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SERIES EXPANSION FOR THE PROBABILITY THAT A RANDOM
BOOLEAN MATRIX IS OF MAXIMAL RANK

UDC 519.21

V. V. MASOL

Abstract. We consider a random (N × n) matrix in the field GF (2) and establish
relations that allow one to find the coefficients of the expansion of the probability
that a given matrix is of maximal rank into a series in powers of a small parameter.
We give explicit formulas for the cases of n = 1 and n = 2, N ≥ n.

1. Setting of the problem

Let A = (aij)i∈I,j∈J be a matrix with N rows and n columns, where I = {1, . . . , N}
and J = {1, . . . , n}. The entries of the matrix A are independent random variables that
assume values in the field GF (2) and have distribution

(1) P{aij = 0} = 1 − P{aij = 1} = 2−1 (1 + εxij)

where ε is a fixed small number, ε ≥ 0, and xij ∈ (−∞,∞). Denote by χ(A) the
following indicator:

χ(A) =

⎧⎪⎨
⎪⎩

1 if the matrix A contains n linearly independent (in the field GF (2))
N -dimensional columns;

0, otherwise.

Using relation (1), the probability of the event {χ(A) = 1} can be represented in the
following form:

(2) P{χ(A) = 1} =
nN∑
s=0

εsf (s)(xij , i ∈ I, j ∈ J)

where the coefficients f (s)(xij , i ∈ I, j ∈ J), s ≥ 0, are real numbers that do not depend
on ε.

Let m = N −n. In the case of m = 0, a recurrence relation with respect to n is found
in [1] to evaluate f (s)(xij , i ∈ I, j ∈ J), s ≥ 0; for the case of

(3) m ≥ 0

the coefficients f (s)(xij , i ∈ I, j ∈ J), s ∈ {0, 1, 2}, are found in [2] in an explicit form by
applying different approaches depending on s ∈ {0, 1, 2}.

The aim of this paper is to find a relation that allows one to evaluate the coefficients

f (s)(xij , i ∈ I, j ∈ J), s ≥ 1,

of the expansion of the probability that a random (N × n) matrix in the field GF (2)
is of the maximal rank n into a series in terms of powers of a small parameter ε. Our
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94 V. V. MASOL

methods are based on the results obtained in [3] and on the explicit expansion for the
cases of n = 1 and n = 2.

2. Main results

In what follows we need some notation. Let R(s) be a set of s distinct elements,

R(s) = {(i1, j1), . . . , (is, js)} ,

and let tR(s) be the coefficient of xi1j1 · · ·xisjs
in the representation of

f (s)(xij , i ∈ I, j ∈ J),

tR(s) = coefxi1j1 ···xisjs
f (s)(xij , i ∈ I, j ∈ J) (here and in what follows the parameters i

and j with or without superscripts are elements of the sets I and J , respectively, namely
i ∈ I and j ∈ J). Then

(4) f (s)(xij , i ∈ I, j ∈ J) =
∑

tR(s)xi1j1 · · ·xisjs

where the sum is taken over all different sets R(s).

Remark 1. In what follows we assume that the equality R1(s) = R2(s) holds if and
only if the set R1(s) can be obtained from R2(s) by permuting the elements

(
i
(2)
ν , j

(2)
ν

)
,

ν = 1, 2, . . . , s, and vice versa, where

Rt(s) =
{(

i
(t)
1 , j

(t)
1

)
, . . . ,

(
i(t)s , j(t)

s

)}
, t = 1, 2.

Put

(5) ζ(j) = {i : (i, j) ∈ R(s)}, j ∈ J.

Theorem 1. Let a collection {j1, . . . , js} contain k elements of J , that is,

{j1, . . . , js} = {µ1, . . . , µk}, 1 ≤ µ1 < · · · < µk ≤ n.

If conditions (1) and (3) hold, then

(6) tR(s) = −2−(N−1)k−1 P (N − k)
P (m)

∑
c∈γ0

(−1)τ

where

P (N) =
N∏

ν=1

(
1 − 2−ν

)
, P (0) = 1;

γ0 is the set of matrices c, c = (cij)i∈I,j∈{1,...,k−1}, in the field GF (2) such that the rank
of c is k − 1 and c satisfy the following condition:

(7)
⊕

i∈ζ(µk)

cij = 0, j ∈ {1, . . . , k − 1}.

Here τ =
⊕k−1

ω=1

⊕
i∈ζ(µω) ciω and the symbol ⊕ stands for the operation of summation

in the field GF (2).

Remark 2. In what follows we assume that
∑

c∈γ0
(−1)τ ≡ 1 if k = 1.

Let R(s) = {(i1, j1), . . . , (is, js)} and

(8) {j1, . . . , js} = {µ1, µ2},
µ1, µ2 ∈ J , µ1 �= µ2, and s ≥ 2. Put ζ12 = ζ(µ1) ∩ ζ(µ2), sq = |ζ(µq) \ ζ12|, q = 1, 2, and
s12 = |ζ12|.
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Theorem 2. (i) If N ≥ 1, n = 1, and condition (1) holds, then

P{χ(A) = 1} = 1 − 2−N − 2−N
N∑

s=1

εs
∑

1≤i1<···<is≤N

s∏
q=1

xiq1;

(ii) if N ≥ 2, n = 2, and condition (1) holds, then

P{χ(A) = 1} =
(
1 − 2−N

) (
1 − 2−N+1

)
− 2−N

(
1 − 2−N+1

) N∑
s=1

εs
∑

1≤i1<···<is≤N

⎡
⎣ 2∑

j=1

s∏
q=1

xiqj + εs
2∏

j=1

s∏
q=1

xiqj

⎤
⎦

+ 2−2N+1
2N−1∑
s=2

εs
∑ ∑

1≤i1<···<is1≤N

1

×
∑

1≤i′1<···<i′s12
≤N

i′. /∈{i1,...,is1}

∑
1≤i′′1 <···<i′′s2

≤N

i′′. /∈{i1,...,is1 ,i′1,...,i′s12
}

(
s1∏

q=1

xiq1

)

×

⎛
⎝ 2∏

j=1

s12∏
q=1

xi′qj

⎞
⎠( s2∏

q=1

xi′′q 2

)

where the sum is taken over all nonnegative integers s1, s12, and s2 such that s1 + 2s12

+ s2 = s and either s12 = 0, s1 ≥ 1, s2 ≥ 1 or s12 ≥ 1, s1 + s2 ≥ 1; we also put∏0
q=1 ≡ 1.

3. Proof of Theorem 1

It is proved in [3] that

(9) tR(s) = 2−nN
∑

α′
0,α′

0⊆α0

∑
c∈α′

0

(−1)σ

where α0 is the collection of (N × n) matrices c of rank n in the field GF (2) such that
c = (cij)i∈I,j∈J and

⊕
i∈ζ(µk) cij = 0, j ∈ {µ1, . . . , µk−1}; σ =

⊕s
q=1 ciqjq

; α′
0 is the

subset of α0, α′
0 ⊆ α0, consisting of matrices c ∈ α0 such that c(l) and c(t) belong to α′

0

if and only if c
(l)
j = c

(t)
j for j ∈ {µ1, . . . , µk}, l �= t; c

(ξ)
j is the column j of the matrix c(ξ)

for c(ξ) ∈ α0, j ∈ J , ξ = 1, 2, . . . .
It is easy to see that

(10)
∑
c∈α′

0

(−1)σ = (−1)σBk

for an arbitrary collection α′
0, α′

0 ⊆ α0, where Bk is the cardinality of the set α′
0,

Bk = |α′
0|. Relations (9) and (10) imply that

(11) tR(s) = 2−nNBk

∑
c∈β0

(−1)σ

where β0 is the set of (N × k) matrices c, c = (cij)i∈I,j∈{1,...,k}, of rank k in the field
GF (2) satisfying condition (7).

Now we show that

(12)
∑
c∈β0

(−1)σ = −2k−1
∑
c∈γ0

(−1)τ .
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Indeed, the sum on the left-hand side of (12) can be rewritten as follows:

(13)
∑
c∈β0

(−1)σ =
∑

β′
0,β′

0⊆β0

∑
c∈β′

0

(−1)σ

where β′
0 is a subset of β0, β′

0 ⊆ β0, consisting of matrices c ∈ β0 such that both c(l)

and c(t) belong to β′
0 if and only if c

(l)
j = c

(t)
j for j = 1, 2, . . . , k − 1, l �= t, c(ξ) ∈ β0,

ξ = 1, 2, . . . . Fix a set β′
0. Let the sum

∑
c∈β′

0
(−1)σ contain µ0 terms (−1)τ and let µ−

0

be the number of changes of the sign (−1)τ in this sum. It is clear that µ0 = γ1γ2 − ν
and µ−

0 = γ−
1 γ2 − ν− where γ1 (γ−

1 ) is the total number of ways to place an even (odd)
number of nonzero elements of the field GF (2) to those positions of the column k in the
matrix c, c ∈ β′

0, whose indices belong to the set ζ(µk). The numbers ν (ν−) are defined
similarly to the numbers γ1 (γ−

1 ) under the additional condition that the elements of
the column k are linear combinations of the corresponding elements in the first k − 1
columns of the matrix c; γ2 is the total number of ways to place elements of the field
GF (2) to the positions I \ ζ(µk) of the N -dimensional column k in the matrix c, c ∈ β′

0.
It is proved in [3] that γ1 = γ−

1 = 2|ζ(µk)|−1, γ2 = 2N−|ζ(µk)|, ν = 2k−1, and ν− = 0.
Thus µ0 − µ−

0 = −2k−1, whence

(14)
∑

β′
0,β′

0⊆β0

∑
c∈β′

0

(−1)σ = −2k−1
∑
c∈γ0

(−1)τ .

Relations (13) and (14) prove (12).
Now we show that

(15) Bk =
(
2N − 2k

)
· · ·
(
2N − 2n−1

)
, k ≥ 1.

Indeed, according to the definition of Bk

(16) Bk =
n−k∏
l=1

bδl

where 1 ≤ δ1 < · · · < δn−k ≤ n, δ1, . . . , δn−k /∈ {µ1, . . . , µk}, and bδl
is the total number

of ways to place elements of the field GF (2) to an N -dimensional column such that this
column is linearly independent of the columns with indices µ1, . . . , µk, δ1, . . . , δl−1. It is
clear that

bδl
= 2N − 2k+l−1, l = 1, 2, . . . , n − k.

Taking into account (16) we get (15). Using relations (11), (12), and (15) we prove (6)
by an obvious calculation. Theorem 1 is proved. �

4. Applications of Theorem 1

Example 1. If s = 1, then

(17) f (s) (xij , i ∈ I, j ∈ J) = −2−N P (N − 1)
P (m)

N∑
i=1

n∑
j=1

xij .

Indeed, if s = 1, then

(18) f (s) (xij , i ∈ I, j ∈ J) =
N∑

i=1

n∑
j=1

tR(s)xij

where R(s) = {(i, j)}. The parameter k defined in Theorem 1 is equal to k = 1, thus we
find from (6) and Remark 2 that

(19) tR(s) = −2−N P (N − 1)
P (m)

.

Hence (18) and (19) imply (17).
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Example 2. If s = 2, then

f (s) (xij , i ∈ I, j ∈ J)

= −2−N P (N − 1)
P (m)

⎛
⎝ n∑

j=1

∑
1≤i1<i2≤N

xi1jxi2j +
N∑

i=1

∑
1≤j1<j2≤n

xij1xij2

⎞
⎠

+ 2−2N+1 P (N − 2)
P (m)

∑
1≤j1<j2≤n

∑
i1 �=i2

xi1j1xi2j2 .

(20)

Indeed, it follows from (4) that

f (s) (xij , i ∈ I, j ∈ J) =
n∑

j=1

∑
1≤i1<i2≤N

tR1(s)xi1jxi2j +
N∑

i=1

∑
1≤j1<j2≤n

tR2(s)xij1xij2

+
∑

1≤j1<j2≤n

∑
i1 �=i2

tR3(s)xi1j1xi2j2

(21)

where R1(s) = {(i1, j), (i2, j)}, R2(s) = {(i, j1), (i, j2)}, and R3(s) = {(i1, j1), (i2, j2)}.
Using (6) for k = 1 and Remark 2 we get

(22) tR1(s) = −2−N P (N − 1)
P (m)

.

Now we check the relations

tR2(s) = −2−N P (N − 1)
P (m)

,(23)

tR3(s) = 2−2N+1 P (N − 2)
P (m)

.(24)

It follows from (6) for k = 2 that

(25) tR2(s) = −2−2N+1 P (N − 2)
P (m)

∑
c∈γ0

(−1)τ

where γ0 is the set of all N -dimensional columns c, c = (cν1)ν∈I , of rank 1 in the field
GF (2) such that ci1 = 0. Since τ =

⊕
ν∈ζ(j1)

cν1 = ci1 = 0, we have τ = 0. Thus

(26)
∑
c∈γ0

(−1)τ = |γ0| = 2N−1 − 1.

Using (25) and (26) we get (23).
Further, relation (6) for k = 2 implies

(27) tR3(s) = −2−2N+1 P (N − 2)
P (m)

∑
c∈γ0

(−1)τ

where γ0 is the set of all N -dimensional columns c, c = (cν1)ν∈I , of rank 1 in the field
GF (2) such that ci21 = 0. Note that τ = ci11. Hence∑

c∈γ0

(−1)τ =
∑

c∈γ+
0

1 −
∑

c∈γ−
0

1

where γ+
0 ⊆ γ0 (γ−

0 ⊆ γ0) and ci11 = 0 (ci11 = 1) for any column c ∈ γ+
0 (c ∈ γ−

0 ).
It is clear that

∣∣γ+
0

∣∣ = 2N−2 − 1 and
∣∣γ−

0

∣∣ = 2N−2. Thus

(28)
∑
c∈γ0

(−1)τ = −1.
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Substituting (28) into (27) we obtain (24). Relations (21)–(24) prove (20).

Example 3. If s = nN , then

(29) f (s) (xij , i ∈ I, j ∈ J) = −2−N P (N − 1)
P (m)

N∏
i=1

n∏
j=1

xij .

Indeed, (4) implies

(30) f (s) (xij , i ∈ I, j ∈ J) = tR(s)

N∏
i=1

n∏
j=1

xij

where R(s) = {(i, j), i ∈ I, j ∈ J}. Now we show that

(31) tR(s) = −2−N P (N − 1)
P (m)

.

Using (6) for k = n we obtain

(32) tR(s) = −2(N−1)n−1
∑
c∈γ0

(−1)τ

where γ0 is the set of all (N × (n− 1)) matrices c, c = (cij)i∈I,j∈{1,...,n−1}, of rank n− 1
in the field GF (2) such that

N⊕
i=1

cij = 0, j ∈ {1, 2, . . . , n − 1}.

This implies that τ = 0, since

τ =
n−1⊕
ω=1

⊕
i∈ζ(ω)

ciω =
n−1⊕
ω=1

N⊕
i=1

ciω = 0.

Therefore

(33)
∑
c∈γ0

(−1)τ = |γ0|.

Now we prove that

(34) |γ0| =
(
2N−1 − 1

)
· · ·
(
2N−1 − 2n−2

)
.

Indeed, |γ0| = b1 · · · bn−1 where bq (q = 1, 2, . . . , n − 1) is the total number of ways to
place elements of the field GF (2) to an N -dimensional column such that the number
of unit elements in the column is even and the column does not linearly depend on the
columns with indices 1, 2, . . . , q − 1. It is clear that

bq = 2N−1 − 2q−1, q = 1, 2, . . . , n − 1.

This implies (34). Relations (33) and (34) allow one to represent (32) in the form of (31).
Substituting (31) into (30) we get (29).
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Example 4. If s = 3, then

f (s) (xij , i ∈ I, j ∈ J)

= −2−N P (N − 1)
P (m)

( ∑
1≤i1<i2<i3≤N

n∑
j=1

3∏
l=1

xilj +
∑

1≤j1<j2<j3≤n

N∑
i=1

3∏
l=1

xijl

)

+ 2−2N+1 P (N − 2)
P (m)

{ ∑
1≤j1<j2≤n

1

×
[ ∑

1≤i1<i2≤N

(
xi1j1xi1j2xi2j1 + xi1j1xi1j2xi2j2

+ xi1j1xi2j1xi2j2 + xi1j2xi2j1xi2j2

)
+

∑
1≤i1<i2<i3≤N

∑
(ν1,ν2,ν3)∈π(j1,j2)

xi1ν1xi2ν2xi3ν3

]

+
∑

1≤j1<j2<j3≤n

∑
1≤i1<i2≤N

1

×
∑

(λ1,λ2,λ3)∈π(i1,i2)

xλ1j1xλ2j2xλ3j3

}

− 2−3N+3 P (N − 3)
P (m)

∑
1≤j1<j2<j3≤n

∑
1≤i1<i2<i3≤N

×
∑

(γ1,γ2,γ3)∈π(j1,j2,j3)

xi1γ1xi2γ2xi3γ3

(35)

where π(j1, j2) (π(j1, j2, j3)) is the set of all permutations of the sets {j1, j1, j2} and
{j2, j2, j1} ({j1, j2, j3}).

Indeed, relation (4) implies for s = 3 that

f (s)(xij , i ∈ I, j ∈ J)

=
∑

1≤i1<i2<i3≤N

n∑
j=1

tR11(s)

3∏
l=1

xilj +
∑

1≤j1<j2<j3≤n

N∑
i=1

tR12(s)

3∏
l=1

xijl

+
∑

1≤j1<j2≤n

∑
1≤i1<i2≤N

(
tR211(s)xi1j1xi1j2xi2j1 + tR212(s)xi1j1xi1j2xi2j2

+ tR213(s)xi1j1xi2j1xi2j2 + tR214(s)xi1j2xi2j1xi2j2

)
+

∑
1≤j1<j2≤n

∑
1≤i1<i2<i3≤N

6∑
q=1

tR22q(s)xi1ν
(q)
1

x
i2ν

(q)
2

x
i3ν

(q)
3

+
∑

1≤j1<j2<j3≤n

∑
1≤i1<i2≤N

6∑
q=1

tR23q(s)xλ
(q)
1 j1

x
λ

(q)
2 j2

x
λ

(q)
3 j3

+
∑

1≤j1<j2<j3≤n

∑
1≤i1<i2<i3≤N

6∑
q=1

tR3q(s)xi1γ
(q)
1

x
i2γ

(q)
2

x
i3γ

(q)
3

(36)

where

R11(s) =
{
(i1, j), (i2, j), (i3, j)

}
, R12(s) =

{
(i, j1), (i, j2), (i, j3)

}
,
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100 V. V. MASOL

R211(s) =
{
(i1, j1), (i1, j2), (i2, j1)

}
, R212(s) = {(i1, j1), (i1, j2), (i2, j2)} ,

R213(s) = {(i1, j1), (i2, j1), (i2, j2)} , R214(s) = {(i1, j2), (i2, j1), (i2, j2)} ,

R22q(s) =
{
(i1, ν

(q)
1 ), (i2, ν

(q)
2 ), (i3, ν

(q)
3 )
}
,

(
ν

(q)
1 , ν

(q)
2 , ν

(q)
3

)
∈ π(j1, j2),

R23q(s) =
{
(λ(q)

1 , j1), (λ
(q)
2 , j2), (λ

(q)
3 , j3)

}
,

(
λ

(q)
1 , λ

(q)
2 , λ

(q)
3

)
∈ π(i1, i2),

R3q(s) =
{
(i1, γ

(q)
1 ), (i2, γ

(q)
2 ), (i3, γ

(q)
3 )
}
,

(
γ

(q)
1 , γ

(q)
2 , γ

(q)
3

)
∈ π(j1, j2, j3),

q = 1, . . . , 6.

To check the relations

tR1q(s) = −2−N P (N − 1)
P (m)

, q = 1, 2,(37)

tR2lq(s) = 2−2N+1 P (N − 2)
P (m)

(38)

for l = 1 and q = 1, . . . , 4 or l ∈ {2, 3} and q = 1, . . . , 6 we apply Theorem 1 and proceed
in the same way as in the proof of (22)–(24).

Let us prove that

(39) tR3q(s) = −2−3N+3 P (N − 3)
P (m)

, q = 1, . . . , 6.

Let R31(s) = {(i1, j1), (i2, j2), (i3, j3)}. Then relation (6) implies for k = 3 that

(40) tR31(s) = −2−3N+2 P (N − 3)
P (m)

∑
c∈γ0

(−1)τ

where γ0 is the set of all (N × 2) matrices c, c = (cij)i∈I,j∈{1,2}, of rank 2 in the field
GF (2) such that ci3j1 = ci3j2 = 0. Note that τ = ci1j1 ⊕ ci2j2 . We represent the set γ0

as the union

γ0 =
16⋃

µ=1

γ0,µ

of disjoint subsets γ0,µ ⊆ γ0, µ = 1, . . . , 16, such that for any matrix c(µ) ∈ γ0,µ,

c(µ) =
(
c
(µ)
ij

)
i∈I,j∈{1,2}

,

the elements c
(µ)
i1j1

and c
(µ)
i1j2

, c
(µ)
i2j1

, c
(µ)
i2j2

are fixed, µ = 1, . . . , 16, and moreover{
c
(l)
i1j1

, c
(l)
i1j2

, c
(l)
i2j1

, c
(l)
i2j2

}
�=
{
c
(t)
i1j1

, c
(t)
i1j2

, c
(t)
i2j1

, c
(t)
i2j2

}
for l �= t.

Putting, for example,

c
(1)
i1j1

= c
(1)
i1j2

= c
(1)
i2j1

= c
(1)
i2j2

= 0,

we get τ = 0 and |γ0,1| =
(
2N−3 − 1

) (
2N−3 − 2

)
, since the total number of ways to place

nonzero elements of the field GF (2) to the first column of the matrix c(1) ∈ γ0,1 is 2N−3−1
in the case of c

(1)
i1j1

= c
(1)
i2j1

= c
(1)
i3j1

= 0, while the same number is 2N−3 − 2 for the second

column linearly independent of the first. Similarly, putting c
(2)
i1j1

= c
(2)
i2j1

= c
(2)
i1j2

= 0 and

c
(2)
i2j2

= 1, we get τ = 1 and |γ0,2| =
(
2N−3 − 1

)
2N−3. Now we evaluate the sum

∑
c∈γ0

(−1)τ =
16∑

µ=1

∑
c∈γ0,µ

(−1)τ = 2.
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The latter two equalities together with (40) prove (39). Substituting (37)–(39) into (36)
we get (35).

5. Auxiliary results for the proof of Theorem 2

Lemma 1. Let R(s) = {(i1, j1), . . . , (is, js)} and j1 = · · · = js, s ≥ 1. Then

tR(s) = −2−N P (N − 1)
P (m)

.

Proof. It follows from the hypothesis of Lemma 1 that {j1, . . . , js} = {µ} for some µ ∈ J .
Thus the parameter k defined in Theorem 1 is equal to 1. Taking (6) and Remark 2 into
account we complete the proof of Lemma 1. �

Lemma 2. If the set R(s) satisfies (8), then
1) for s1 = s2 = 0 and s12 ≥ 1

(41) tR(s) = −2−N P (N − 1)
P (m)

;

2) for s12 = 0, s1 ≥ 1, and s2 ≥ 1

(42) tR(s) = 2−2N+1 P (N − 2)
P (m)

;

3) for s12 ≥ 1 and s1 + s2 ≥ 1 relation (42) holds for tR(s).

Proof. Let s1 = s2 = 0 and s12 ≥ 1. Then we apply (6) for k = 2 and obtain

(43) tR(s) = −2−2N+1 P (N − 2)
P (m)

∑
c∈γ0

(−1)τ

where γ0 is the set of all nonzero N -dimensional columns c, c = (ci1)i∈I , in the field
GF (2) such that

⊕
i∈ζ12

ci1 = τ = 0. Hence

(44)
∑
c∈γ0

(−1)τ = |γ0|.

Further we show that

(45) |γ0| = 2N−1 − 1.

Indeed, since
⊕

i∈ζ12
ci1 = 0, the positions i ∈ ζ12 of the vector c contain an even number

of unit elements of the field GF (2); the positions i ∈ I \ ζ12 may contain arbitrary
elements of the field GF (2) such that the N -dimensional column is nonzero. Thus

|γ0| = 2s12−12N−s12 − 1 = 2N−1 − 1

and relation (45) is proved. Relation (41) follows from (43)–(45).
Now let s12 = 0, s1 ≥ 1, and s2 ≥ 1. Using relation (6) for k = 2 we prove equality (43)

where γ0 is the set of all nonzero N -dimensional columns c, c = (ci1)i∈I , in the field GF (2)
such that

(46)
⊕

i∈ζ(µ2)

ci1 = 0;

τ =
⊕

i∈ζ(µ1)
ci1. Since equality (46) holds for 2s2−1 families of elements of the field

GF (2), the number of cases where the parameter τ is equal to 0 is the same as that
where τ is equal to 1, namely 2s1−1. The positions i ∈ I \ ζ12 of the column c ∈ γ0 can
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be filled in an arbitrary way except for the case where the N -dimensional column is zero.
Therefore

(47)
∑
c∈γ0

(−1)τ =
∑

c∈γ+
0

1 −
∑

c∈γ−
0

1 = −1

where γ+
0 , γ+

0 ⊆ γ0 (γ−
0 , γ−

0 ⊆ γ0) is the collection of all columns of the set γ0 such that
τ = 0 (τ = 1). To get (47) we used the equalities∑

c∈γ+
0

1 = 2s2−12s1−12N−(s1+s2) − 1 = 2N−2 − 1

and
∑

c∈γ−
0

1 = 2N−2.
Substituting (47) into (43) we prove (42) for s12 = 0, s1 ≥ 1, and s2 ≥ 1.
Finally we prove the last statement of Lemma 2. Let s12 ≥ 1 and s1 + s2 ≥ 1.

Then relation (43) holds with γ0 the collection of all nonzero N -dimensional columns c,
c = (ci1)i∈I , in the field GF (2) such that

(48)

⎛
⎝⊕

i∈ζ12

ci1

⎞
⎠⊕

⎛
⎝ ⊕

i∈ζ(µ2)\ζ12

ci1

⎞
⎠ = 0;

τ =
(⊕

i∈ζ12
ci1

)
⊕
(⊕

i∈ζ(µ1)\ζ12
ci1

)
. It follows from (48) that the number of unit

elements among the terms of the sum
⊕

i∈ζ12
ci1 is even if and only if the number of

unit elements among the terms of the sum
⊕

i∈ζ(µ2)\ζ12
ci1 is even. This easily implies

relation (47). Indeed,

(49)
∑

c∈γ+
0

1 = b1 + b2

if s12 ≥ 1, s1 ≥ 1, and s2 ≥ 1 where b1 (b2) is the total number of ways to place elements
of the field GF (2) to a nonzero N -dimensional column such that the number of unit
elements in positions i ∈ ζ12, i ∈ ζ(µ1) \ ζ12, i ∈ ζ(µ2) \ ζ12 is even (odd). Obviously

b1 = 2s1−12s12−12s2−12N−(s1+s2+s12) − 1 = 2N−3 − 1, b2 = 2N−3.

Therefore

(50)
∑

c∈γ+
0

1 = 2N−2 − 1.

In a similar way we obtain

(51)
∑

c∈γ−
0

1 = 2N−2.

Relations (50) and (51) imply (47) for s12 ≥ 1, s1 ≥ 1, and s2 ≥ 1.
If s12 ≥ 1, s1 = 0, and s2 ≥ 1, then

b1 = 2s2−12s12−12N−(s2+s12) − 1 = 2N−2 − 1

and b2 = 0 in equality (49), whence

(52)
∑

c∈γ+
0

1 = 2N−2 − 1.

Similarly we obtain

(53)
∑

c∈γ−
0

1 = 2N−2.
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Relations (52) and (53) prove equality (47) for s12 ≥ 1, s1 = 0, and s2 ≥ 1.
Finally if s12 ≥ 1, s1 ≥ 1, and s2 = 0, then

b1 = 2s1−12s12−12N−(s1+s12) − 1 = 2N−2 − 1, b2 = 0

in equality (49) and thus
∑

c∈γ+
0

1 = 2N−2 − 1. The equality
∑

c∈γ−
0

1 = 2N−2 is easy
to prove. Therefore (47) is proved for s12 ≥ 1 and s1 + s2 ≥ 1. It follows from (47) and
(43) that (42) holds for s12 ≥ 1 and s1 + s2 ≥ 1. Lemma 2 is proved. �
Lemma 3. If condition (1) holds, then

f (0) (xij , i ∈ I, j ∈ J) =
P (N)
P (m)

for N ≥ n ≥ 1.

Lemma 3 is proved in [2].

6. Proof of Theorem 2

Statement (i) of Theorem 2 can easily be proved by equality (2) for n = 1 and by
Lemmas 1 and 3.

We prove statement (ii). Using representation (2) and (4) we find for N ≥ 2 and n = 2
that

P{χ(A) = 1} = f (0) (xij , i ∈ I, j ∈ {1, 2})

+
N∑

s=1

εs
∑

1≤i1<···<is≤N

⎡
⎣ 2∑

j=1

tRj(s)

s∏
q=1

xiqj + εstR3(s)

2∏
j=1

s∏
q=1

xiqj

⎤
⎦

+
2N∑
s=2

εs
∑ ∑

1≤i1<···<is1≤N

1

×
∑

1≤i′1<···<i′s12
≤N

i′. /∈{i1,...,is1}

∑
1≤i′′1 <···<i′′s2

≤N

i′′. /∈{i1,...,is1 ,i′1,...,i′s12
}

tR4(s)

(
s1∏

q=1

xiq1

)

×

⎛
⎝ 2∏

j=1

s12∏
q=1

xi′qj

⎞
⎠( s2∏

q=1

xi′′q 2

)

(54)

in view of condition (1) where

Rj(s) = {(i1, j), . . . , (is, j)} , j ∈ {1, 2},
R3(s) = {(i1, 1), . . . , (is, 1), (i1, 2), . . . , (is, 2)} ,

R4(s) =
{
(i1, 1), . . . , (is1 , 1), (i′1, 1), . . . , (i′s12

, 1), (i′1, 2), . . . , (i′s12
, 2), (i′′1 , 2), . . . , (i′′s2

, 2)
}

.

Taking Lemma 1 into account we obtain for j ∈ {1, 2} that

(55) tRj(s) = −2−N
(
1 − 2−N+1

)
.

Lemma 2 implies that

(56) tR3(s) = −2−N
(
1 − 2−N+1

)
and

(57) tR4(s) = 2−2N+1.

By Lemma 3

(58) f (0) (xij , i ∈ I, j ∈ {1, 2}) =
(
1 − 2−N

) (
1 − 2−N+1

)
.
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Substituting (55)–(58) into (54) we prove statement (ii). Theorem 2 is proved. �

7. Concluding remarks

Theorems 1 and 2 together with results of [1]–[3] allow one to find the distribution of
the rank of an (N × n) matrix whose entries are independent nonidentically distributed
random variables assuming values in the field GF (2). Matrices with nonidentically dis-
tributed entries for which the difference between their distributions and the equiprobable
distribution on GF (2) is small appear not only in the theory ([4]–[6]) but also in some
applied problems (say, when testing the quality of pseudorandom (0, 1)-sequences). One
of the results in [4]–[6] is that, under certain conditions, the limit distribution (as n → ∞)
of the rank of a random Boolean matrix is invariant and coincides with that in the case
of the equiprobable distribution on GF (2). At the same time, the use of the asymptotic
results for finding the probability that a finite Boolean random matrix has maximal rank
leads to a certain error, which can be “remedied” by using the results presented in this
paper.
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