purpose and the nature of the data (e.g., the CHRONOS [12]
and PAST [13,14] initiatives; also see [15]).

Here we are explicitly concerned with the task of seriation,
for which methods based on several distinct approaches are

available. These include the graph-theoretical unitary associ-
ations method by Guex et al. [16–18], parsimony analysis [19–
22], and Bayesian methods [23]. John Alroy [5,6,24–27] has
developed and applied techniques based on estimating taxon
ranges and maximizing the fit of these hypothesized ranges to
independent stratigraphic information, including known
stratigraphic superposition of localities. ([5] gives the latest
review of this approach.)
A fossil site (a collection of fossil remains collected from

some location, typically in a sedimentary deposit) may be
loosely regarded as a snapshot of the set of taxa that lived at a
certain location at approximately the same time. Sites and
their taxa may be described as an occurrence matrix, i.e., a 0–
1 matrix, where the rows correspond to sites and the columns
correspond to taxa: a one in entry (i,j) means that taxon j has
been found at site i. The snapshot may capture a smaller or
larger proportion of the taxa that were actually present, a
smaller or larger area, and a shorter or longer time interval,
and it may be biased in different ways. It is therefore clear
that the ones and zeros in such a matrix are not all equal.
Some presences will be weakly founded on single specimens,
others on hundreds or thousands of specimens from many
sites. Similarly, many absences will be nothing more than
missing data, whereas absences in well-sampled sites may
carry more meaning. These facts virtually call out for a
probabilistic approach to the analysis of paleontological
presence-absence data.
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Here we describe a straightforward probabilistic model
that contains parameters for the origination and extinction
of taxa, for the ordering of the sites, and for the probabilities
of errors (wrong zeros and wrong ones). Given the ordering of
the sites, the origination and extinction parameters for a
taxon specify the interval in which the taxon is assumed to be
present. Any occurrence (a one in the matrix) of the taxon
outside this interval is considered to be a false occurrence,
and any nonoccurrence (a zero in the matrix) is considered to
be a false occurrence as well. Given the parameters, the
likelihood of the data depends on the number of false and
true ones and zeros. The task we consider is to find parameter
vectors that yield high likelihood, i.e., have a small number of
false ones and zeros.

In more detail, our probabilistic model is as follows. Given
a dataset with N sites and M taxa, we consider arbitrary
orderings p of the sites. For each taxon m, we have the lifetime
of the taxon, specified by the indices of the first and last
occurrences am and bm of taxon m. Additionally, we have
parameters c for the probability of a false one (i.e., the
presence of taxon m outside the bounds am and bm) and d for
the probability of a false zero (i.e., the absence of taxon m
between the bounds am and bm).

Denoting by h the whole parameter vector ðp; �a; �b; c; dÞ, the
likelihood of the data X has the form

PðXjhÞ ¼ cað1� cÞbd cð1� dÞd; ð1Þ

where a is the number of false ones, b is the number of
correct zeros, c is the number of false zeros, and d is the
number of correct ones.

We could, in principle, find a parameter vector h that
maximizes the likelihood of the data (maximum likelihood
solution). This parameter vector would give a total order for
the fossil sites, implying a probability of zero or one for a site
pre-dating another. However, we know that the data contain
pairs of sites from the same time periods. We are interested in
finding pairs of sites for which the seriation is uncertain, i.e.,
the probability of one site pre-dating another is close to one-
half.

Therefore, we work in the Bayesian framework, and find a
sample of parameter vectors where the probability of a vector
is proportional to its posterior probability. To this end, we
use the Markov chain Monte Carlo (MCMC) method [28,29] to

sample parameter combinations h with probability propor-
tional to their Bayesian posterior likelihood

PðhjXÞ}PðXjhÞPðhÞ; ð2Þ

where P(h) is the prior probability of the parameters h.
MCMC methods yield samples from the posterior distribu-

tion of the parameters, and this makes it possible to study the
space of the parameters in many different ways. For example,
we can determine, for each pair of sites, the probability that
one precedes the other. We can also estimate for the
probability of false zeros and false ones and find for a
particular observation in the data the probability that it is a
false zero or a false one.
A further useful property of the model is that it is easy to

incorporate additional information. For example, the model
allows us to freeze the ordering of certain sites. That is, if we
know that site i is definitely older than site j, we can restrict
the MCMC method to accept only permutations that satisfy
this constraint.

Results

Generated Data
We first ran the experiment on synthetically generated

data, with known ‘‘true’’ ordering and probabilities of false
zeros and ones for varying numbers of sites and taxa, shown
in Table 1. The data were generated by forming N ordered
sites and M taxa, assigning each taxon a lifespan (with median
0.18N sites) starting from a random position in the sitelist,
and using the parameters c and d to produce false ones and
false zeros.
The results on synthetic data show that the method quite

accurately determines the parameters of the model: the
expected values of d obtained from the MCMC simulation are
close to the ones used in generating the data. The
correlations between the original order and the MCMC
orderings are also quite high; note that for high values of c
and d it can be the case that some orderings different from
the generating one fit the data better than the generating
ordering.

Cenozoic Large Land Mammal Data
In MCMC simulations, different runs can converge to

separate regions in the parameter space. This is indeed what
happens with the datasets on genera of Cenozoic large land
mammals. We ran 100 MCMC chains over the datasets, and
computed the variance in negative log-likelihood within the
first chain, and then included all chains with the expected
negative log-likelihood within one sigma of the best chain to
our analysis.
The results are summarized in Table 2. The results show

that the probability of a false one is quite low, whereas the
probability of a false zero varies from 0.5 to 0.77, with the
highest probabilities in the datasets where sites or genera
with smaller occurrence frequencies are included. The
correlation with the Mammal Neogene (MN) ordering and
database age are also high.
The probability that a site i occurs before site j can be

estimated simply by counting in how many of the samples i
precedes j in the ordering p. The results are shown in Figure
1. The ordering of the sites is in general quite well
determined, but for some blocks of observations the ordering
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Synopsis

Seriation, the task of temporal ordering of fossil occurrences by
numerical methods, and correlation, the task of determining
temporal equivalence, are fundamental problems in paleontology.
With the increasing use of large databases of fossil occurrences in
paleontological research, the need is increasing for seriation
methods that can be used on data with limited or disparate age
information. This paper describes a simple probabilistic model of
site ordering and taxon occurrences. As there can be several
parameter settings that have about equally good fit with the data,
the authors use the Bayesian approach and Markov chain Monte
Carlo methods to obtain a sample of parameter values describing
the data. As an example, the method is applied to a dataset on
Cenozoic mammals. The orderings produced by the method agree
well with the orderings of the sites with known geochronologic
ages.
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seems to be not fixed. Note that if two sites have exactly the
same taxa, then the probability P(p(i) , p( j)) will be 0.5.

The pair-order matrices for all 100 chains are shown on
our Web site (http://www.cis.hut.fi/projects/patdis/paleo). The
chains outside the highest likelihood typically contain blocks
of sites whose orders have been reversed; the MCMC method
is fairly sensitive to initialization, and therefore running
several chains with different initializations is useful.

For the dataset specified by nt¼ 10 and ns¼ 10, the original
data are shown in Figure 2A. The probability of a genus being
alive at site m is shown in Figure 2B. Figure 2C shows for each
one in the data the probability that it is a false one, i.e., that it
falls outside the interval (am, bm). We note that certain
observations are quite strongly assumed to be false ones.
The list of the strongest false ones is given on our Web site.
Examination of the list shows that some of the observations
that the model considers false ones are probably real errors in
the data, while others represent true outliers or pertain to
genera with unusual species or genera with artificially
truncated distributions, as discussed below.

Table 1. Results for Artificially Generated Datasets

N M c d Efcg Efdg Efjcorr(pjg

100 100 0.003 0.2 0.0036 0.2042 0.9982

100 100 0.003 0.5 0.0029 0.5207 0.8775

100 100 0.03 0.2 0.0289 0.2172 0.9924

100 100 0.03 0.5 0.0320 0.4944 0.8164

500 100 0.003 0.2 0.0039 0.2052 0.9283

500 100 0.003 0.5 0.0031 0.4978 0.9398

500 100 0.03 0.2 0.0326 0.2095 0.9279

500 100 0.03 0.5 0.0317 0.5099 0.8629

300 200 0.003 0.2 0.0035 0.2032 0.9998

300 200 0.003 0.5 0.0033 0.4967 0.9942

300 200 0.03 0.2 0.0316 0.2032 0.9520

300 200 0.03 0.5 0.0307 0.5030 0.8837

The median lifespan (b � a) of taxa is 0.18 3 N sites.

N, number of sites (N); M, number of taxa (M); c, probability of false one; d, probability of false zero; Efcg,
the expected probability of false one; Efdg, the expected probability of false zero; Efjcorr(p)jg, the

correlation with the original order.

DOI: 10.1371/journal.pcbi.0020006.t001

Table 2. Results on the Large Mammal Dataset

nt ns N M Chains Efcg Efdg CORRMN CORRDB

10 10 124 139 8 0.0113 0.518 0.951 �0.946

5 5 273 202 2 0.0068 0.661 0.925 �0.912

10 2 501 139 2 0.0093 0.686 0.704 �0.654

2 2 526 296 4 0.0033 0.768 0.717 �0.674

nt, the minimum number of occurrences of a genus; n
s
, the minimum number of occurrences of genera

per site; N, the number of sites; M, the number of taxa; Chains, the number of chains with likelihood within

one standard deviation from the highest likelihood in 100 experiments; Efcg, the expected probability of

false one; Efdg, the expected probability of false zero; CORRMN ¼ Efcorr(p,MN )g, correlation between the

predicted order and MN classification; CORRDB¼ Efcorr(p,DBAGE)g, correlation between the predicted

order and database age.

DOI: 10.1371/journal.pcbi.0020006.t002

Figure 1. The Pair-Order Matrix Oij ¼ P(p(i ) , p( j )) between Sites for Dataset nt ¼ 10, ns¼ 10 from the Eight Chains with the Best Likelihood

Black denotes probability one, and white denotes probability zero. For most pairs, the probability is close to zero or one, but some blocks of
observations have many different orderings with high probability.
DOI: 10.1371/journal.pcbi.0020006.g001

PLoS Computational Biology | www.ploscompbiol.org February 2006 | Volume 2 | Issue 2 | e60064

Seriation Using MCMC



We further verified the detection of false zeros and ones by
preparing two datasets, based on data parametrized by nt¼10
and ns¼ 10. For the first set, we selected 100 random ones, and
flipped them to zero (false zeros). For the second set, we
randomly selected 100 zeros, and changed them to ones (false
ones). We then performed the analysis, and computed median
probability for all zeros to be alive in the first dataset and
median probability for all ones to be alive in the second
datasets. The probabilities corresponding to 92 of 100 added
false zeroswas below themedian, and 88of 100 added false ones
were above median. The differences are statistically significant
when compared to the null hypothesis that the false zeros or
ones are equally likely to end up above or below the median
(Fisher Sign Test). The median probability that the (site,genus)
pair an inserted false one is alive is 0.004, and the median
probability that an inserted false zero is alive is 0.92.
We also tested a model where each taxon has its own c and d

parameters for false one and false zero. The results of the
MCMC runs were almost identical to the ones obtained for
the model with one c and one d parameter (unpublished data).

Discussion

We have described a probabilistic model for paleontolog-
ical data and shown that MCMC methods can be used to
obtain samples from the posterior distribution of the
parameters. The parameters of the model have a natural
interpretation, and the hard sites enable us to insert existing
prior knowledge of the ordering in a natural way.
The task of finding the optimal ordering, or knowing for

certain that a given ordering is optimal, is a very difficult
problem. MCMC methods have the advantage of being able to
explore various parts of the parameter space, but the issue of
guaranteeing convergence of the sampling is always present
in these methods. We have solved the problem of con-
vergence by sampling 100 chains in parallel, and taking into
account only the chains having the best log-likelihood. We
have also checked that the pair-order matrices predicted by
these best chains are consistent with each other. This way, we
can state with reasonable confidence that our results are
indeed an accurate description of the posterior distribution
of the model. We also tested the method by adding false zeros
and ones to the data randomly, and checking that they were
identified correctly.
The results show that for generated data the method is able

to reconstruct orderings and locate outliers with excellent
accuracy. For the data on large late Cenozoic mammals, the
results indicate a high level of agreement with existing
orderings and correctly capture the basic feature of paleon-
tological data that false absences are likely to be common and
false presences rare.
For the past 40 years the main stratigraphic framework for

the study of the Cenozoic landmammals fromEurope has been
the MN system [30–33]. The MN system rests on a complicated
base of taxon appearances and associations that has been

Figure 2. The Data Matrix for the Dataset with nt ¼ 10 and ns ¼ 10

The sites have been ordered by Efp(n)g and the genera by Efamg (top).
Probability that genus m is alive on site n in the dataset specified by nt¼
10 and ns¼ 10 (middle). Probability that one is false (bottom). Black color
denotes probability of one, and white probability of zero.
DOI: 10.1371/journal.pcbi.0020006.g002
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interpreted somewhat differently by different practitioners
[33,34], who nevertheless usually agree on the MN assignment
of most sites and virtually always agree on the sequence of MN
reference localities. The probability pattern seen in Figure 1 is
susceptible to a straightforwardpaleontological interpretation
based on the ages assigned to themwithin theMN system and a
general framework of climate change during the interval
studied [35,36]. Starting from the lower left, the sites up to
number 50 contain a sequence from the beginning of the
Miocene at about 23 million years ago to the main faunal
turnover event known in western Europe during this interval,
the ‘‘VallesianCrisis,’’ at about 10million years ago. Sites 51–63
representmostly thefirstmillion years of post-crisis time, while
the large block between sites 63 and 99 represents the relatively
stable latest Miocene from 8 million to 5 million years ago,
known as the Turolian. A major faunal turnover event
separates the Turolian from the Pliocene sites 100–117, and
sites 118–124 represent the beginning of the last epoch of the
Cenozoic, the Pleistocene. Of the two blocks of localities that
themodel cannot orderwell internally, thefirst and largest thus
corresponds to an interval during which little change hap-
pened in the mammal faunas. In contrast, the second block,
spanning the later Pliocene and the early Pleistocene,
corresponds to a time of rapid climatic and faunal change,
characterized by the increasingly prominent alternation of
cold and warm intervals and, especially in Europe, the cyclic
alternation of their attendant ‘‘cold’’ and ‘‘warm’’ mammal
assemblages. As emphasized by [37,38], standard biochronol-
ogy based on taxon ranges breaks down under conditions of
cyclic change. The same is obviously true for our model, which
assumes genus ranges to be continuous. However, the lack of
resolution in this case can also be explained by the simple fact
that all included localities are of very similar age, in particular
since our data are at the genus level. It remains to be seen to
what extent species-level data might resolve such blocks.

The structure just described is also evident in the patterns
of Figure 2, where the observed and estimated taxon ranges
of the ordered localities trace a pattern of three major faunal
units separated by events where many genera go extinct and
new, long-lived genera appear. Most marked of these is the
turnover event associated with the Miocene–Pliocene tran-
sition at 5 million years ago, while the establishment of the
two earlier faunal blocks appears more gradual. Figure 2
suggests that the model is especially skeptical of the early
occurrences of genera, especially when their record is spotty,
as for Tapirus (genus number 117 on the lower right).

Most genus occurrences considered by the model to be false
are either genuine outliers in time and/or space or actual data
errors. For example, of the ten cases at the head of the list for
the nt¼10, ns¼10 dataset,Plioviverrops at Laugnac,Thalassictis at
Wintershof-West, Anancus at Concud, and Dorn Dürkheim are
true early occurrences, Pliohyrax at Pasalar and Orycteropus at
Çandir are isolated early European occurrences of a genus of
African origin, Canis at Concud is a similar occurrence of a
genus dispersing from North America, Plesiogulo at Pasalar is a
misidentification from a published preliminary list, while
Stephanorhinus at Belometchetskaya and Amphicyon at Stavropol
are probable curatorial errors in the NOW database.

Some apparent false occurrences reflect the biology of the
animal in question. For example, the genus Tapirus, noted
above for its spotty record, occurs eight times in the first 50
rows of probable errors. Several carnivore genera are also

examples of genuinely rare but long-lived lineages, e.g.,
Martes, Plesiogulo, and Mustela. It thus appears that the model
is a powerful tool to detect not only possible errors in the
data but also genera with unusual distributional or ecological
characteristics. This suggests that the method could also be of
value for the study of the evolutionary dynamics of fossil
communities [39,40]. It should be also noted that while the
method is powerful and the results are useful, they should still
be interpreted by an expert.
In [23], Halekoh and Vach considered an analogous

problem in archeology: reconstruction of relative chronology
of graves, based on the absence or presence information of
finds. They construct a probabilistic model, similar in spirit to
ours, but having more nuisance parameters. For example,
where the appearance distribution of finds is unimodal and
find-specific, i.e., the probability of false zero varies depend-
ing on the site and find. They solve the model with an MCMC
algorithm, heavily tuned to address the convergence prob-
lems, and analyze the resulting modalities in detail. We solve
the convergence problem by inserting strong prior informa-
tion in terms of the hard sites (and fixing the direction of
time), optimizing the sampling rules, and analyzing the results
from 100 independent runs.
Like Alroy’s [5] method, our model uses relative time, and

ignores information about taphonomic regimes, sizes of
collections, and biochronology; see [5] for further discussion.
Computationally, Alroy’s model has a likelihood function that
is based on looking at the probability of not observing a
conjunction (co-occurrence) of two taxa. For each taxon i, the
model uses an individual parameter ji (called the crypsis
parameter), which corresponds to our Lazarus probability c.
The probability that taxa i and j are not observed together in
any site is in Alroy’s model ðjd

i þ jd
j � jd

i j
d
j Þ

e, where e is the
number of sites for which the life spans of taxa i and j overlap
and d is a parameter that typically is one. The taxon-specific
probabilities of false ones and zeros can also be built into our
model; the code available on our Web site provides for this.
As mentioned, in the experiments this modification did not
significantly change the results on real data. An interesting
extension to the model would be to allow for temporal
intervals for the sites.
One major difference between Alroy’s model and ours is

that we use MCMCmethods to obtain a sample of the possible
parameter values instead of looking for the maximum
likelihood solution. This provides additional information
about the robustness of the estimates. In particular, we tested
our model by randomly adding false zeros and ones, and
found that they were identified correctly.

Materials and Methods

The probabilistic model. Formally, the dataset has N sites and M
taxa, which are described with a 0–1 matrix Xnm,where n 2 f1,. . .,Ng
and m 2 f1,. . .,Mg. Xnm¼1 signifies that remains of taxon m have been
found from site n, while Xnm ¼ 0 means that no such discovery has
been made. In the following, we describe in detail a probabilistic
model that we propose has generated this dataset.

First, we assume that the sites appear in some temporal order,
denoted by permutation p:f1,. . .,Ng!f1,. . .,Ng. We say that the
site i is older than site j, if p(i) , p( j).

We further assume that there exists an ordering for all pairs of
sites, i.e., for all i 6¼ j we have either p(i) , p( j) or p( j) , p(i). Strictly
speaking, this assumption is not always true. We may have two sites i
and j that actually appeared more or less simultaneously. Should this
be the case , our probabi l i st ic model should predict

PLoS Computational Biology | www.ploscompbiol.org February 2006 | Volume 2 | Issue 2 | e60066

Seriation Using MCMC



PðpðiÞ, pðjÞÞ’PðpðjÞ, pðiÞÞ’ 0:5; i.e., the probability of site i pre-
dating site j should be about the same as site j pre-dating site i. We
indeed find such sets of sites from our dataset.

We could take all N! permutations to be a priori equally likely.
However, we know from various reasons outside of the dataset that
some sites are, beyond any reasonable doubt, older than others. It
would be foolish not to take this strong prior information into account
when constructing the model. Formally, we introduce a set of pairs of
sites, hard orderings, H ¼ fðhi1; hi2Þgi2f1;...;NHg, order of which is known,
i.e., pðhi1Þ, pðhi2Þ. We denote by PH a set of permutations that satisfy
this order,

PH ¼ fpjpðh1Þ, pðh2Þ for all ðh1; h2Þ 2 Hg: ð3Þ

We assume that a priori all permutations in PH are equally likely,
and that permutations not appearing in PH have a zero prior
probability. The hard orderings make it possible to include existing
information on the ordering of the sites into the model.

One should note that without hard ordering, i.e., when H is an
empty set, our model is symmetric with respect to the time reversal.
As a result, without hard orderings the posterior probability that site
i pre-dates site j is always 0.5, making the pairwise time orderings of
sites meaningless. Introducing hard orderings breaks this symmetry,
after which the pairwise time orderings become non-trivial and
meaningful. It should be noted that while the pairwise time ordering
probability, P(p(i) , p( j )) ¼ 0.5, is trivial without hard orderings, we
could still get a meaningful measures of higher-order quantities, e.g.,
for the probability that the age of site j is between the ages of sites i
and k, i.e., PðpðiÞ, pðjÞ, pðkÞ or pðkÞ, pðjÞ, pðiÞÞ.

Oneof themost basic properties of the taxa is that they originate and
then go extinct at some later time. Therefore, for each taxon m we
propose two parameters: the first signifying a site during which the
taxon was first alive, am 2 [1, Nþ 1], and a site during which the taxon
was first extinct, bm 2 [1, Nþ 1]. We say that taxon m is alive on site n if
am � p(n) , bm. Otherwise, the taxon is dead. We make the reasonable
assumption that the taxa do not go extinct before they originate, i.e.,
am � bm. All pairs (am, bm) satisfying this condition are a priori equally
likely. am¼ bm means the taxon m is not alive at any of the sites.

If our observations would be perfect, i.e., we would find samples of
taxon if and only if it were alive (there would, e.g., be no Lasarus
events), our time-ordered observation matrix Y, where Yp(n)m ¼ Xnm,
would consist of streaks of ones, signifying the presence of taxon (Ytm
¼1 if am � Ytm , bm, Ytm¼0 otherwise). However, the observations are
not perfect. Sometimes a taxon m is misidentified at site n, which may
lead to false observation Xnm ¼ 1 even though the taxon should be
dead at that particular site. On the other hand, it may happen for
various reasons that taxon is not found from a particular site even
though the taxon is alive, which will lead to false zero, Xnm ¼ 0.

We account for the imperfect observations by introducing two
probabilities, the probability of false zero, c (we observe Xnm¼ 1 even
if the taxon is dead); and the probability of false zero, d (we observe
Xnm¼ 0 even if the taxon is alive). We assume log-uniform priors for c
and d in the intervals 0.001 � c � 0.1 and 0.1 � d � 0.8, respectively.
Summarizing, the parameters and priors of our model are given in
Table 3. We denote all parameters collectively with

h ¼ ðp; �a; �b; c; dÞ: ð4Þ

We also denote the prior of all parameters collectively by

PðhÞ ¼ PðpÞð P
M

m¼1
Pð½am; bm½ ÞPðcÞPðdÞ: ð5Þ

Given the parameters, we can finally specify the likelihood of the
data,

PðXjhÞ ¼ cað1� cÞbd cð1� dÞd; ð6Þ

where a¼
P

n,m (1� enm)Xnm is the number of false ones, b¼
P

n,m
(1� enm) (1� Xnm) is the number of correct zeros, c ¼

P
n,m enm(1� Xnm)

is the number of false zeros, and d¼
P

n,m enmXnm is the number of
correct ones, where we have used auxiliary Boolean parameter enm to
signify that the taxon is alive, i.e.,

enm ¼
1 ; if am � pðnÞ, bm
0 ; otherwise

:

�
ð7Þ

Dataset. We used a dataset of European late Cenozoic large land
mammals derived from the NOW database (http://www.helsinki.fi/
science/now) on 17 July 2003. We restricted the dataset to the
Eurasian continent and islands in the Mediterranean Sea, excluding
localities with greater than 60 degrees eastern longitude. We also
restricted the dataset to the large mammal orders Primates,
Creodonta, Carnivora, Perissodactyla, Artiodactyla, Proboscidea,
Hyracoidea, and Tubulidentata. We considered three different kinds
of age: database age, MN age, and geochronologic age. The MN system
[30–33] is a classification of late Cenozoic into 18 classes.

For each locality, we calculated a database age as the mean of the
minimum and maximum ages given in the original downloaded file.
By MN age, we refer to the mean of the temporal boundaries of MN
units according to the correlations given in [11]. This is given only for
the subset of localities assigned in the database to a single MN unit or
an interval expressed in MN units. For the MN 9 type locality Can
Llobateres, we entered a regular MN 9 age in addition to the
magnetostratigraphic age provided in the original NOW dataset. We
also compiled a new age variable by copying all geochronologic
(radiometric or magnetostratigraphic) age data in the original dataset
to a separate variable. This new variable, referred to here as
geochronologic age, was augmented by data taken from Appendix
2.1 of [11] (the main chronology used in the NOW dataset) and from
recent updates for a set of Greek localities [41,42]. The dataset is
available on our Web site (http://www.cis.hut.fi/projects/patdis/paleo).

We selected further data subsets as follows. First we selected the
genera that occurred in at least nt in the original dataset; then we
selected the sites in which at least ns such genera had been observed.
We used the combinations (nt, ns)¼ (10,10), (5,5), (2,10) and (2,2). Note
that, e.g., in the dataset with nt¼ 10 and ns¼ 10 several genera occur
less than 10 times, as the selection on the number of genera is done
first and then the sites are pruned.

We use the hard orderings of the sites, given by the MN reference
sites,

p(Paulhiac), p(MontaiguleBlin),
p(Laugnac), p(WintershofWest),
p(LaRomieu), p(Pontlevoy),
p(Sansan), p(LaGriveM),
p(Can Llobateres I), p(Ması́a del Barbo),
p(Crevillante 2), p(Los Mansuetos),
p(Arquillo), p(Perpignan),
p(Villafranca d9Asti (Arondelli)), p(Saint Vallier)

Notice that all reference sites do not appear in all of the datasets,
e.g., the dataset for nt¼10 and ns¼10 contains 11 of the 16 hard sites.

The MCMC method. Given the likelihood of Equation 6 and the
prior of Equation 5, we can obtain the posterior distribution of the
model parameters by applying the Bayes rule,

PðhjXÞ ¼ 1
ZX

PðXjhÞPðhÞ; ð8Þ

where the normalization factor is given by ZX ¼
R
PðXjhÞPðhÞdh.

Table 3. Parameters of Our Model, with Prior Distributions

Parameter Type Notation Prior

Permutation p P(p) ¼ jPH j � 1 , p 2 PH

Time interval [am ,bm[ P( [am,bm[ ) ¼ (½(N þ 1)(N þ 2)) � 1, am � bm

Probability of false one c P(logc) ¼ Uniform(log0.001;log0.1)

Probability of false zero d P(logd) ¼ Uniform(log0.1; log0.8)

We denote all parameters collectively by h ¼ ( p , a , b , c , d ). We denote the prior of all parameters collectively by P(h) ¼ P(p)(Pm¼1
M P([am , bm])) P(c) P(d).

DOI: 10.1371/journal.pcbi.0020006.t003
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We are interested in computing various interesting expectation
values from the parameter distribution. If we know the posterior
distribution, we can compute the expectations from integrand

EPðhjXÞff ðhÞg ¼
Z

dhPðhjXÞf ðhÞ: ð9Þ

However, the analytic solution or integration of the posterior
distribution is infeasible. Instead of solving the integral of Equation 9
directly, we use numerical integration, namely the MCMC method.

The MCMC algorithm allows us to draw samples from the posterior
distribution, without the need for actually solving the Bayes equation.
The MCMC algorithm gives us T samples of the parameters ht,
t 2 f1; . . . ;Tg, that satisfy ht ; P(hjX) at the limit of large T . Given the
samples, we can then approximate the integral of Equation 9 by

EPðhjXÞff ðhÞg’
1
T

XT
t¼1

f ðhtÞ: ð10Þ

The Markov chain in the name of the MCMC algorithm comes
from the fact that a posterior sample is a stochastic function of the
previous posterior sample and the data, htþ1 ; g(ht, X). Thus, the
MCMC samples form a chain in parameter space: h1, h2, . . ., hT. The
consecutive samples in the chain are not independent. If the chain is
too short (T is small), one chain can effectively cover only a small
fraction of the full probability mass.

We first initialize each chain with random values, as follows:
Initial permutation is drawn from the prior, p1 ; P(p). The initial

ordering of the sites is thus totally random, with the restriction that
the ‘‘hard’’ orderings given by the set PH are enforced.

The initial intervals are set to smallest intervals that have no false
ones ½a1m; b1m½, given the initial permutation p1.

The probabilities of false ones and zeros are initialized to c1¼ 0.01
and d1 ¼ 0.3.

After the initialization, we run the chain for the TB ¼ 10,000 step
burn-in period. The posterior samples drawn during the burn-in period
are ignored. The purpose of the burn-in period is to initialize the
chain and to bring it to the area of large probability mass in the
posterior distribution. We use the final state of the burn-in period,
hTB to initialize the actual chain that we use to calculate the
expectations. We run the chain for T9 ¼ 10,000 iterations and save
every tenth sample, resulting in T¼ 1,000 samples per chain. We then
use these stored samples to calculate the desired expectations.

In MCMC methods, the question of convergence always arises. The
parameter space may have areas of large probability mass that are
separate in the sense that it is very unlikely that a chain jumps from
one of these regions to another. It is possible that a chain ends up in
these regions, resulting in inaccurate expectations due to the fact that
the integration effectively takes only a small subset of the posterior
mass into account. Indeed, efficient sampling of the full parameter
space is in a general case a very difficult problem. The problems of
finding the maximum likelihood solution for these types of problems
are typically NP-hard [43,44]. Therefore, the best we can do is to build
our algorithm so that the chains of large probability mass can be
identified with a reasonable confidence (see [29] for review of
convergence criteria).

We proceed in two steps: first, we run 100 chains in parallel, and
compute the expected log-likelihood, EflogPðXjhÞg, of the data for
each of the chains. We then compute the standard deviation of the
log-likelihoods of the chains and then use only the chains with the
expected log-likelihood within one standard deviation of the best
chain into account. For example, with the dataset with nt¼10 and ns¼
10 we end up selecting eight of the original 100 chains.

If the predictions given by the chains having the high log-
likelihood are consistent with each other, we can conclude that the
chains have converged well and that the results are reliable. However,
if the predictions given by chains would differ, we could conclude
that the chains have converged to separate regions in the parameter
space and we also get an estimate for the error due to bad
convergence.

Specifically, assume that we analyze K chains, each with unique
initialization and T samples htk, after the burn-in period. The
individual chains produce expectation of a function f(h) of the
parameters h

F ¼ EPðhjXÞff ðhÞg’ F̂k ¼
1
T

XT
t¼1

f ðhtkÞ: ð11Þ

The expectation given by all K chains is given by

F ¼ EPðhjXÞff ðhÞg’ F̂ ¼ 1
K

XK
k¼1

F̂k: ð12Þ

If the expectations F̂k produced by individual chains are similar
(using some suitable distance measure d2) to the combined result, F̂,
i.e., d2(F̂k, F̂) is small for all k, then we can have some confidence on
the approximation F̂ of the expectation F. Indeed, the distance
measure d2(F̂k, F̂) gives an approximation of the error of the
prediction F̂ to the true expectation F, d2(F, F̂ ).

We use the expectations of pair-order probabilities and their
Hellinger divergences as d2 to measure the similarity of the chains
(see below).

The actual sampling rules are given below. In our implementation
run of one chain over the dataset with nt¼ 10 and ns¼ 10 (N¼ 124, M
¼ 139), we used 10,000 burn-in iterations and equal number of actual
sampling iterations. One run takes about 8 min on a low-end desktop
(Mac mini with a 1.42 GHz G4 processor). Our C implementation is
available for download from our Web site at http://www.cis.hut.fi/
projects/patdis/paleo. The time and memory requirements of one
sampling iteration scale linearly with the size of the data matrix, the
time and memory usage being O(NM).

Sampling rules. In this section, we describe the details of the
sampling methods we have used. We use Y to denote the time-ordered
matrix of observations, Yp(i)j ¼ Xij; and p�1 to denote inverse
permutation, defined by p �1(p(i))¼ i.

Permutations. The permutation of order, p, is most difficult to
sample efficiently. To compensate for this difficulty, we have
constructed four sampling iterations for the permutations, which
we iterate five times for each MCMC step.

The first sampling method consists of moving site n from time p(n)
to a new time i, simultaneously moving all sites and interval limits
accordingly. We first define the following auxiliary methods,
TOYOUNGER and TOOLDER:

TOYOUNGER(i, j):
Let aux ‹ p(i).
For k in i,. . ., j� 1:

Let p(k) ‹ p(k þ 1).
Let p( j) ‹ aux.
Let am ‹ am� 1 for all am 2 ]i, j þ 1].
Let bm ‹ bm � 1 for all bm 2 ]i, j þ 1].
TOOLDER(i, j):
Let aux ‹ p( j).
For k in j,. . .,i þ 1:

Let p(k) ‹ p(k � 1).
Let p(i) ‹ aux.
Let am ‹ amþ 1 for all am 2 [i, j þ 1[.
Let bm ‹ bm þ 1 for all bm 2 [i, j þ 1[.
The actual MCMC step consists of moving a site n with time index i

¼p(n) to time index j, simultaneously shifting all intervening sites and
limits by one accordingly:

MOVEONESITE(i, j):
If i , j:

TOYOUNGER(i, j)
Else if j , i:

TOOLDER( j, i)
The sample is then taken by first selecting a random pair of indices,

i and j, and then excuting the step MOVEONESITE(i, j) with
Metropolis-Hastings probability (‘‘SAMPLEPI1’’).

The second part of sampling of p consists of selecting an interval
[i, j[, and reversing the order of sites within the interval. In
pseudocode, the transformation reads, where we have used p�1(i:j)
to denote a vector of site indices, p�1(i:j) ¼ (p�1(i),. . .,p�1( j)), and
reverse(&) to denote the reverse of vector &.

REVERSE1(i, j, B):
Let p�1(i:j) ‹ reverse(p� 1(i:j)).
Let am ‹ i þ j þ 1 � am for all am 2 B.
Let bm ‹ i þ j þ 1 � bm for all bm 2 B.
Swap am and bm, if am 2 B and bm 2 B.
The sample is then taken by first selecting a random interval i, j 2

f1,. . .,Nþ1g, i , j and by selecting randomly one of the following sets:
B ¼ [i, j þ 1[, B ¼ [i, j þ 1], B ¼ ]i, j þ 1[, B ¼ ]i, j þ 1]. The step
REVERSE1(i, j, B) is then executed with the Metropolis-Hastings
probability and denoted by ‘‘SAMPLEPI2’’.

The third sampling rule for p, REVERSE2(i, j, B), is similar to
REVERSE1, with the exception that only the order of non-hard sites
is reversed, denoted by ‘‘SAMPLEPI3’’. The hard sites are left
untouched.

The fourth sampling rule consists of swapping neighboring sites,
i.e.,
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REVERSE1(i, i þ 1), denoted by ‘‘SAMPLEPI4’’.
Other parameters. After sampling for the permutation, we proceed

to sample the parameters c (probability of false one) and d
(probability of false zero). This sampling is done with the aid of the
Metropolis-Hastings algorithm. We propose an update to logc by
sampling the proposal from the normal distribution, logc9 ;
N(logc,0.15). We accept the proposal with the Metropolis-Hastings
probability min(1,P(Xjh9)/P(Xjh)), where h denotes the original
parameters and h9 the proposed parameters—in this case, the
parameters with a new value of c. The sampling for the probability
of false zero, d, proceeds analogously.

To sample for the parameters am (site where the taxon is first alive),
for each m 2 f1,. . .,Mg, we calculate the relative likelihood of the data
for all am 2 [0,bm]. This calculation can be done efficiently in O(N)
steps. We then normalize these likelihoods to unity and sample new
am from Multinomial(p;bm þ 1). The sampling for bm proceeds
analogously.

Summarizing, one sampling iteration consists of one sampling of c,
d, �a, �b and SAMPLEPI4; and five iterations of SAMPLEPI1,
SAMPLEPI2, and SAMPLEPI3. The actual sampling consists of
10,000 of these iterations, of which every tenth sample is stored for
use in analysis. The C-implementation of the sampling program is
available for download at http://www.cis.hut.fi/projects/patdis/paleo.

Experimental setup. We can visualize a MCMC chain with a pair-
order matrix, defined by

Ok
ij ¼

1
T

XT
t¼1

bðpðiÞtk , pðjÞtkÞ’EPðhjXÞfbðpðiÞ, pðjÞÞg; ð13Þ

where the indices i and j denote sites, k a particular chain and b(&) is a

boolean function that equals one when & is satisfied, and zero
otherwise. Thus Ok

ij equals the probability that the site i pre-dates the
site j. Furthermore, the pair-order matrix satisfies Ok

ij þ Ok
ji ¼ 1. We

can also compare two chains by defining a distance measure using the
averaged Hellinger divergences [45] over two pair-order matrices, i.e.,

d2ðk1; k2Þ ¼
1
2

1
Npairs

X
i 6¼j

ffiffiffiffiffiffiffiffi
Ok1
ij

q
�

ffiffiffiffiffiffiffiffi
Ok2
ij

q� �2

; ð14Þ

where Npairs ¼ 1
2NðN � 1Þ. The distance measure satisfies

d2ðk1; k2Þ 2 ½0; 1� and it is equal to zero only if the pair-order matrices
are equal. The average Hellinger distance between the pair-order
matrices of the eight chains used in the analysis of the dataset with nt
¼ 10 and ns ¼ 10 is 0.010.
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