
1999 IEEE/ASME INT’L CONF. ON ADV. INTELLIGENT MECHATRONICS, SEPT. 19–22, 1999. 561

Series Elastic Actuator Development for a
Biomimetic Walking Robot

David W. Robinson, Jerry E. Pratt, Daniel J. Paluska, and Gill A. Pratt

MIT Leg Laboratory
545 Technology Sq. Rm 006, Cambridge, MA 02139 USA

http://www.ai.mit.edu/projects/leglab/

Abstract—Series Elastic Actuators have linear springs
intentionally placed in series between the motor and ac-
tuator output. The spring strain is measured to get an
accurate estimate of force. Despite using a transmission
to achieve high force/mass and high power/mass, the
spring allows for good force control, high force fidelity,
minimum impedance, and large dynamic range.

A second order linear actuator model is broken into
two fundamental cases: fixed load – high force (for-
ward transfer function), and free load – zero force
(impedance). This model is presented with dimensional
analysis and extends previous linear models to include
friction. Using the model and dimensionless groups,
we examine nonlinear effects of motor saturation as it
relates to large force bandwidth and nonlinear friction
effects such as stiction. The model also helps to clarify
how the springs help and hinder the operation of the
actuator.

The information gained from the model helps to cre-
ate a design procedure for Series Elastic Actuators.
Particular emphasis is placed on choosing the spring
constant for the elastic element. Large force bandwidth
requires a high spring constant. Minimizing nonlinear
friction and impedance requires a low spring constant.
The design procedure tries to balance these competing
requirements and is used to construct a physical actu-
ator.

Keywords— Series Elastic Actuators, Force Control,
Biomimetic Robots

I. Introduction

BIOMIMETIC robots, as commonly defined, mimic
the structure and movement of humans and an-

imals. Regardless of the current state of the art
in robotic motion and force control, there are many
things that humans and animals perform better than
robots. While much effort has gone into understand-
ing biomimetic robot actions such as walking [1], run-
ning [2], catching [3], grasping [4], swimming [5], etc.,
competence in these areas is still inferior to that of
biological counterparts.

Of particular interest in our work is the construc-
tion and control of dynamically stable legged robots.
Our walking and running robots have three major con-
straints, and these constraints in turn drive actuator
research. These constraints are: 1—The robot must
be self supporting. This puts severe limits on the

Fig. 1. The prototype actuator has a brushless DC motor rigidly
connected to a ballscrew which drives the linear motion.
The ballscrew nut is coupled to the output through four die
compression springs. The spring compression is measured
with a linear potentiometer. The actuator can output over
1350 N and move at 25 cm/second.

force/mass and power/mass ratio of the actuators. 2—
The actuators of the robot must not be damaged dur-
ing impact steps or falls and must maintain stability
in the presence of impacts. 3—The actuators must
be force controllable because the algorithms used for
robot locomotion are force control based.

In this paper, we explain the design guidelines fol-
lowed in the construction of an electro-mechanical ac-
tuator (figure 1) to be used in a 7-link 12-degree-of-
freedom 3D walking biped robot. This actuator, called
a Series Elastic Actuator [6], has an intentional spring
in series with the transmission and the actuator out-
put. The spring somewhat reduces bandwidth, but
for our low bandwidth application this is unimpor-
tant. In exchange, Series Elastic Actuators are low
motion, high force/mass, high power/mass actuators
with good force control as well as impact tolerance.

The design guidelines for the actuators come from
investigating a second order linear actuator model.
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The model is broken into two fundamental cases: fixed
load–high force (forward transfer function), and free
load–zero force (impedance). These cases help explain
the effect of spring constant and controller parame-
ters. The model also extends previous models to in-
clude friction and is generalized by use of dimension-
less groups. Rules of Thumb for designing Series Elas-
tic Actuators are explained and a physical prototype
actuator is also described.

II. Related Work

A. Actuators

Many people have used compliant actuators or have
studied the control of robots with flexible links or com-
pliant joints [7], [8], [9], [10], [11], [12]. This work has
been mostly concerned with mitigating the effect of
the compliance rather than taking advantage of it. The
highest performance force controlled actuator has been
a brushless DC motor rigidly connected to a robot
link, also know as direct-drive [13]. These actuators
eliminate friction and backlash, typical of motors with
transmissions. To compensate for the loss of transmis-
sion, direct-drive actuators must be large in order to
achieve adequate torque. This means increased motor
mass and cost.

Howard introduced the idea of measuring springs
in series with an actuator’s output by monitoring the
displacement between actuator output and motor po-
sition, thus inferring spring deflection. [14]. This dif-
ferential measurement is error prone because there is
noise between those two points due to the transmis-
sion. Pratt and Williamson [6], [15] developed Se-
ries Elastic Actuators by directly measuring the strain
of a spring in series with transmission and actuator
output. They pointed out that biomimetic actuators
can trade off small motion bandwidth for good force
control. Also, since the spring deforms a significant
amount, the fidelity compared to typical strain gauge
structures for force control is much higher.

B. Robots

Several biomimetic robots using Series Elastic Actu-
ators have been constructed and demonstrated. Spring
Turkey [16] and SpringFlamingo [1] use linear drive
Series Elastic Actuators and COG [17]uses rotary ac-
tuators. These robots are all force controlled and use
their natural dynamics to perform rhythmic tasks such
as walking and turning cranks.

Other laboratories have also worked on walking.
The most remarkable being P2, an autonomous walk-
ing robot constructed by the Honda Research Labo-
ratory [18]. It uses Harmonic Drive Motors for actu-
ation and has visco-elastic material in the joints for

motor
motorF m

springk

loadx

motorb

Fig. 2. Mass spring model for the Series Elastic Actuator. The
mass has a driving force and viscous friction. The force
output of the actuator is determined by the compression of
the spring.

shock tolerance, as opposed to our series elastic ap-
proach. P2’s joints are position controlled with feed
forward pattern generation and feedback from 6-axis
force-torque sensors in the ankles.

III. Actuator Model

A previous paper [6] and thesis [15] investigated Se-
ries Elastic Actuators and discussed some details re-
garding the design of rotary Series Elastic Actuators.
In this paper we extend the Series Elastic Actuator
model to include friction and describe the model as
two fundamental cases using dimensionless groups.

A. Model

The model we use for a Series Elastic Actuator is a
second-order lumped mass-spring-damper with a driv-
ing force on the mass and a position input from the
environment on the spring (figure 2). The perfect
force input assumption is justified because the time
constant of the motor is significantly faster than our
low frequency operating range. The choice of a po-
sition constraint on the spring output has been ex-
plained by previous authors [19], [20], [21] in terms of
admittance/impedance and position causality of the
environment.

The lumped mass includes dynamic motor mass and
the transmission element masses as seen through the
transmission. The motor friction is also seen through
the transmission. The spring is the actual spring.

In our analysis we are most interested in the force
through the spring which is the force acting on the
robot link. This allows us to look at two cases. For
the forward transfer functions we assume that the load
end is fixed. The other case of interest is at zero force
with the load end free. This is the output impedance.
The transfer functions for these two cases completely
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specify the linear characteristics of the actuator.
The force in the spring, Fl, is a function of two vari-

ables: the force input from the motor, Fm, and the
relative position of the load, xl. This relationship is
derived to be:

Fl(s) =
Fm(s)− (mms

2 + bms)xl(s)
mm
ks
s2 + bm

ks
s+ 1

. (1)

Feedback control of the actuator is closed by mea-
suring the deflection of the spring which implies the
force output, Fl, of the actuator. We use a unity feed-
forward term in conjunction with a PD controller on
the error with gains Kp and Kd for the proportional
and derivative terms respectively. The force to the
motor, Fm is determined by

Fm = (Fd − Fl)(Kp +Kds) + Fd (2)

where Fd is the desired force.
Combining equations 1 and 2 yields the closed loop

equation for the force through the spring:

Fl(s) =
(Kds+Kp + 1)Fd(s)− (mms

2 + bms)xl(s)
mm
ks
s2 + bm+ksKd

ks
s+ (Kp + 1)

.

(3)
By looking at the different inputs, this equation can

be separated into two cases.

B. Case 1: Fixed Load

The transfer function between motor force input and
actuator output can be taken from equation 1 and
written explicitly as:

Fl(s)
Fm(s)

=
1

mm
ks
s2 + bm

ks
s+ 1

. (4)

Equation 4 will be referred to as is the open loop
transfer function for case one with the load end fixed.

By imposing the fixed end condition again and us-
ing equation 3, we can write the closed loop forward
transfer function for case one which relates the desired
force to the output force:

Fl(s)
Fd(s)

=
Kds+ (Kp + 1)

mm
ks
s2 + bm+ksKd

ks
s+ (Kp + 1)

. (5)

At low frequency, this transfer function is equal to
unity, and in the limit at high frequency it goes to
zero.

C. Case 2: Free end with zero force

To see the zero load impedance, case two, we write:

Fl(s)
xl(s)

=
−(mms

2 + bms)
mm
ks
s2 + bm+ksKd

ks
s+ (Kp + 1)

. (6)

Opposite of the closed loop forward transfer func-
tion, the impedance at low frequency is idealiy equal
to zero. At high frequency, it is equal to ks, the spring
constant of the physical spring. This will be dicussed
later.

D. Dimensionless formulation

Both the open and closed loop transfer functions,
equation 4 and equation 5, and the output impedance,
equation 6, can be written in dimensionless form.

First, notice that there are two natural frequencies.
The first is the natural resonance of the motor mass
and spring ωn. The second is the controlled natural
frequency ωc.

ωn =

√
ks
mm

ωc =

√
ks(Kp + 1)

mm
(7)

Using these two natural frequencies and the follow-
ing dimensionless groups we can non-dimensionalize
both the open and closed loop equations equations of
case one and the impedance of case two.

S =
s

ωn

Ω =
ωc
ωn

=
√
Kp + 1

B =
bm
ks
ωn

Γ = Kdωn (8)

• S normalizes the equation to the natural resonance
of the motor mass spring system of the actuator.
• Ω is a measure of the increase in bandwidth due to
the controller. Ω is always ≥ 1.
• B is a scaled natural damping term physically
present in the construction of the actuator.
• Γ represents the scaled controller damping gain.

The dimensionless open loop, closed loop, and out-
put impedance transfer functions are:

Gol(S) =
Fl(S)
Fm(S)

=
1

S2 +BS + 1
(9)

Gcl(S) =
Fl(S)
Fd(S)

=
ΓS + Ω2

S2 + (Γ +B)S + Ω2
(10)

Zcl(S) =
Fl(S)
ksxl(S)

=
−S(S +B)

S2 + (Γ +B)S + Ω2
(11)
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These models are the basis for the analysis in the
rest of the paper.

IV. Model Analysis

In this section, we examine motor saturation, large
force bandwidth, and friction using the open loop
model of case one. Using the closed loop model, we ex-
plain the choice of control parameters. Also, we look at
nonlinear friction reduction and output impedance due
to the controller. These each help understand design
tradeoffs that must be made in the actuators, partic-
ularly with the choice of spring constant in the elastic
element.

A. Saturation, Friction, and Large Force Bandwidth

In order to better understand the effects of force
and velocity saturation, we introduce a simple motor
saturation model:

|Fm| ≤
{
Fsat(1− |Vm|Vsat

) : |Vm| ≤ Vsat
0 : |Vm| > Vsat

(12)

where Fsat and Vsat are the maximum force and max-
imum velocity respectively for the motor. Vm is the
actual motor velocity.

When the motor is not pegged at saturation condi-
tions, it still follows a linear back-EMF model where:

Femf =
Fsat
Vsat

Vm. (13)

The back-EMF can be thought of as an equivalent
damping because it relates a loss in motor force due to
motor velocity just like the term bm. The equivalent
damping coefficient for the back EMF is Fsat/Vsat. We
then modify our B group to be

B =
bm + Fsat

Vsat

ks
ωn. (14)

The B group plays an important role in the large force
bandwidth. Also, by incorporating the velocity satu-
ration as an equivalent force we can investigate large
force bandwidth in terms of the saturation force only.

Large force bandwidth is independent of the control
system and is only a function of the open loop dy-
namics of the system, equation 9. We can write the
magnitude function of equation 9 in terms of a nor-
malized frequency, W = ω/ωn:

Mag =
Fl
Fm

=
1√

(1−W 2)2 + (BW )2
(15)

While the magnitude equation relates the load force
Fl as a function of the motor force Fm in the linear
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Fig. 3. The B group (generalized damping) defines the large
force bandwidth of the actuator. The three lines repre-
sent underdamped, critically damped, and overdamped fre-
quency response.

range, it can also relate maximum load force output,
Flmax , as a function of the maximum motor output,
Fsat.

Flmax
Fsat

=
1√

(1−W 2)2 + (BW )2
. (16)

Figure 3 shows different values for B with respect
to the maximum available force output due to force
saturation. There are two points of particular in-
terest: frequencies around ωn and the high frequen-
cies. The damping affects how well the system handles
large forces near the natural frequency. With an over-
damped system, the available force amplitude at reso-
nance dramatically reduces the available force ampli-
tude. But also for an underdamped system, the com-
ponents must be able to withstand possible overload
conditions. Regardless of the damping in the system,
high amplitude forces at high frequency are impossi-
ble. This is because the motor is fighting the effects of
the spring at those frequencies.

This analysis confirms previous work stating that
elasticity in an actuator reduces large force bandwidth
and increases control effort at high frequencies [6],
[14]. Therefore, increasing ks will increase bandwidth.
But, from the constraints of friction and saturation,
we need to choose a minimum acceptable large force
bandwidth. This operational frequency, ωo, will define
the lower bound for the spring constant, ks.

The shape of the large force bandwidth is solely a
function of the dimensionless group B. In standard
control textbooks [22], the resonance for second order
systems is defined by the magnitude of ζn, the damping
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ratio. Since the natural frequency has been normalized
to one for the open loop transfer function, ζn is related
to B by:

ζn =
B

2
. (17)

Therefore, we can talk about B in terms of under,
critical, and over damping as the three curves in figure
3 show.

Let us now take a closer look at B.

B =
bm + Fsat

Vsat

ks
ωn

=
bm + Fsat

Vsat

ks

√
ks
mm

=
(
bm +

Fsat
Vsat

)√
1

ksmm
(18)

Equation 18 helps us see the relationship of B to
the physical model parameters. In general, we want
B to be as small as possible to increase bandwidth.
Equation 18 can help define design guidelines regard-
ing friction.
• bm — Make the actuator with as little drive friction
as possible.
• Fsat
Vsat

— Minimize back EMF.
• mm — Using a larger motor mass will decrease res-
onant frequency thus making the apparent damping
smaller.
• ks — A larger spring constant decreases spring de-
flection. Spring and motor velocity subsequently de-
crease and therefore damping decreases.

It is also important to remember that both bm and
mm as represented in this model are seen through a
transmission reduction and are scaled by N2, where
N is the reduction. Therefore a decrease in reduction
will decrease the damping.

B. Controller Gains

Up to this point in the analysis we have only worked
with the open loop forward transfer function. From
here, we will be dealing with the closed loop behav-
ior and therefore should briefly mention selection of
controller gains.

Using the closed-loop characteristic equation (de-
nominator of equation 10 and 11) in conjunction with
the dimensionless groups (equation 8), the controller
gain values for a PD controller with unity feed forward
can be explicitly defined to get a desired closed loop
natural frequency wc and damping ratio ζc.

The proportional gain is found from the definition
of Ω.

Ω2 = Kp + 1
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Fig. 4. This is a bode plot of the closed loop system. Ω = 3
and ζc = 1.

=⇒ Kp =
w2
c

w2
n

− 1 (19)

The derivative gain is found from the damping term
of the characteristic equation.

2ζcΩ = B + Γ

=⇒ Kd =
2ζcωcmm − bm

ks
(20)

As an example figure 4, shows a bode plot of the
closed loop forward transfer function: Ω = 3 and ζc =
1.

C. Stiction

Coulomb friction and stiction are dramatically af-
fected by the introduction of the spring into the actua-
tor. A form of this analysis was originally documented
in [23] and is included for completeness. Because of
stiction, the lumped mass will not move until

Fm − Fl = Fm − Fd + Fe = Fs (21)

where Fe is the feedback force error and Fs is the force
due to stiction. Since, stiction is a low frequency phe-
nomenon, we assume that the derivative term of the
controller is negligible. The force to the motor due to
the error then becomes

Fm ≈ KpFe + Fd. (22)

Using equations 21 and 22 we can solve for the force
error Fe.

Fe ≈
1

Kp + 1
Fs (23)
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Fig. 5. There is a parabolic relationship of the force error due
to stiction force in the motor which a function of spring
stiffness and proportional controller gain. As Ω increases
non-linear friction forces are dramatically decreased.

This shows that the force error due to stiction is re-
lated by the dimensionless group Ω.

Fe ≈
1

Ω2
Fs (24)

Remember that Ω is the ratio between the resonant
frequency of the mass-spring system and the controlled
natural frequency. Increasing Ω reduces the effect of
stiction. So, there are two ways to effectively reduce
stiction: 1–increase ωc by increasing the gain or 2–
decrease ωn by reducing the spring constant. The re-
lationship is inverse parabolic and can be visualized in
figure 5. Theoretically, to eliminate stiction we should
have as soft a spring as possible. However, part of
the design is to evaluate an acceptable level of stiction
reduction.

As an example, if the controller gain is turned off,
Kp = 0, then ωc = ωn ⇒ Ω = 1. As the gain is
increased, there is a rapid decrease in the noticeable
stiction force in the system. If we set our controlled
natural frequency three times greater than the mass-
spring resonance, then stiction is reduced to 11% of its
original value.

D. Impedance

Equation 11 shows the dimensionless form of output
impedance. At low frequencies the impedance is zero
but as frequency increases, in the limit the impedance
is equal to the spring constant, ks. Equation 11 nor-
malizes to ks and figure 6 shows an example of the
impedance for different values of Γ which represents
the derivative gain. In this example, the impedance
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Fig. 6. The impedance of the actuator at low frequency is zero
and is ks at high frequency. In this example Ω = 3. As Γ
is increases there is an effective reduction in the impedance
at the controlled natural frequency.

around the actuator natural frequency, ωn, is signif-
icantly reduced to an equivalent range regardless of
Γ.

There are three ways to decrease the output
impedance for Series Elastic Actuators.
• Increase the control gain. This drives the impedance
resonance further away from the operational band-
width.
• Decrease the spring constant. This contributes a
reduction in impedance in two ways. It effectively in-
creases Ω and linearly scales the impedance profile.
• Increase the derivate gain. As seen in figure 6, Γ’s
major contribution is to reduce impedance resonance
at the controlled natural frequency.

The most important of the above three is the spring
constant. For low impedance we want ks to be as low
as possible. Just as in stiction reduction, we need to
define a maximum allowable ks, so that we can balance
a desire for low impedance and large force bandwidth.

V. Physical Actuator

The theoretical work just presented has a practical
side too. The following discussion elaborates on deci-
sions made during the design and construction of an
actuator (figure 1) for a biomimetic walking robot.

A. Component Selection

The design space for Series Elastic Actuators is very
large. Besides geometry and topology there are five
major components: motor, transmission, spring, sen-
sor, and controller. Of all five components, choosing
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the spring is the only part of the actuator which re-
quires unique perspective and is discussed in the next
section.

The specifications for the motor and transmission
need to be done based on the force, speed, and power
requirements for a given task. These design require-
ments are not unique to Series Elastic Actuators and
would be done for any actuator.

As a helpful aid to the final operation, the motor
and transmission should be selected with the idea of
keeping friction and motor saturation low. Motor fric-
tion bm which is seen through the transmission N2, is
kept at a minimum in the prototype actuator by us-
ing a brushless DC motor. The actuator also reduces
drive friction by designing the center of mass, center
of friction, and center of stiffness to be colinear along
the ball screw axis [24].

Transmission dynamics should also be kept to a min-
imum as it is one of two limiting factors in using high
feedback gain [25], [23]. We used a frameless motor
configuration where the motor magnets are mounted
directly onto an extended ballscrew shaft instead of
using a coupling, gears, or a belt drive.

The other limiting component to achieve high feed-
back gain is the sensor. The sensor needs to directly
measure the spring deflection. This insures that the
feedback measurement is a representation of true force.
Noise in the sensor is also very detrimental to opera-
tion. We use a linear potentiometer to measure spring
deflection.

B. Choosing the Spring Constant

Selecting the spring constant is a balance between
large force bandwidth needing a high ks and stiction
and impedance needing a low one. We present some
guidelines for choosing a spring constant.
1. Select a motor and transmission based on the force,
speed, and power requirements for the given task. This
will define the lumped motor mass, damping, and sat-
uration characteristics seen through the reduction.
2. Define an operational bandwidth, ωo, for which the
actuator will need large forces. In other words, define a
required large force bandwidth profile (section IV-A).
This profile is independent of controller and depends
solely on ωn and B. This places a lower bound on
ks. Most likely, the operational bandwidth may be
a little greater than but close to the selected natural
frequency.
3. Stiction (section IV-C) and Impedance (section IV-
D) place an upper bound on ks. This is a function of
the controller values Ω and Γ. Insure that the con-
troller gains can be raised to acceptable levels of stic-
tion and impedance reduction.

TABLE I

Physical Properties of Prototype Actuator

Parameter Value Units
Max Force 1350 N

Cont. Force 750 N
Min Force 2.5 N

Max Speed .25 m/s
Mass 1.13 kg

Dynamic Mass 128 kg
Spring Constant 315 kN/m

ωn 7.9 Hz
ωc 35 Hz
ζn 0.2 no units
Ω 4 no units
B 0.1 no units

4. It may be necessary to iterate. The non-
dimensional equations will help to guide to know
whether to increase or decrease ks and how much effect
it will have.

C. Physical Actuator Characteristics

The requirements for the actuator came from a phys-
ically realistic simulation of a 12 degree-of-freedom 3D
walking robot. We estimated a weight distribution for
the robot assuming that two actuators would be lo-
cated in each shin and thigh. Four more actuators
would be located in the body along with the majority
of the electronics. A common actuator (figure 1) that
satisfies the requirements for each of the joints in the
simulation was designed and built using the guidelines
described in this paper. Table I shows the physical
characteristics of the actuator.

The actuator has a large dynamic range. The min-
imum resolvable force is 2.5 N and it can output over
1350 N which gives a dynamic range over 500. Con-
sidering the actuator has 2mm/rev reduction in the
ball screw, the dynamic range is impressive [26]. Al-
though, Series Elastic Actuators may not have as large
a dynamic range as comparable direct drive actuators,
the weight savings are well worth the tradeoff for our
intended weight sensitive application.

VI. Conclusions and Future Work

We use a second order model of a Series Elastic Ac-
tuator to investigate the open and closed loop forward
transfer function and the impedance of the system.
These two cases completely describe the linear char-
acteristics of the actuator. The model includes fric-
tion and motor saturation and is generalized by using
dimensional analysis. We examine large force band-
width, controller gains, and minimizing the effects of



1999 IEEE/ASME INT’L CONF. ON ADV. INTELLIGENT MECHATRONICS, SEPT. 19–22, 1999. 568

stiction.
The model has helped to create design guidelines

for Series Elastic Actuators. Emphasis is placed on
choosing the spring constant of the elastic element.
Large force bandwidth requires a high spring constant.
Minimizing nonlinear friction and impedance requires
a low spring constant. The choice of spring constant
has been shown to be a compromise between these
competing requirements.

A physical actuator designed and constructed with
the guidelines from this paper has been build and will
be used in a 7-link 12 degree-of-freedom walking robot.

In both the analysis and physical actuator, we use
a linear spring. Future work will investigate nonlinear
stiffening springs which may ease the design tradeoffs
currently required.
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