
 

Vrije Universiteit Brussel

Series and Parallel Elastic Actuation: Influence of Operating Positions on Design and Control
Beckerle, Philipp; Verstraten, Tom; Mathijssen, Glenn; FURNéMONT, Raphaël Guy;
Vanderborght, Bram; Lefeber, Dirk
Published in:
IEEE/ASME Transactions on Mechatronics

DOI:
10.1109/TMECH.2016.2621062

Publication date:
2016

Document Version:
Accepted author manuscript

Link to publication

Citation for published version (APA):
Beckerle, P., Verstraten, T., Mathijssen, G., FURNéMONT, R. G., Vanderborght, B., & Lefeber, D. (2016). Series
and Parallel Elastic Actuation: Influence of Operating Positions on Design and Control. IEEE/ASME

Transactions on Mechatronics, 22(1). https://doi.org/10.1109/TMECH.2016.2621062

Copyright
No part of this publication may be reproduced or transmitted in any form, without the prior written permission of the author(s) or other rights
holders to whom publication rights have been transferred, unless permitted by a license attached to the publication (a Creative Commons
license or other), or unless exceptions to copyright law apply.

Take down policy
If you believe that this document infringes your copyright or other rights, please contact openaccess@vub.be, with details of the nature of the
infringement. We will investigate the claim and if justified, we will take the appropriate steps.

Download date: 26. Aug. 2022

https://doi.org/10.1109/TMECH.2016.2621062
https://researchportal.vub.be/en/publications/e4177320-9092-400f-b4e4-85fe7ca509d5
https://doi.org/10.1109/TMECH.2016.2621062


MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON MECHATRONICS 1

Series and Parallel Elastic Actuation: Influence of

Operating Positions on Design and Control
Philipp Beckerle, Member, IEEE, Tom Verstraten, Student Member, IEEE, Glenn Mathijssen, Student

Member, IEEE, Raphaël Furnémont, Student Member, IEEE, Bram Vanderborght, Member, IEEE,

and Dirk Lefeber, Member, IEEE

Abstract—It is well-established that properly tuned elastic
elements can make robotic actuators more energy-efficient, es-
pecially in cyclic tasks. Considering drive train topology, two
important subcategories of elastic actuators are Series Elastic
Actuation (SEA) or Parallel Elastic Actuation (PEA). There is still
no definite answer to the fundamental question which topology
consumes less energy in a given task. This paper approaches the
problem by studying oscillatory motions of a single degree-of-
freedom link in a gravitational field. The imposed motion is a
sinusoid with non-zero offset requiring a static torque that needs
to be compensated by the actuation system. Simulations and
experiments show that SEA consumes less energy up to certain
offset angles. At high offsets, PEA becomes the more energy-
efficient alternative, provided that its no-load angle is properly
tuned. Inverse dynamics simulations show how a threshold offset
angle can be determined for a given task.

Index Terms—Compliant actuators, Energy efficiency, Dynam-
ics, Series Elastic Actuators, Parallel Elastic Actuators.

I. INTRODUCTION

The development of robotics is heading towards close

human-robot interaction which results in a high relevance

of soft robot designs [1], [2], [3], [4]. Elastic robots can

provide human safety in working environments [1], [3] and

be beneficial in motion assistance [5], [6] and rehabilitation

[7]. Elastic actuators can furthermore improve robot efficiency

by adapting their own characteristics to the operating state [8],

[9], [10], e. g., by matching natural system behavior to cyclic

trajectories [11]. Various concepts for actuators incorporating

fixed or variable elasticity have been proposed [12] of which

most comprise a serial elastic element to couple drive and link

compliantly for safe human-robot interaction. This concept

of Serial Elastic Actuation (SEA) can be implemented with

fixed, physically variable, or virtually variable stiffness where

the latter two ones rely on either mechanisms or controls.

These approaches can be used to dynamically adapt to human-

safety or energy efficiency requirements in Variable Stiffness

Actuators (VSA) [12], [13], [14].

Characterization and modeling is crucial to take advantage

of natural dynamics by design and control. Inertial and gravi-

tational effects have distinct influence on the natural dynamics,
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and resonance and antiresonance modes can be exploited [11],

[15]. Further, the configuration of elastic elements and motors

has distinct impact on dynamics and energy efficiency. Besides

SEA, Parallel Elastic Actuation (PEA) or concepts combining

serial and parallel elastic elements may provide advantageous

power and energy characteristics [16], [17], [18]. To cover

different operating frequencies in cyclic tasks by stiffness vari-

ation, SEA implementations require lower stiffness bandwidths

than PEA [11], [19]. Despite the advantages of SEA, it has

been shown that various applications can benefit from parallel

elements if they are tuned task-specifically, e.g., by pretension

[16], [20]. Since robotic workspaces usually cover a range

of operating points, understanding their impacts on natural

dynamics can help to improve actuator design and control.

This paper compares the natural dynamics and power as

well as energy characteristics of PEA and SEA regarding

mechanical and electrical dynamics including energy regen-

eration [21]. Section II describes the models and dynamics

of the examined actuators considering the operating position

and determines their linearized natural behavior. Nonlinear

inverse dynamics analyses of power and energy requirements

are presented in Section III to identify the potential of utilizing

knowledge about the linearized natural behavior in design

and control. Experimental investigations with the test setup

from [21] are used to evaluate the analytically obtained results

(Section IV). The results are concluded in Section V.

II. DYNAMICS MODELING

The schematic topologies of a PEA and a SEA moving a one

degree of freedom pendulum with a mass M and a length l (the

distance between turning point and center-of-mass) are shown

in Figure 1. The frontal view of the driven pendulum is given

in Figure 1 a) and presents the direction of θ, the operating

position offset θo as well as its maximum and minimum values

±θmax. Further, the no-load angle θnl to which the pendulum

returns if the elasticity of the PEA is unloaded is given. For

both topologies, actuator and gearbox inertia are denoted as

Jm and Jtr, the gear ratio is n, and motor position is given

by θm. As can be seen in Figure 1 b), the load inertia of the

PEA is Jl = Jl1+Jl2, its stiffness is kp, and angular positions

of the pendulum are equal to those at the gearbox output. The

pendulum motions correspond to the reduced motor motions

θ = n−1 θm and are caused by the torque Tm. In the SEA with

a serial stiffness ks that is shown in Figure 1 c), inertia J1l
and J2l are separated by the elastic element and the positions

of pendulum θ and gearbox output n−1 θm differ.
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Fig. 1: Pendulum load (top left) and considered actuator

topologies (right): a) frontal view, b) Parallel Elastic Actuator,

c) Series Elastic Actuator.

A. Parallel Elastic Actuation (PEA)

Literature indicates that the no-load angle θnl of the parallel

spring can be an important design parameter with respect to

energy efficiency [20], [16]. Considering this angle in the

nonlinear dynamics model according to [21], the required

motor torque can be calculated by

Tm = Jmtnθ̈ +
C

n
(Te + kp (θ − θnl)) (1)

in which Te represents the load torque in the elastic element

given by

Te = Jlθ̈ + Tcsign
(

θ̇
)

+ νθ̇ +Mgl sin θ (2)

The load includes inertial terms, Coulomb friction, viscous

friction and gravitational effects. Jmt = Jm + Jtr denotes the

combined inertia of motor and gearbox. The latter part of (1) is

scaled by the gear ratio n and the gearbox efficiency function

C:

C =

{

1/ηtr (load driven by motor)

ηtr (motor driven by load)
(3)

which models the dynamic behavior of a gearbox and takes

into account power flow reversal [22]. Linearizing (1) using

a Taylor series to analyze the natural dynamics at a certain

operating position offset θo yields

∆Tm = Jmtn∆θ̈ (4)

+
C

n

(

Jl∆θ̈ + ν∆θ̇ +Mgl cos θo∆θ + kp∆θ
)

which describes small motions ∆θ = θ− θo of the pendulum

around this position. Note that this equation corresponds to

the one used in [19] if θo = 0. It further becomes obvious

that the offset angle θo does not impact this behavior as

well as Coulomb friction which only influences the amplitude.

Neglecting friction and gearbox losses, the single resonance

frequency of this second-order system is:

ωrs,PEA = ±

√

kp +Mgl cos θo
Jl + n2Jmt

(5)

Comparing this to the model given in [19] indicates that the

operating position offset θo does impact the dynamic behavior.

A similar influence is found when calculating the resonance

frequency of the link only with the torque at the gearbox shaft:

ωrl,PEA = ±

√

kp +Mgl cos θo
Jl

(6)

The relevance of this frequency is shown in [19] as the

mechanical energy consumption is minimal at the resonance

frequency of the link for offset-free sinusoidal motions.

Analyzing the steady state behavior of the PEA can shed

light on the influence of the offset angle θo. Considering

energy consumption, the favorable no-load angle θnl for this

specific position offset is found if no torque is required to hold

the static position, i.e., Tm(θo) = 0. It can be calculated by

substituting the operating position offset θo in the static part

of (1) [23]:

θnl = θo +
Mgl sin θo

kp
(7)

Here, modeling gives an important design indication since

this favorable no-load angle θnl is not equal to the operating

position offset θo. Still, it can be calculated analytically

without simplifying the nonlinear dynamics of the system.

Functionally, this mechanical implementation corresponds to

a feed-forward compensation of the gravitational effect. This

brings the system to the offset position θo in the steady state.

B. Series Elastic Actuation (SEA)

As a result of the decoupling of motor and gearbox inertia,

SEAs exhibit fourth-order dynamics as discussed in [11], [19].

This is due to the deformation of the spring, which causes a

difference between link and motor position that depends on

the load torque Te given in (2) (compare [19]):

θm = n

(

Te

ks
+ θ

)

(8)

Because of the relation between link and motor position, an

equilibrium angle as in the PEA case cannot be defined. Thus,

the nonlinear equations of motion from [19] apply:

0 = Jl2θ̈ + νl2θ̇ + Tc,l2sign(θ̇) (9)

+ Mgl sin θ − ks

(

θm
n

− θ

)

Tm = (nJmt + Jl1)
θ̈m
n

+
C

n

(

ks

(

θm
n

− θ

))

+
C

n

(

T2csign(
θ̇m
n

) + ν2
θ̇m
n

)

Here, link dynamics are given by the first equation, while

the second refers to the motor dynamics. Note that the cal-

culation of motor torque Tm requires differentiation of (8).
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This function is generally discontinuous because of Coulomb

friction, leading to the appearance of Dirac pulses in the first

derivative. Because such pulses cannot be dealt with in inverse

dynamics calculations, the derivatives of Coulomb friction

were neglected in the simulations. Linearizing and combining

these equations while neglecting friction yields:

(nJmt + Jl1)
∆θ̈m
n

+
1

n

(

Jl2∆θ̈ +Mgl cos θo∆θ
)

= ∆Tm

(10)

The natural dynamics are analyzed based on the transfer

function found by rewriting (10) as a function of θm:

H(ω) =
∆θm
∆Tm

=
cn2ω

2 + cn0
cd4ω4 + cd2ω2 + cd0

(11)

with the coefficients:






























cn2 = −nJl2

cn0 = n (Mgl cos θo + ks)

cd4 = (nJmt + Jl1) Jl2

cd2 = − (nJmt + Jl1) (Mgl cos θo + ks)−
ks

n Jl2

cd0 = ks
1

nMgl cos θo

The zeros of this transfer function determine the antiresonance

frequency of the system:

ωa,SEA =

√

ks +Mgl cos θo
Jl2

(12)

Its poles correspond to the two resonance frequencies of the

system that are calculated by:

ωr1/2,SEA = ±

(

−c2 ±
√

c22 − 4c4c0
2c4

)1/2

C. Motor model

A DC motor model is used to calculate load- and speed-

dependent motor losses using data sheet specifications ac-

cording to [21]. The electrical power consumption Pelec is

calculated as follows:

Pelec = UI

The corresponding voltage U and current I are calculated with

the widely adopted DC motor model (see [24]):
{

I = Tm+νmθ̇m
kt

U = LdI
dt +RI + kbθ̇m

(13)

The parameters R and L denote winding resistance and

terminal inductance while kt and kb represent the torque

and speed constants. All of them are readily available on

the datasheets of manufacturers. Losses due to friction of

motor bearings and brushes are represented by viscous damp-

ing νmθ̇m. The corresponding coefficient νm is usually not

specified on datasheets but can be estimated based on the

assumption that the consumed current at the no-load speed

ωnl exactly equals the no-load current Inl:

νm =
kt · Inl
ωnl

(14)

TABLE I: Pendulum and gearbox properties

Parameter Value

Gearbox shaft inertia (Jl1) 1.31e− 4 kgm2

Output shaft inertia (Jl2) 1.57e− 1 kgm2

Mass (M ) 1.85 kg
Distance from rotation axis to COG (l) 0.241m

Coulomb friction coefficient (Tc,l1) 0.082Nm
Coulomb friction coefficient (Tc,l2) 0.13Nm

Damping coefficient (νl1) 0.15Nms/rad
Damping coefficient (νl2) 0.045Nms/rad

Gear ratio (n) 338/3
Gearbox inertia (Jtr) 5e− 7 kgm2

Gearbox efficiency (ηtr) 72%

To take the speed- and torque-dependent energy losses of

gearboxes into account, the only parameters given by most

manufacturers are utilized according to [25], i.e., gearbox

inertia Jtr, gear ratio n, and maximum gearbox efficiency

ηtr. The latter two are incorporated into the gearbox efficiency

function C defined in (3) according to the approach presented

and validated in [25]. The electrical dynamics of the motor

are simplified in natural dynamics analysis since the effects

induced by its terminal inductance L and winding resistance R
are several orders of magnitude smaller than back-EMF kbθ̇m
for most operating situations. The transfer behavior between

motor voltage and pendulum motion (U/θ) only differs from

the one between motor and pendulum motion in gain and

by an additional pole at s = 0. This indicates that minimum

voltage should coincide with antiresonance of the mechanical

subsystem. Regarding current, Tm has major impact across

most of the operating range and thus the dynamics between

motor current and pendulum position are closely related to

those of motor torque and pendulum position. This shows that

resonance operation yields a current reduction.

III. INVERSE DYNAMICS ANALYSIS

As in [8], [11], [19], PEA and SEA are investigated consid-

ering a pendulum setup. Yet, desired motion trajectories are

generated to consist of a sinusoidal component that oscillates

symmetrically around a particular operating position offset θo:

θ = θa sin (ωt) + θo (15)

Since the amplitude θa of this trajectory is 15 ◦ and added to

the offset values of 0 ◦ to 25 ◦, the small-angle approximation

is not applied but the full nonlinear equations of motion are

considered in the simulations. The results from the simulations

are obtained from inverse dynamics, assuming perfect tracking

of the trajectory at the output. The physical properties given in

Table I are chosen according to those of the setup from [19],

which is later used for experimental evaluation.

A. Parallel elastic actuation

Figure 2 presents the results obtained by inverse dynamics

analysis of mechanical peak power as well as mechanical

and electrical energy consumption of PEA. The relations of

those quantities to the natural dynamics and no-load angle are

indicated by the grey, black, and white lines which represent
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system resonance, link resonance, and the offset to which the

system is tuned. Globally, mechanical peak power increases

with rising frequency and is reduced to about 0.6W and

2.8W at the resonance frequencies of the system ωrs,PEA

(grey line) and the link ωrl,PEA (black line), respectively. The

equilibrium angle is set to the favorable value of 17.3 ◦ for

operation at 10 ◦ which is indicated by the white line. For

operation around this favorable value over a large range of

frequencies, significant reduction of peak power is observed.

Further, a distinct minimum is observed when operating at the

favorable offset slightly above the system resonance frequency

ωrs,PEA since the torque of the motor is minimal at this point.

The results for mechanical energy consumption show a very

distinct reduction when operating at the favorable equilibrium

angle as well. In contrast to mechanical peak power, a min-

imum occurs near the intersection of the lines representing
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Fig. 2: Mechanical peak power, mechanical, and electrical

energy consumption obtained by inverse dynamics calculations

of PEA with kp = 4.5Nm/rad. Grey, black, and white lines

represent system resonance, link resonance, and the offset to

which the system is tuned.

operation tuned with respect to the offset and the link reso-

nance frequency ωrl,PEA. The latter is due to the dominance

of gearbox losses when considering mechanical energy [19].

The optimum is observed at a frequency of 7.9 rad/s, slightly

lower than the theoretical resonance frequency of 8.1 rad/s.
This is due to friction losses proportional to speed, which tend

to lower the optimal frequency [19].

Electrical energy consumption is generally high when not

operating at the favorable angle. With respect to the offset,

the energy minimum is located around the operating po-

sition offset θo for which the system is tuned. Regarding

frequency, the optimum is found at 7.0 rad/s. This is in

between the system and link resonances ωrs,PEA = 6.0 rad/s
and ωrs,PEA = 8.1 rad/s which is typical for PEA [19]. Com-

pared to the mechanical energy consumption, the minimum of

the electrical one is even more pronounced. The area of low
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energy consumption obtained by inverse dynamics calculations

of SEA with ks = 4Nm/rad. Grey, black, and white lines

represent first resonance and second resonance as well as

antiresonance.
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energy consumption due to adjustment of the no-load angle

θnl covers a wide range of frequencies. Hence, this parameter

seems to be an important tool to cancel out the static torque

caused by the operating position offset. The tuning of the PEA

can further be extended by changing the stiffness of the elastic

element, as studied in [19].

B. Series elastic actuation

The mechanical peak power as well as the mechanical and

electrical energy consumption found for SEA are presented

in Figure 3. A distinct minimum of the mechanical peak

power is found at antiresonance frequency ωa,SEA (white

line) that is warped by the influence of the operating position

offset. For higher offsets, the analytically predicted curvature

of antiresonance is more distinct than that of the power

minimum in the simulations (between 7.3 and 7.1 rad/s). This

is caused by the relatively high value of the offset compared

to the amplitude of the movement and the fact that the small

angle approximation loses accuracy. However, the minimum

can roughly be predicted analytically using linear models.

Generally, mechanical power is rather low if θo = 0 rad since

SEAs do not exhibit equilibrium angles and return to θ = 0 rad
when unloaded. At non-zero offsets, a static torque is required.

Since this torque cannot be delivered by the series spring,

energy consumption increases.

A less distinct minimum is found around zero offset and

3.7 rad/s which is close to the first resonance ωr1,SEA (grey

line). The second resonance ωr2,SEA (black line) does not lead

to any observable minimum. Consequently, power require-

ments rise monotonically with increasing frequency beyond

antiresonance [19].

Mechanical energy consumption shows a minimum at an-

tiresonance ωa,SEA that is even more pronounced than in me-

chanical peak power. It resembles the analytically determined

lines almost perfectly. As in [19], no minima are observed at

first resonance ωr1,SEA and second resonance ωr2,SEA since

the gear box speed is minimal at antiresonance while gear

box torque is minimal close to the link resonance of the rigid

system (which corresponds to ωrl,PEA for kp = 0Nm/rad).

As for mechanical power, reduced energy consumption is

found around zero offset due to the non-existence of an

equilibrium position in the SEA case. As for mechanical

power, reduced energy consumption is found around zero

offset because the SEA cannot compensate for a static torque.

The electrical energy consumption shows the same trends

as the mechanical one. Energy consumption is minimal around

antiresonance ωa,SEA and at low offsets θo. Comparing

Figure 2 and Figure 3 shows that the energy requirements

of the SEA at antiresonance are still lower than those of

the PEA within the investigated offset range even if the

latter is tuned with respect to the offset. Yet, the minimum

energy consumption area of the offset-adjusted PEA covers a

certain frequency range. For SEA, energy consumption is more

sensitive to frequency variation and hence stiffness variation

might be important for certain applications. In contrast, the

PEA might not require stiffness tuning for tasks with a fixed

offset and a limited frequency range. However, both effects

0
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Fig. 4: Investigation of offset effects on electrical energy

consumption of PEA and SEA. PEA is tuned with respect

to the offset angle and system resonance ωrs,PEA while SEA

is operating at antiresonance ωa,SEA.

depend on the value of the offset which is investigated in

detail further ahead.

C. Effects of arbitrary offsets

As shown above, antiresonance-adjusted SEA can outper-

form PEA regarding electrical energy consumption in the

investigated offset range even if the PEA is tuned by setting

the no-load angle to the optimal value. To find out whether

this is a general effect or the advantage of SEA disappears for

larger offsets, energy consumption is calculated for offsets of

0 ◦, 15 ◦, 30 ◦, and 45 ◦. Within this, PEA and SEA operate

at their optimal operating points, i.e, stiffness is tuned to the

system resonance ωrs,PEA (PEA) or antiresonance ωa,SEA

(SEA), and the no-load angle of PEA is set according to (7).

The curves of the minimum electrical energy consumptions

depending on the offset are fitted using second order poly-

nomials and given in Figure 4. SEA performs better for low

offsets while PEA is beneficial for trajectories with offsets

higher than 36 ◦. This is due to the static gravitational torque

that can be compensated by changing the no-load angle of the

spring. It has to be noted that PEA consumption is slightly

overestimated since its real optimum would be found below

system resonance as described in Section III-A. Nevertheless,

the advantages of PEA at higher offsets are obvious.

IV. EXPERIMENTAL EVALUATION

To evaluate the insights regarding power and energy, electri-

cal energy consumption is experimentally measured with the

setup from [19] which shows the same parameters as used for

the inverse dynamics calculations. It is driven by 80W Maxon

DCX35L motor through Maxon GPX42 338 : 3 planetary

gearbox. The rotationally compliant elements are realized by

pairs of antagonistic tension springs connected by wires as

shown in Figure 5. The springs are exchanged to modify

actuator stiffness in discrete steps between the experimental

trials. The resulting rotational stiffness values can be varied

between 0.3Nm/rad and 2.3Nm/rad for the PEA as well as

2Nm/rad and 10Nm/rad for the SEA.

For the acquisition of mechanical energy consumption, a

torque sensor and an optical position encoder measure the
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Fig. 5: Experimental setup: PEA (left) and SEA (right) configuration. Gearbox and output shaft are equipped with incremental

encoders. Additionally, a torque sensor is included at the gearbox output. The length of the drive train, output shaft, and

pendulum are 0.44[m], 0.27[m], and 0.40[m], respectively.

quantities on the gearbox shaft. Another optical encoder senses

the output shaft angle of the SEA. For the assessment of

electrical energy consumption, motor voltage and current are

acquired. All sensors are considered in the system model

according to [19] to ensure a sound comparison of simulations

and experiments. In the experiments, sensor data is acquired

with a National Instruments sbRIO 9626 board that also runs

the control algorithms. Mechanical power is calculated from

torque measurements from an ETH Messtechnik DRBK-I

torque sensor (max. error 0.1Nm) and speed obtained from a

US Digital E6 optical encoder (resolution 2000 counts per

turn). Electrical power values are acquired by multiplying

battery voltage and current which is measured by an Allegro

ACS712 current sensor (max. error 1.5%). The desired trajec-

tory is generated by a Maxon EPOS2 50/5 motor controller

powered by two 12V lead-acid batteries placed in series.

For every combination of actuator stiffness and trajectory

frequency, at least ten pendulum periods were recorded after

start-up transients had settled, i.e., the first five to ten oscil-

lations are not taken into account. The considered ones are

decomposed into separate sine periods which are averaged to

reduce non-reproducible effects such as noise.

A. Control algorithm

Feedback linearization is chosen to control the nonlinear

dynamics of both configurations [23] and tackle the missing

collocation due to the elastic coupling of the SEA [26].

For PEA and SEA, the nonlinear dynamics are compensated

through applying an appropriate motor current. For PEA, this

is

Im,PEA =
1

kt

[(

nJmt +
Jl
n

)

yPEA

]

(16)

+
1

kt

[

Mgl

n
sin (θ) +

kp
n

(θ − θnl)

]

Denoting driveside inertia by Jdr = nJmt+Jl1 the equation

for SEA is:

Im,SEA =
1

nkt

(

Jl2θ̈ +Mgl sin θ
)

(17)

+
Jdr
kt

(

Jl2ySEA +Mgl(cos θθ̈ − sin θθ̇2)

ks
+ θ̈

)

Both control laws combine feedback motion control by the

auxiliary input yPEA or ySEA with a feed-forward term that is

based on (1) or (10), respectively. The auxiliary control inputs

are designed as suggested in [23]:

yPEA/SEA =
....
θ d + R0 (θd − θ) +R1

(

θ̇d − θ̇
)

(18)

+ R2

(

θ̈d − θ̈
)

+R3 (
...
θ d −

...
θ )

where θ̈d, θ̇d, θd are the desired angular accelerations, ve-

locities, and positions of the pendulum. The control parameters

R0 and R1 are used to design a proportional and differential

controller that commands the second-order dynamics of the

PEA while for the SEA all four parameters are utilized due

to its fourth-order behavior [27]. For both, the parameters are

manually tuned for each investigated combination of frequency

and stiffness to ensure the best possible tracking for a sound

comparison of power and energy characteristics.

As controller inputs, the first three derivatives of the output

position signal are required. To avoid numerical issues, the

second and third derivative are calculated by means of the

state vector
[

θ θm θ̇ θ̇m

]T

using a first-order differentiator

(resolution 1000 cpt and sampling time 2000Hz. As shown

in [21], the controller has a negligible influence on power

and energy consumption, provided that the output trajectory is

tracked well.

B. Experimental results

The experimentally obtained electrical energy consumption

data are presented in Figure 6 for the PEA and in Figure 7

the SEA. For PEA, the experimental results (green circles) are

in good accordance with those from simulation (blue grid).

The experiments confirm that lowest energy consumptions
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Fig. 6: Electrical energy consumption of PEA: comparison

of analytical calculations (blue grid) and experiments (green

circles).

occur at an offset of θo = 10◦ for which the actuator was

tuned. Global minima of 0.89 J (ω = 5 rad/s, θo = 10 ◦)

and 0.86 J (ω = 6 rad/s, θo = 15 ◦) are found in the

experiment. If measurements would be taken continuously and

not in a discrete grid, the actual optimum would have been

found between those frequencies as discussed in Section III-A,

i.e., slightly below the intersection of the optimal offset and

system resonance ωrs,PEA = 5.6 rad/s. Obviously, energy

consumption is on a rather low level in the proximity of the

measured minima and thus their accuracy and comparison

might distinctly be affected by experimental deviations. Still,

the experiment demonstrates that the analytic expression (7)

can be used to adapt the no-load angle of a PEA to the

trajectory offset. During the trials at 7 rad/s, one of the cables

was observed to sag due to the highly dynamic loads. For this

reason, the results at this frequency are not entirely reliable

which may explain their deviation from the calculated values.

Considering the results for the SEA shown in Figure 7,

the measurements match the simulations similarly well as for

PEA. An area of low energy consumption is found at offsets

of θo = 0 ◦ confirming the simulation results. The global

energy consumption minimum of 0.25 J is found at 7 rad/s
and 0 ◦. The frequency of 7 rad/s roughly corresponds to

the theoretical antiresonance frequency ωa,SEA = 7.4 rad/s,
which is the energy-optimal operating point for the SEA [19].

Figure 6 and Figure 7 demonstrate that the minimum of

the SEA (0.24 J) is lower than that of the PEA (0.9 J). This

confirms the analytical finding of lower energy consumption

in an antiresonance-tuned SEA. However, this advantage of

the SEA should disappear at higher offsets as shown in the

simulation in Section III.

V. CONCLUSION

This paper investigates the influence of oscillatory mo-

tions with differing operating positions on the power and

energy consumption of elastic actuators. By investigating and

comparing the characteristics of Parallel and Serial Elastic
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Fig. 7: Electrical energy consumption of SEA: comparison

of analytical calculations (blue grid) and experiments (green

circles).

Actuators (PEA and SEA), implications for design and control

are determined.

Intuitively, one might expect a PEA to show lower energy

consumption if tuned with respect to equilibrium position and

thus compensating for static loads. Yet, antiresonance-tuned

SEAs show the best performance for low offsets when con-

sidering electrical energy consumption. This is because SEA

function can be interpreted constantly changing the equilib-

rium position of a spring by the motor to compensate for slight

changes in offset. The advantages of SEAs are distinct at low

offsets but disappear at higher offsets. A PEA with resonance-

and offset-tuning shows roughly constant energy consumption

for offsets between 0 ◦ and 45 ◦ while the requirements of an

antiresonance-tuned SEA would increase with the offset value.

Considering inverse dynamics simulations of the investigated

system, its specific threshold offset angle is found at about

36 ◦. In the same way the characteristic offset thresholds can

be found for arbitrary systems. By adjusting the corresponding

no-load angle, the PEA can further provide rather low energy

consumption across a wide range of frequencies if operated at

this particular angle.

While the simulations and experiments are performed con-

sidering a simple case study, the results concerning the impact

of operating position impact are highly relevant for design

and control of elastic actuators. They provide a guideline for

the selection of an elastic actuator topology considering the

particular load, especially with respect to the fraction of static

loads. Furthermore, they give insight into the setting of spring

stiffness and, in the PEA case, no-load angle. The results

demonstrate the capability of PEAs to exploit natural behavior

and to bear static loads with very low power consumption.

Future work should consider more complex trajectories as well

as systems with more sophisticated kinematics and dynamics.

ACKNOWLEDGMENT

The second and third authors are PhD Fellows of the

Research Foundation Flanders - Fonds voor Wetenschappelijk

Onderzoek (FWO). Part of this work was funded by a



MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON MECHATRONICS 8

Deutsche Forschungsgemeinschaft (DFG) Grant to Support

the Initiation of International Collaboration (no. BE 5729/2-1)

and by the European Commission starting grant SPEAR (no.

337596).

REFERENCES

[1] S. Haddadin, A. Albu-Schaeffer, A. De Luca, and G. Hirzinger, “Colli-
sion detection and reaction: A contribution to safe physical human-robot
interaction,” in IEEE/RSJ International Conference on Intelligent Robots

and Systems, 2008.
[2] J.-J. Park, Y.-J. Lee, J.-B. Song, and H.-S. Kim, “Safe joint mechanism

based on nonlinear stiffness for safe human-robot collision,” in IEEE

International Conference on Robotics and Automation, May 2008, pp.
2177–2182.

[3] T. Lens and O. von Stryk, “Investigation of safety in human-robot-
interaction for a series elastic, tendon-driven robot arm,” in IEEE/RSJ

International Conference on Intelligent Robots and Systems, Oct 2012,
pp. 4309–4314.

[4] A. Verl, A. Albu-Schaeffer, O. Brock, and A. Raatz, Eds., Soft Robotics

- Transferring Theory to Application. Springer, 2015.
[5] M. A. Holgate, J. K. Hitt, R. D. Bellman, T. G. Sugar, and K. W.

Hollander, “The SPARKy (Spring Ankle with Regenerative Kinetics)
project: Choosing a DC motor based actuation method,” in IEEE

International Conference on Biomedical Robotics and Biomechatronics.
IEEE, 2008, pp. 163–168.

[6] S. K. Au, J. Weber, and H. Herr, “Powered ankle–foot prosthesis
improves walking metabolic economy,” Robotics, IEEE Transactions on,
vol. 25, no. 1, pp. 51–66, Feb 2009.

[7] J. F. Veneman, R. Kruidhof, E. E. G. Hekman, R. Ekkelenkamp, E. H. F.
van Asseldonk, and H. van der Kooij, “Design and Evaluation of the
LOPES Exoskeleton Robot for Interactive Gait Rehabilitation,” IEEE

Transactions on Neural Systems and Rehabilitation Engineering, vol.
15 (3), pp. 379 – 386, 2007.

[8] B. Vanderborght, R. Van Ham, D. Lefeber, T. G. Sugar, and K. W.
Hollander, “Comparison of mechanical design and energy consumption
of adaptable, passive-compliant actuators,” The International Journal of

Robotics Research, vol. 28, no. 1, pp. 90–103, 2009.
[9] A. Velasco, M. Garabini, M. G. Catalano, and A. Bicchi, “Soft actuation

in cyclic motions: Stiffness profile optimization for energy efficiency,”
in IEEE International Conference on Humanoid Robots, 2015.

[10] A. Jafari, N. Tsagarakis, and D. G. Caldwell, “Energy efficient actuators
with adjustable stiffness: a review on AwAS, AwAS-II and CompACT
VSA changing stiffness based on lever mechanism,” Industrial Robot:

An International Journal, vol. 42 (3), 2015.
[11] P. Beckerle, J. Wojtusch, S. Rinderknecht, and O. von Stryk, “Analysis of

system dynamic influences in robotic actuators with variable stiffness,”
Smart Structures and Systems, vol. 13, no. 4, pp. 711–730, 2014.

[12] B. Vanderborght, A. Albu-Schaeffer, A. Bicchi, E. Burdet, D. Caldwell,
R. Carloni, M. Catalano, O. Eiberger, W. Friedl, G. Ganesh, M. Gara-
bini, M. Grebenstein, G. Grioli, S. Haddadin, H. Hoppner, A. Jafari,
M. Laffranchi, D. Lefeber, F. Petit, S. Stramigioli, N. Tsagarakis, M. V.
Damme, R. V. Ham, L. Visser, and S. Wolf, “Variable impedance
actuators: A review,” Robotics and Autonomous Systems, vol. 61, no. 12,
pp. 1601 – 1614, 2013.

[13] G. A. Pratt and M. M. Williamson, “Series elastic actuators,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
vol. 1, 1995, pp. 399–406 vol.1.

[14] T. Morita and S. Sugano, “Design and development of a new robot
joint using a mechanical impedance adjuster,” in IEEE International

Conference on Robotics and Automation, vol. 3, May 1995, pp. 2469–
2475 vol.3.

[15] P. Beckerle, J. Wojtusch, J. Schuy, B. Strah, S. Rinderknecht, and O. von
Stryk, “Power-optimized stiffness and nonlinear position control of an
actuator with variable torsion stiffness,” in IEEE/ASME International

Conference on Advanced Intelligent Mechatronics, July 2013, pp. 387–
392.

[16] U. Mettin, P. X. La Hera, L. B. Freidovich, and A. S. Shiriaev,
“Parallel elastic actuators as a control tool for preplanned trajectories
of underactuated mechanical systems,” The International Journal of

Robotics Research, vol. 29, no. 9, pp. 1186–1198, 2010.
[17] M. Plooij and M. Wisse, “A novel spring mechanism to reduce energy

consumption of robotic arms,” in IEEE/RSJ International Conference on

Intelligent Robots and Systems, Oct 2012, pp. 2901–2908.
[18] G. Mathijssen, D. Lefeber, and B. Vanderborght, “Variable Recruitment

of Parallel Elastic Elements: Series Parallel Elastic Actuators (SPEA)
With Dephased Mutilated Gears,” Mechatronics, IEEE/ASME Transac-

tions on, vol. 20, no. 2, pp. 594–602, April 2015.
[19] T. Verstraten, P. Beckerle, R. Furnémont, G. Mathijssen, B. Vander-

borght, and D. Lefeber, “Series and parallel elastic actuation: Impact of
natural dynamics on power and energy consumption,” Mechanism and

Machine Theory, 2016.
[20] M. Grimmer, M. Eslamy, S. Gliech, and A. Seyfarth, “A comparison of

parallel- and series elastic elements in an actuator for mimicking human
ankle joint in walking and running,” in IEEE International Conference

on Robotics and Automation, May 2012, pp. 2463–2470.
[21] T. Verstraten, G. Mathijssen, R. Furnémont, B. Vanderborght, and

D. Lefeber, “Modeling and design of geared DC motors for energy
efficiency: Comparison between theory and experiments,” Mechatronics,
vol. 30, pp. 198 – 213, 2015.

[22] H. Giberti, S. Cinquemani, and G. Legnani, “Effects of transmission me-
chanical characteristics on the choice of a motor-reducer,” Mechatronics,
vol. 20, no. 5, pp. 604 – 610, 2010.

[23] J.-J. E. Slotine, W. Li et al., Applied nonlinear control. Prentice-Hall
Englewood Cliffs, NJ, 1991, vol. 199, no. 1.

[24] R. Krishnan, Electric motor ddrive: modeling, analysis, and control.
Prentice-Hall, 2001.

[25] T. Verstraten, R. Furnémont, G. Mathijssen, B. Vanderborght, and
D. Lefeber, “Energy consumption of geared DC motors in dynamic
applications: Comparing modeling approaches,” IEEE Robotics and

Automation Letters (RA-L), 2016.
[26] P. Erler, P. Beckerle, B. Strah, and S. Rinderknecht, “Experimental

comparison of nonlinear motion control methods for a variable stiffness
actuator,” in IEEE International Conference on Biomedical Robotics and

Biomechatronics, Aug 2014, pp. 1045–1050.
[27] B. Siciliano and O. Khatib, Springer handbook of robotics. Springer

Science & Business Media, 2008.


	Introduction
	Dynamics modeling
	Parallel Elastic Actuation (PEA)
	Series Elastic Actuation (SEA)
	Motor model

	Inverse dynamics analysis
	Parallel elastic actuation
	Series elastic actuation
	Effects of arbitrary offsets

	Experimental evaluation
	Control algorithm
	Experimental results

	Conclusion
	References

