SERIES EXPANSION FOR THE PROBABILITY THAT A RANDOM BOOLEAN MATRIX IS OF MAXIMAL RANK

UDC 519.21
V. V. MASOL

Abstract

We consider a random $(N \times n)$ matrix in the field $G F(2)$ and establish relations that allow one to find the coefficients of the expansion of the probability that a given matrix is of maximal rank into a series in powers of a small parameter. We give explicit formulas for the cases of $n=1$ and $n=2, N \geq n$.

1. Setting of the problem

Let $\mathbf{A}=\left(a_{i j}\right)_{i \in I, j \in J}$ be a matrix with N rows and n columns, where $I=\{1, \ldots, N\}$ and $J=\{1, \ldots, n\}$. The entries of the matrix \mathbf{A} are independent random variables that assume values in the field $G F(2)$ and have distribution

$$
\begin{equation*}
\mathrm{P}\left\{a_{i j}=0\right\}=1-\mathrm{P}\left\{a_{i j}=1\right\}=2^{-1}\left(1+\varepsilon x_{i j}\right) \tag{1}
\end{equation*}
$$

where ε is a fixed small number, $\varepsilon \geq 0$, and $x_{i j} \in(-\infty, \infty)$. Denote by $\chi(\mathbf{A})$ the following indicator:

$$
\chi(\mathbf{A})= \begin{cases}1 & \text { if the matrix } \mathbf{A} \text { contains } n \text { linearly independent (in the field } G F(2) \text {) } \\ & N \text {-dimensional columns; } \\ 0, & \text { otherwise }\end{cases}
$$

Using relation (1), the probability of the event $\{\chi(\mathbf{A})=1\}$ can be represented in the following form:

$$
\begin{equation*}
\mathrm{P}\{\chi(\mathbf{A})=1\}=\sum_{s=0}^{n N} \varepsilon^{s} f^{(s)}\left(x_{i j}, i \in I, j \in J\right) \tag{2}
\end{equation*}
$$

where the coefficients $f^{(s)}\left(x_{i j}, i \in I, j \in J\right), s \geq 0$, are real numbers that do not depend on ε.

Let $m=N-n$. In the case of $m=0$, a recurrence relation with respect to n is found in [1] to evaluate $f^{(s)}\left(x_{i j}, i \in I, j \in J\right), s \geq 0$; for the case of

$$
\begin{equation*}
m \geq 0 \tag{3}
\end{equation*}
$$

the coefficients $f^{(s)}\left(x_{i j}, i \in I, j \in J\right), s \in\{0,1,2\}$, are found in 2] in an explicit form by applying different approaches depending on $s \in\{0,1,2\}$.

The aim of this paper is to find a relation that allows one to evaluate the coefficients

$$
f^{(s)}\left(x_{i j}, i \in I, j \in J\right), \quad s \geq 1
$$

of the expansion of the probability that a random $(N \times n)$ matrix in the field $G F(2)$ is of the maximal rank n into a series in terms of powers of a small parameter ε. Our

[^0]methods are based on the results obtained in [3] and on the explicit expansion for the cases of $n=1$ and $n=2$.

2. Main Results

In what follows we need some notation. Let $R(s)$ be a set of s distinct elements,

$$
R(s)=\left\{\left(i_{1}, j_{1}\right), \ldots,\left(i_{s}, j_{s}\right)\right\}
$$

and let $t_{R(s)}$ be the coefficient of $x_{i_{1} j_{1}} \cdots x_{i_{s} j_{s}}$ in the representation of

$$
f^{(s)}\left(x_{i j}, i \in I, j \in J\right)
$$

$t_{R(s)}=\operatorname{coef}_{x_{i_{1} j_{1}} \cdots x_{i_{s} j_{s}}} f^{(s)}\left(x_{i j}, i \in I, j \in J\right)$ (here and in what follows the parameters i and j with or without superscripts are elements of the sets I and J, respectively, namely $i \in I$ and $j \in J)$. Then

$$
\begin{equation*}
f^{(s)}\left(x_{i j}, i \in I, j \in J\right)=\sum t_{R(s)} x_{i_{1} j_{1}} \cdots x_{i_{s} j_{s}} \tag{4}
\end{equation*}
$$

where the sum is taken over all different sets $R(s)$.
Remark 1. In what follows we assume that the equality $R_{1}(s)=R_{2}(s)$ holds if and only if the set $R_{1}(s)$ can be obtained from $R_{2}(s)$ by permuting the elements $\left(i_{\nu}^{(2)}, j_{\nu}^{(2)}\right)$, $\nu=1,2, \ldots, s$, and vice versa, where

$$
R_{t}(s)=\left\{\left(i_{1}^{(t)}, j_{1}^{(t)}\right), \ldots,\left(i_{s}^{(t)}, j_{s}^{(t)}\right)\right\}, \quad t=1,2
$$

Put

$$
\begin{equation*}
\zeta(j)=\{i:(i, j) \in R(s)\}, \quad j \in J \tag{5}
\end{equation*}
$$

Theorem 1. Let a collection $\left\{j_{1}, \ldots, j_{s}\right\}$ contain k elements of J, that is,

$$
\left\{j_{1}, \ldots, j_{s}\right\}=\left\{\mu_{1}, \ldots, \mu_{k}\right\}, \quad 1 \leq \mu_{1}<\cdots<\mu_{k} \leq n
$$

If conditions (1) and (3) hold, then

$$
\begin{equation*}
t_{R(s)}=-2^{-(N-1) k-1} \frac{P(N-k)}{P(m)} \sum_{c \in \gamma_{0}}(-1)^{\tau} \tag{6}
\end{equation*}
$$

where

$$
P(N)=\prod_{\nu=1}^{N}\left(1-2^{-\nu}\right), \quad P(0)=1
$$

γ_{0} is the set of matrices $c, c=\left(c_{i j}\right)_{i \in I, j \in\{1, \ldots, k-1\}}$, in the field $G F(2)$ such that the rank of c is $k-1$ and c satisfy the following condition:

$$
\begin{equation*}
\bigoplus_{i \in \zeta\left(\mu_{k}\right)} c_{i j}=0, \quad j \in\{1, \ldots, k-1\} \tag{7}
\end{equation*}
$$

Here $\tau=\bigoplus_{\omega=1}^{k-1} \bigoplus_{i \in \zeta\left(\mu_{\omega}\right)} c_{i \omega}$ and the symbol \oplus stands for the operation of summation in the field $G F(2)$.

Remark 2. In what follows we assume that $\sum_{c \in \gamma_{0}}(-1)^{\tau} \equiv 1$ if $k=1$.
Let $R(s)=\left\{\left(i_{1}, j_{1}\right), \ldots,\left(i_{s}, j_{s}\right)\right\}$ and

$$
\begin{equation*}
\left\{j_{1}, \ldots, j_{s}\right\}=\left\{\mu_{1}, \mu_{2}\right\} \tag{8}
\end{equation*}
$$

$\mu_{1}, \mu_{2} \in J, \mu_{1} \neq \mu_{2}$, and $s \geq 2$. Put $\zeta_{12}=\zeta\left(\mu_{1}\right) \cap \zeta\left(\mu_{2}\right), s_{q}=\left|\zeta\left(\mu_{q}\right) \backslash \zeta_{12}\right|, q=1,2$, and $s_{12}=\left|\zeta_{12}\right|$.

Theorem 2. (i) If $N \geq 1, n=1$, and condition (11) holds, then

$$
\mathrm{P}\{\chi(\mathbf{A})=1\}=1-2^{-N}-2^{-N} \sum_{s=1}^{N} \varepsilon^{s} \sum_{1 \leq i_{1}<\cdots<i_{s} \leq N} \prod_{q=1}^{s} x_{i_{q} 1}
$$

(ii) if $N \geq 2, n=2$, and condition (1) holds, then

$$
\begin{aligned}
& \mathrm{P}\{\chi(\mathbf{A})=1\}=\left(1-2^{-N}\right)\left(1-2^{-N+1}\right) \\
& -2^{-N}\left(1-2^{-N+1}\right) \sum_{s=1}^{N} \varepsilon^{s} \sum_{1 \leq i_{1}<\cdots<i_{s} \leq N}\left[\sum_{j=1}^{2} \prod_{q=1}^{s} x_{i_{q} j}+\varepsilon^{s} \prod_{j=1}^{2} \prod_{q=1}^{s} x_{i_{q} j}\right] \\
& +2^{-2 N+1} \sum_{s=2}^{2 N-1} \varepsilon^{s} \sum \sum_{1 \leq i_{1}<\cdots<i_{s_{1}} \leq N} 1 \\
& \times \sum_{\substack{1 \leq i_{1}^{\prime}<\cdots<i_{s_{12}}^{\prime} \leq N \\
i^{\prime} \notin\left\{i_{1}, \ldots, i_{s}\right\}}} \sum_{\substack{1 \leq i_{1}^{\prime \prime}<\cdots<i_{s_{2}}^{\prime \prime} \leq N \\
i^{\prime \prime} \notin\left\{i_{1} \\
i_{2} \\
i_{s}\right.}}\left(\prod_{q=1}^{s_{1}} x_{i_{q} 1}\right) \\
& \times\left(\prod_{j=1}^{2} \prod_{q=1}^{s_{12}} x_{i_{q}^{\prime} j}\right)\left(\prod_{q=1}^{s_{2}} x_{i_{q}^{\prime \prime 2}}\right)
\end{aligned}
$$

where the sum is taken over all nonnegative integers s_{1}, s_{12}, and s_{2} such that $s_{1}+2 s_{12}$ $+s_{2}=s$ and either $s_{12}=0, s_{1} \geq 1, s_{2} \geq 1$ or $s_{12} \geq 1, s_{1}+s_{2} \geq 1$; we also put $\prod_{q=1}^{0} \equiv 1$.

3. Proof of Theorem 1

It is proved in 3 that

$$
\begin{equation*}
t_{R(s)}=2^{-n N} \sum_{\alpha_{0}^{\prime}, \alpha_{0}^{\prime} \subseteq \alpha_{0}} \sum_{c \in \alpha_{0}^{\prime}}(-1)^{\sigma} \tag{9}
\end{equation*}
$$

where α_{0} is the collection of $(N \times n)$ matrices c of rank n in the field $G F(2)$ such that $c=\left(c_{i j}\right)_{i \in I, j \in J}$ and $\bigoplus_{i \in \zeta\left(\mu_{k}\right)} c_{i j}=0, j \in\left\{\mu_{1}, \ldots, \mu_{k-1}\right\} ; \sigma=\bigoplus_{q=1}^{s} c_{i_{q} j_{q}} ; \alpha_{0}^{\prime}$ is the subset of $\alpha_{0}, \alpha_{0}^{\prime} \subseteq \alpha_{0}$, consisting of matrices $c \in \alpha_{0}$ such that $c^{(l)}$ and $c^{(t)}$ belong to α_{0}^{\prime} if and only if $c_{j}^{(l)}=c_{j}^{(t)}$ for $j \in\left\{\mu_{1}, \ldots, \mu_{k}\right\}, l \neq t ; c_{j}^{(\xi)}$ is the column j of the matrix $c^{(\xi)}$ for $c^{(\xi)} \in \alpha_{0}, j \in J, \xi=1,2, \ldots$.

It is easy to see that

$$
\begin{equation*}
\sum_{c \in \alpha_{0}^{\prime}}(-1)^{\sigma}=(-1)^{\sigma} B_{k} \tag{10}
\end{equation*}
$$

for an arbitrary collection $\alpha_{0}^{\prime}, \alpha_{0}^{\prime} \subseteq \alpha_{0}$, where B_{k} is the cardinality of the set α_{0}^{\prime}, $B_{k}=\left|\alpha_{0}^{\prime}\right|$. Relations (9) and (10) imply that

$$
\begin{equation*}
t_{R(s)}=2^{-n N} B_{k} \sum_{c \in \beta_{0}}(-1)^{\sigma} \tag{11}
\end{equation*}
$$

where β_{0} is the set of $(N \times k)$ matrices $c, c=\left(c_{i j}\right)_{i \in I, j \in\{1, \ldots, k\}}$, of rank k in the field $G F(2)$ satisfying condition (7).

Now we show that

$$
\begin{equation*}
\sum_{c \in \beta_{0}}(-1)^{\sigma}=-2^{k-1} \sum_{c \in \gamma_{0}}(-1)^{\tau} \tag{12}
\end{equation*}
$$

Indeed, the sum on the left-hand side of (12) can be rewritten as follows:

$$
\begin{equation*}
\sum_{c \in \beta_{0}}(-1)^{\sigma}=\sum_{\beta_{0}^{\prime}, \beta_{0}^{\prime} \subseteq \beta_{0}} \sum_{c \in \beta_{0}^{\prime}}(-1)^{\sigma} \tag{13}
\end{equation*}
$$

where β_{0}^{\prime} is a subset of $\beta_{0}, \beta_{0}^{\prime} \subseteq \beta_{0}$, consisting of matrices $c \in \beta_{0}$ such that both $c^{(l)}$ and $c^{(t)}$ belong to β_{0}^{\prime} if and only if $c_{j}^{(l)}=c_{j}^{(t)}$ for $j=1,2, \ldots, k-1, l \neq t, c^{(\xi)} \in \beta_{0}$, $\xi=1,2, \ldots$. Fix a set β_{0}^{\prime}. Let the sum $\sum_{c \in \beta_{0}^{\prime}}(-1)^{\sigma}$ contain μ_{0} terms $(-1)^{\tau}$ and let μ_{0}^{-} be the number of changes of the sign $(-1)^{\tau}$ in this sum. It is clear that $\mu_{0}=\gamma_{1} \gamma_{2}-\nu$ and $\mu_{0}^{-}=\gamma_{1}^{-} \gamma_{2}-\nu^{-}$where $\gamma_{1}\left(\gamma_{1}^{-}\right)$is the total number of ways to place an even (odd) number of nonzero elements of the field $G F(2)$ to those positions of the column k in the matrix $c, c \in \beta_{0}^{\prime}$, whose indices belong to the set $\zeta\left(\mu_{k}\right)$. The numbers $\nu\left(\nu^{-}\right)$are defined similarly to the numbers $\gamma_{1}\left(\gamma_{1}^{-}\right)$under the additional condition that the elements of the column k are linear combinations of the corresponding elements in the first $k-1$ columns of the matrix $c ; \gamma_{2}$ is the total number of ways to place elements of the field $G F(2)$ to the positions $I \backslash \zeta\left(\mu_{k}\right)$ of the N-dimensional column k in the matrix $c, c \in \beta_{0}^{\prime}$. It is proved in 3 that $\gamma_{1}=\gamma_{1}^{-}=2^{\left|\zeta\left(\mu_{k}\right)\right|-1}, \gamma_{2}=2^{N-\left|\zeta\left(\mu_{k}\right)\right|}, \nu=2^{k-1}$, and $\nu^{-}=0$. Thus $\mu_{0}-\mu_{0}^{-}=-2^{k-1}$, whence

$$
\begin{equation*}
\sum_{\beta_{0}^{\prime}, \beta_{0}^{\prime} \subseteq \beta_{0}} \sum_{c \in \beta_{0}^{\prime}}(-1)^{\sigma}=-2^{k-1} \sum_{c \in \gamma_{0}}(-1)^{\tau} . \tag{14}
\end{equation*}
$$

Relations (13) and (14) prove (12).
Now we show that

$$
\begin{equation*}
B_{k}=\left(2^{N}-2^{k}\right) \cdots\left(2^{N}-2^{n-1}\right), \quad k \geq 1 \tag{15}
\end{equation*}
$$

Indeed, according to the definition of B_{k}

$$
\begin{equation*}
B_{k}=\prod_{l=1}^{n-k} b_{\delta_{l}} \tag{16}
\end{equation*}
$$

where $1 \leq \delta_{1}<\cdots<\delta_{n-k} \leq n, \delta_{1}, \ldots, \delta_{n-k} \notin\left\{\mu_{1}, \ldots, \mu_{k}\right\}$, and $b_{\delta_{l}}$ is the total number of ways to place elements of the field $G F(2)$ to an N-dimensional column such that this column is linearly independent of the columns with indices $\mu_{1}, \ldots, \mu_{k}, \delta_{1}, \ldots, \delta_{l-1}$. It is clear that

$$
b_{\delta_{l}}=2^{N}-2^{k+l-1}, \quad l=1,2, \ldots, n-k
$$

Taking into account (16) we get (15). Using relations (11), (12), and (15) we prove (6) by an obvious calculation. Theorem 1 is proved.

4. Applications of Theorem 1

Example 1. If $s=1$, then

$$
\begin{equation*}
f^{(s)}\left(x_{i j}, i \in I, j \in J\right)=-2^{-N} \frac{P(N-1)}{P(m)} \sum_{i=1}^{N} \sum_{j=1}^{n} x_{i j} . \tag{17}
\end{equation*}
$$

Indeed, if $s=1$, then

$$
\begin{equation*}
f^{(s)}\left(x_{i j}, i \in I, j \in J\right)=\sum_{i=1}^{N} \sum_{j=1}^{n} t_{R(s)} x_{i j} \tag{18}
\end{equation*}
$$

where $R(s)=\{(i, j)\}$. The parameter k defined in Theorem is equal to $k=1$, thus we find from (6) and Remark 2 that

$$
\begin{equation*}
t_{R(s)}=-2^{-N} \frac{P(N-1)}{P(m)} \tag{19}
\end{equation*}
$$

Hence (18) and (19) imply (17).

Example 2. If $s=2$, then

$$
\begin{align*}
& f^{(s)}\left(x_{i j}, i \in I, j \in J\right) \\
&=-2^{-N} \frac{P(N-1)}{P(m)}\left(\sum_{j=1}^{n} \sum_{1 \leq i_{1}<i_{2} \leq N} x_{i_{1} j} x_{i_{2} j}+\sum_{i=1}^{N} \sum_{1 \leq j_{1}<j_{2} \leq n} x_{i j_{1}} x_{i j_{2}}\right) \tag{20}\\
&+2^{-2 N+1} \frac{P(N-2)}{P(m)} \sum_{1 \leq j_{1}<j_{2} \leq n} \sum_{i_{1} \neq i_{2}} x_{i_{1} j_{1}} x_{i_{2} j_{2}} .
\end{align*}
$$

Indeed, it follows from (4) that

$$
\begin{align*}
f^{(s)}\left(x_{i j}, i \in I, j \in J\right)= & \sum_{j=1}^{n} \sum_{1 \leq i_{1}<i_{2} \leq N} t_{R_{1}(s)} x_{i_{1} j} x_{i_{2} j}+\sum_{i=1}^{N} \sum_{1 \leq j_{1}<j_{2} \leq n} t_{R_{2}(s)} x_{i j_{1}} x_{i j_{2}} \tag{21}\\
& +\sum_{1 \leq j_{1}<j_{2} \leq n} \sum_{i_{1} \neq i_{2}} t_{R_{3}(s)} x_{i_{1} j_{1}} x_{i_{2} j_{2}}
\end{align*}
$$

where $R_{1}(s)=\left\{\left(i_{1}, j\right),\left(i_{2}, j\right)\right\}, R_{2}(s)=\left\{\left(i, j_{1}\right),\left(i, j_{2}\right)\right\}$, and $R_{3}(s)=\left\{\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right)\right\}$. Using (6) for $k=1$ and Remark 2 we get

$$
\begin{equation*}
t_{R_{1}(s)}=-2^{-N} \frac{P(N-1)}{P(m)} \tag{22}
\end{equation*}
$$

Now we check the relations

$$
\begin{align*}
& t_{R_{2}(s)}=-2^{-N} \frac{P(N-1)}{P(m)} \tag{23}\\
& t_{R_{3}(s)}=2^{-2 N+1} \frac{P(N-2)}{P(m)} \tag{24}
\end{align*}
$$

It follows from (6) for $k=2$ that

$$
\begin{equation*}
t_{R_{2}(s)}=-2^{-2 N+1} \frac{P(N-2)}{P(m)} \sum_{c \in \gamma_{0}}(-1)^{\tau} \tag{25}
\end{equation*}
$$

where γ_{0} is the set of all N-dimensional columns $c, c=\left(c_{\nu 1}\right)_{\nu \in I}$, of rank 1 in the field $G F(2)$ such that $c_{i 1}=0$. Since $\tau=\bigoplus_{\nu \in \zeta\left(j_{1}\right)} c_{\nu 1}=c_{i 1}=0$, we have $\tau=0$. Thus

$$
\begin{equation*}
\sum_{c \in \gamma_{0}}(-1)^{\tau}=\left|\gamma_{0}\right|=2^{N-1}-1 \tag{26}
\end{equation*}
$$

Using (25) and (26) we get (23).
Further, relation (6) for $k=2$ implies

$$
\begin{equation*}
t_{R_{3}(s)}=-2^{-2 N+1} \frac{P(N-2)}{P(m)} \sum_{c \in \gamma_{0}}(-1)^{\tau} \tag{27}
\end{equation*}
$$

where γ_{0} is the set of all N-dimensional columns $c, c=\left(c_{\nu 1}\right)_{\nu \in I}$, of rank 1 in the field $G F(2)$ such that $c_{i_{2} 1}=0$. Note that $\tau=c_{i_{1} 1}$. Hence

$$
\sum_{c \in \gamma_{0}}(-1)^{\tau}=\sum_{c \in \gamma_{0}^{+}} 1-\sum_{c \in \gamma_{0}^{-}} 1
$$

where $\gamma_{0}^{+} \subseteq \gamma_{0}\left(\gamma_{0}^{-} \subseteq \gamma_{0}\right)$ and $c_{i_{1} 1}=0\left(c_{i_{1} 1}=1\right)$ for any column $c \in \gamma_{0}^{+}\left(c \in \gamma_{0}^{-}\right)$.
It is clear that $\left|\gamma_{0}^{+}\right|=2^{N-2}-1$ and $\left|\gamma_{0}^{-}\right|=2^{N-2}$. Thus

$$
\begin{equation*}
\sum_{c \in \gamma_{0}}(-1)^{\tau}=-1 \tag{28}
\end{equation*}
$$

Substituting (28) into (27) we obtain (24). Relations (21)-(24) prove (20).
Example 3. If $s=n N$, then

$$
\begin{equation*}
f^{(s)}\left(x_{i j}, i \in I, j \in J\right)=-2^{-N} \frac{P(N-1)}{P(m)} \prod_{i=1}^{N} \prod_{j=1}^{n} x_{i j} . \tag{29}
\end{equation*}
$$

Indeed, (4) implies

$$
\begin{equation*}
f^{(s)}\left(x_{i j}, i \in I, j \in J\right)=t_{R(s)} \prod_{i=1}^{N} \prod_{j=1}^{n} x_{i j} \tag{30}
\end{equation*}
$$

where $R(s)=\{(i, j), i \in I, j \in J\}$. Now we show that

$$
\begin{equation*}
t_{R(s)}=-2^{-N} \frac{P(N-1)}{P(m)} \tag{31}
\end{equation*}
$$

Using (6) for $k=n$ we obtain

$$
\begin{equation*}
t_{R(s)}=-2^{(N-1) n-1} \sum_{c \in \gamma_{0}}(-1)^{\tau} \tag{32}
\end{equation*}
$$

where γ_{0} is the set of all $(N \times(n-1))$ matrices $c, c=\left(c_{i j}\right)_{i \in I, j \in\{1, \ldots, n-1\}}$, of rank $n-1$ in the field $G F(2)$ such that

$$
\bigoplus_{i=1}^{N} c_{i j}=0, \quad j \in\{1,2, \ldots, n-1\}
$$

This implies that $\tau=0$, since

$$
\tau=\bigoplus_{\omega=1}^{n-1} \bigoplus_{i \in \zeta(\omega)} c_{i \omega}=\bigoplus_{\omega=1}^{n-1} \bigoplus_{i=1}^{N} c_{i \omega}=0
$$

Therefore

$$
\begin{equation*}
\sum_{c \in \gamma_{0}}(-1)^{\tau}=\left|\gamma_{0}\right| \tag{33}
\end{equation*}
$$

Now we prove that

$$
\begin{equation*}
\left|\gamma_{0}\right|=\left(2^{N-1}-1\right) \cdots\left(2^{N-1}-2^{n-2}\right) \tag{34}
\end{equation*}
$$

Indeed, $\left|\gamma_{0}\right|=b_{1} \cdots b_{n-1}$ where $b_{q}(q=1,2, \ldots, n-1)$ is the total number of ways to place elements of the field $G F(2)$ to an N-dimensional column such that the number of unit elements in the column is even and the column does not linearly depend on the columns with indices $1,2, \ldots, q-1$. It is clear that

$$
b_{q}=2^{N-1}-2^{q-1}, \quad q=1,2, \ldots, n-1
$$

This implies (34). Relations (33) and (34) allow one to represent (32) in the form of (31). Substituting (31) into (30) we get (29).

Example 4. If $s=3$, then

$$
\begin{align*}
& f^{(s)}\left(x_{i j}, i \in I, j \in J\right) \\
& =-2^{-N} \frac{P(N-1)}{P(m)}\left(\sum_{1 \leq i_{1}<i_{2}<i_{3} \leq N} \sum_{j=1}^{n} \prod_{l=1}^{3} x_{i_{l} j}+\sum_{1 \leq j_{1}<j_{2}<j_{3} \leq n} \sum_{i=1}^{N} \prod_{l=1}^{3} x_{i j_{l}}\right) \\
& +2^{-2 N+1} \frac{P(N-2)}{P(m)}\left\{\sum_{1 \leq j_{1}<j_{2} \leq n} 1\right. \\
& \times\left[\sum _ { 1 \leq i _ { 1 } < i _ { 2 } \leq N } \left(x_{i_{1} j_{1}} x_{i_{1} j_{2}} x_{i_{2} j_{1}}+x_{i_{1} j_{1}} x_{i_{1} j_{2}} x_{i_{2} j_{2}}\right.\right. \\
& \left.+x_{i_{1} j_{1}} x_{i_{2} j_{1}} x_{i_{2} j_{2}}+x_{i_{1} j_{2}} x_{i_{2} j_{1}} x_{i_{2} j_{2}}\right) \\
& \left.+\sum_{1 \leq i_{1}<i_{2}<i_{3} \leq N} \sum_{\left(\nu_{1}, \nu_{2}, \nu_{3}\right) \in \pi\left(j_{1}, j_{2}\right)} x_{i_{1} \nu_{1}} x_{i_{2} \nu_{2}} x_{i_{3} \nu_{3}}\right] \tag{35}\\
& +\sum_{1 \leq j_{1}<j_{2}<j_{3} \leq n} \sum_{1 \leq i_{1}<i_{2} \leq N} 1 \\
& \left.\times \sum_{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \in \pi\left(i_{1}, i_{2}\right)} x_{\lambda_{1} j_{1}} x_{\lambda_{2} j_{2}} x_{\lambda_{3} j_{3}}\right\} \\
& -2^{-3 N+3} \frac{P(N-3)}{P(m)} \sum_{1 \leq j_{1}<j_{2}<j_{3} \leq n} \sum_{1 \leq i_{1}<i_{2}<i_{3} \leq N} \\
& \times \sum_{\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right) \in \pi\left(j_{1}, j_{2}, j_{3}\right)} x_{i_{1} \gamma_{1}} x_{i_{2} \gamma_{2}} x_{i_{3} \gamma_{3}}
\end{align*}
$$

where $\pi\left(j_{1}, j_{2}\right)\left(\pi\left(j_{1}, j_{2}, j_{3}\right)\right)$ is the set of all permutations of the sets $\left\{j_{1}, j_{1}, j_{2}\right\}$ and $\left\{j_{2}, j_{2}, j_{1}\right\}\left(\left\{j_{1}, j_{2}, j_{3}\right\}\right)$.

Indeed, relation (4) implies for $s=3$ that

$$
\begin{align*}
f^{(s)}\left(x_{i j},\right. & , i \in I, j \in J) \\
= & \sum_{1 \leq i_{1}<i_{2}<i_{3} \leq N} \sum_{j=1}^{n} t_{R_{11}(s)} \prod_{l=1}^{3} x_{i_{l} j}+\sum_{1 \leq j_{1}<j_{2}<j_{3} \leq n} \sum_{i=1}^{N} t_{R_{12}(s)} \prod_{l=1}^{3} x_{i j_{l}} \\
& +\sum_{1 \leq j_{1}<j_{2} \leq n} \sum_{1 \leq i_{1}<i_{2} \leq N}\left(t_{R_{211}(s)} x_{i_{1} j_{1}} x_{i_{1} j_{2}} x_{i_{2} j_{1}}+t_{R_{212}(s)} x_{i_{1} j_{1}} x_{i_{1} j_{2} x_{2}} x_{i_{2} j_{2}}\right. \\
& \left.+t_{R_{213}(s)} x_{i_{1} j_{1}} x_{i_{2} j_{1}} x_{i_{2} j_{2}}+t_{R_{214}(s)} x_{i_{1} j_{2}} x_{i_{2} j_{1}} x_{i_{2} j_{2}}\right) \\
& +\sum_{1 \leq j_{1}<j_{2} \leq n} \sum_{1 \leq i_{1}<i_{2}<i_{3} \leq N} \sum_{q=1}^{6} t_{R_{22 q}(s)} x_{i_{1} \nu_{1}^{(q)}} x_{i_{2} \nu_{2}^{(q)}} x_{i_{3} \nu_{3}^{(q)}} \tag{36}\\
& +\sum_{1 \leq j_{1}<j_{2}<j_{3} \leq n} \sum_{1 \leq i_{1}<i_{2} \leq N} \sum_{q=1}^{6} t_{R_{23 q}(s)} x_{\lambda_{1}^{(q)} j_{1}} x_{\lambda_{2}^{(q)} j_{2}} x_{\lambda_{3}^{(q)} j_{3}} \\
& +\sum_{1 \leq j_{1}<j_{2}<j_{3} \leq n} \sum_{1 \leq i_{1}<i_{2}<i_{3} \leq N} \sum_{q=1}^{6} t_{R_{3 q}(s)} x_{i_{1} \gamma_{1}^{(q)}} x_{i_{2} \gamma_{2}^{(q)}} x_{i_{3} \gamma_{3}^{(q)}}
\end{align*}
$$

where

$$
R_{11}(s)=\left\{\left(i_{1}, j\right),\left(i_{2}, j\right),\left(i_{3}, j\right)\right\}, \quad R_{12}(s)=\left\{\left(i, j_{1}\right),\left(i, j_{2}\right),\left(i, j_{3}\right)\right\}
$$

$$
\begin{array}{cc}
R_{211}(s)=\left\{\left(i_{1}, j_{1}\right),\left(i_{1}, j_{2}\right),\left(i_{2}, j_{1}\right)\right\}, & R_{212}(s)=\left\{\left(i_{1}, j_{1}\right),\left(i_{1}, j_{2}\right),\left(i_{2}, j_{2}\right)\right\}, \\
R_{213}(s)=\left\{\left(i_{1}, j_{1}\right),\left(i_{2}, j_{1}\right),\left(i_{2}, j_{2}\right)\right\}, \quad & R_{214}(s)=\left\{\left(i_{1}, j_{2}\right),\left(i_{2}, j_{1}\right),\left(i_{2}, j_{2}\right)\right\}, \\
R_{22 q}(s)=\left\{\left(i_{1}, \nu_{1}^{(q)}\right),\left(i_{2}, \nu_{2}^{(q)}\right),\left(i_{3}, \nu_{3}^{(q)}\right)\right\}, & \left(\nu_{1}^{(q)}, \nu_{2}^{(q)}, \nu_{3}^{(q)}\right) \in \pi\left(j_{1}, j_{2}\right), \\
R_{23 q}(s)=\left\{\left(\lambda_{1}^{(q)}, j_{1}\right),\left(\lambda_{2}^{(q)}, j_{2}\right),\left(\lambda_{3}^{(q)}, j_{3}\right)\right\}, & \left(\lambda_{1}^{(q)}, \lambda_{2}^{(q)}, \lambda_{3}^{(q)}\right) \in \pi\left(i_{1}, i_{2}\right), \\
R_{3 q}(s)=\left\{\left(i_{1}, \gamma_{1}^{(q)}\right),\left(i_{2}, \gamma_{2}^{(q)}\right),\left(i_{3}, \gamma_{3}^{(q)}\right)\right\}, & \left(\gamma_{1}^{(q)}, \gamma_{2}^{(q)}, \gamma_{3}^{(q)}\right) \in \pi\left(j_{1}, j_{2}, j_{3}\right), \\
q=1, \ldots, 6 .
\end{array}
$$

To check the relations

$$
\begin{gather*}
t_{R_{1 q}(s)}=-2^{-N} \frac{P(N-1)}{P(m)}, \quad q=1,2, \tag{37}\\
t_{R_{2 l q}(s)}=2^{-2 N+1} \frac{P(N-2)}{P(m)} \tag{38}
\end{gather*}
$$

for $l=1$ and $q=1, \ldots, 4$ or $l \in\{2,3\}$ and $q=1, \ldots, 6$ we apply Theorem 1 and proceed in the same way as in the proof of (22)-(24).

Let us prove that

$$
\begin{equation*}
t_{R_{3 q}(s)}=-2^{-3 N+3} \frac{P(N-3)}{P(m)}, \quad q=1, \ldots, 6 \tag{39}
\end{equation*}
$$

Let $R_{31}(s)=\left\{\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right),\left(i_{3}, j_{3}\right)\right\}$. Then relation (6) implies for $k=3$ that

$$
\begin{equation*}
t_{R_{31}(s)}=-2^{-3 N+2} \frac{P(N-3)}{P(m)} \sum_{c \in \gamma_{0}}(-1)^{\tau} \tag{40}
\end{equation*}
$$

where γ_{0} is the set of all $(N \times 2)$ matrices $c, c=\left(c_{i j}\right)_{i \in I, j \in\{1,2\}}$, of rank 2 in the field $G F(2)$ such that $c_{i_{3} j_{1}}=c_{i_{3} j_{2}}=0$. Note that $\tau=c_{i_{1} j_{1}} \oplus c_{i_{2} j_{2}}$. We represent the set γ_{0} as the union

$$
\gamma_{0}=\bigcup_{\mu=1}^{16} \gamma_{0, \mu}
$$

of disjoint subsets $\gamma_{0, \mu} \subseteq \gamma_{0}, \mu=1, \ldots, 16$, such that for any matrix $c^{(\mu)} \in \gamma_{0, \mu}$,

$$
c^{(\mu)}=\left(c_{i j}^{(\mu)}\right)_{i \in I, j \in\{1,2\}},
$$

the elements $c_{i_{1} j_{1}}^{(\mu)}$ and $c_{i_{1} j_{2}}^{(\mu)}, c_{i_{2} j_{1}}^{(\mu)}, c_{i_{2} j_{2}}^{(\mu)}$ are fixed, $\mu=1, \ldots, 16$, and moreover

$$
\left\{c_{i_{1} j_{1}}^{(l)}, c_{i_{1} j_{2}}^{(l)}, c_{i_{2} j_{1}}^{(l)}, c_{i_{2} j_{2}}^{(l)}\right\} \neq\left\{c_{i_{1} j_{1}}^{(t)}, c_{i_{1} j_{2}}^{(t)}, c_{i_{2} j_{1}}^{(t)}, c_{i_{2} j_{2}}^{(t)}\right\}
$$

for $l \neq t$.
Putting, for example,

$$
c_{i_{1} j_{1}}^{(1)}=c_{i_{1} j_{2}}^{(1)}=c_{i_{2} j_{1}}^{(1)}=c_{i_{2} j_{2}}^{(1)}=0,
$$

we get $\tau=0$ and $\left|\gamma_{0,1}\right|=\left(2^{N-3}-1\right)\left(2^{N-3}-2\right)$, since the total number of ways to place nonzero elements of the field $G F(2)$ to the first column of the matrix $c^{(1)} \in \gamma_{0,1}$ is $2^{N-3}-1$ in the case of $c_{i_{1} j_{1}}^{(1)}=c_{i_{2} j_{1}}^{(1)}=c_{i_{3} j_{1}}^{(1)}=0$, while the same number is $2^{N-3}-2$ for the second column linearly independent of the first. Similarly, putting $c_{i_{1} j_{1}}^{(2)}=c_{i_{2} j_{1}}^{(2)}=c_{i_{1} j_{2}}^{(2)}=0$ and $c_{i_{2} j_{2}}^{(2)}=1$, we get $\tau=1$ and $\left|\gamma_{0,2}\right|=\left(2^{N-3}-1\right) 2^{N-3}$. Now we evaluate the sum

$$
\sum_{c \in \gamma_{0}}(-1)^{\tau}=\sum_{\mu=1}^{16} \sum_{c \in \gamma_{0}, \mu}(-1)^{\tau}=2
$$

The latter two equalities together with (40) prove (39). Substituting (37)-(39) into (36) we get (35).

5. Auxiliary results for the proof of Theorem 2

Lemma 1. Let $R(s)=\left\{\left(i_{1}, j_{1}\right), \ldots,\left(i_{s}, j_{s}\right)\right\}$ and $j_{1}=\cdots=j_{s}, s \geq 1$. Then

$$
t_{R(s)}=-2^{-N} \frac{P(N-1)}{P(m)}
$$

Proof. It follows from the hypothesis of Lemma 1 that $\left\{j_{1}, \ldots, j_{s}\right\}=\{\mu\}$ for some $\mu \in J$. Thus the parameter k defined in Theorem 1 is equal to 1 . Taking (6) and Remark 2 into account we complete the proof of Lemma 1

Lemma 2. If the set $R(s)$ satisfies (8), then

1) for $s_{1}=s_{2}=0$ and $s_{12} \geq 1$

$$
\begin{equation*}
t_{R(s)}=-2^{-N} \frac{P(N-1)}{P(m)} \tag{41}
\end{equation*}
$$

2) for $s_{12}=0, s_{1} \geq 1$, and $s_{2} \geq 1$

$$
\begin{equation*}
t_{R(s)}=2^{-2 N+1} \frac{P(N-2)}{P(m)} \tag{42}
\end{equation*}
$$

3) for $s_{12} \geq 1$ and $s_{1}+s_{2} \geq 1$ relation (42) holds for $t_{R(s)}$.

Proof. Let $s_{1}=s_{2}=0$ and $s_{12} \geq 1$. Then we apply (6) for $k=2$ and obtain

$$
\begin{equation*}
t_{R(s)}=-2^{-2 N+1} \frac{P(N-2)}{P(m)} \sum_{c \in \gamma_{0}}(-1)^{\tau} \tag{43}
\end{equation*}
$$

where γ_{0} is the set of all nonzero N-dimensional columns $c, c=\left(c_{i 1}\right)_{i \in I}$, in the field $G F(2)$ such that $\bigoplus_{i \in \zeta_{12}} c_{i 1}=\tau=0$. Hence

$$
\begin{equation*}
\sum_{c \in \gamma_{0}}(-1)^{\tau}=\left|\gamma_{0}\right| \tag{44}
\end{equation*}
$$

Further we show that

$$
\begin{equation*}
\left|\gamma_{0}\right|=2^{N-1}-1 \tag{45}
\end{equation*}
$$

Indeed, since $\bigoplus_{i \in \zeta_{12}} c_{i 1}=0$, the positions $i \in \zeta_{12}$ of the vector c contain an even number of unit elements of the field $G F(2)$; the positions $i \in I \backslash \zeta_{12}$ may contain arbitrary elements of the field $G F(2)$ such that the N-dimensional column is nonzero. Thus

$$
\left|\gamma_{0}\right|=2^{s_{12}-1} 2^{N-s_{12}}-1=2^{N-1}-1
$$

and relation (45) is proved. Relation (41) follows from (43)- (45).
Now let $s_{12}=0, s_{1} \geq 1$, and $s_{2} \geq 1$. Using relation (6) for $k=2$ we prove equality (43) where γ_{0} is the set of all nonzero N-dimensional columns $c, c=\left(c_{i 1}\right)_{i \in I}$, in the field $G F(2)$ such that

$$
\begin{equation*}
\bigoplus_{i \in \zeta\left(\mu_{2}\right)} c_{i 1}=0 \tag{46}
\end{equation*}
$$

$\tau=\bigoplus_{i \in \zeta\left(\mu_{1}\right)} c_{i 1}$. Since equality (46) holds for $2^{s_{2}-1}$ families of elements of the field $G F(2)$, the number of cases where the parameter τ is equal to 0 is the same as that where τ is equal to 1 , namely $2^{s_{1}-1}$. The positions $i \in I \backslash \zeta_{12}$ of the column $c \in \gamma_{0}$ can
be filled in an arbitrary way except for the case where the N-dimensional column is zero. Therefore

$$
\begin{equation*}
\sum_{c \in \gamma_{0}}(-1)^{\tau}=\sum_{c \in \gamma_{0}^{+}} 1-\sum_{c \in \gamma_{0}^{-}} 1=-1 \tag{47}
\end{equation*}
$$

where $\gamma_{0}^{+}, \gamma_{0}^{+} \subseteq \gamma_{0}\left(\gamma_{0}^{-}, \gamma_{0}^{-} \subseteq \gamma_{0}\right)$ is the collection of all columns of the set γ_{0} such that $\tau=0(\tau=1)$. To get (47) we used the equalities

$$
\sum_{c \in \gamma_{0}^{+}} 1=2^{s_{2}-1} 2^{s_{1}-1} 2^{N-\left(s_{1}+s_{2}\right)}-1=2^{N-2}-1
$$

and $\sum_{c \in \gamma_{0}^{-}} 1=2^{N-2}$.
Substituting (47) into (43) we prove (42) for $s_{12}=0, s_{1} \geq 1$, and $s_{2} \geq 1$.
Finally we prove the last statement of Lemma 2, Let $s_{12} \geq 1$ and $s_{1}+s_{2} \geq 1$. Then relation (43) holds with γ_{0} the collection of all nonzero N-dimensional columns c, $c=\left(c_{i 1}\right)_{i \in I}$, in the field $G F(2)$ such that

$$
\begin{equation*}
\left(\bigoplus_{i \in \zeta_{12}} c_{i 1}\right) \oplus\left(\bigoplus_{i \in \zeta\left(\mu_{2}\right) \backslash \zeta_{12}} c_{i 1}\right)=0 \tag{48}
\end{equation*}
$$

$\tau=\left(\bigoplus_{i \in \zeta_{12}} c_{i 1}\right) \oplus\left(\bigoplus_{i \in \zeta\left(\mu_{1}\right) \backslash \zeta_{12}} c_{i 1}\right)$. It follows from (48) that the number of unit elements among the terms of the sum $\bigoplus_{i \in \zeta_{12}} c_{i 1}$ is even if and only if the number of unit elements among the terms of the sum $\bigoplus_{i \in \zeta\left(\mu_{2}\right) \backslash \zeta_{12}} c_{i 1}$ is even. This easily implies relation (47). Indeed,

$$
\begin{equation*}
\sum_{c \in \gamma_{0}^{+}} 1=b_{1}+b_{2} \tag{49}
\end{equation*}
$$

if $s_{12} \geq 1, s_{1} \geq 1$, and $s_{2} \geq 1$ where $b_{1}\left(b_{2}\right)$ is the total number of ways to place elements of the field $G F(2)$ to a nonzero N-dimensional column such that the number of unit elements in positions $i \in \zeta_{12}, i \in \zeta\left(\mu_{1}\right) \backslash \zeta_{12}, i \in \zeta\left(\mu_{2}\right) \backslash \zeta_{12}$ is even (odd). Obviously

$$
b_{1}=2^{s_{1}-1} 2^{s_{12}-1} 2^{s_{2}-1} 2^{N-\left(s_{1}+s_{2}+s_{12}\right)}-1=2^{N-3}-1, \quad b_{2}=2^{N-3}
$$

Therefore

$$
\begin{equation*}
\sum_{c \in \gamma_{0}^{+}} 1=2^{N-2}-1 \tag{50}
\end{equation*}
$$

In a similar way we obtain

$$
\begin{equation*}
\sum_{c \in \gamma_{0}^{-}} 1=2^{N-2} \tag{51}
\end{equation*}
$$

Relations (50) and (51) imply (47) for $s_{12} \geq 1, s_{1} \geq 1$, and $s_{2} \geq 1$.
If $s_{12} \geq 1, s_{1}=0$, and $s_{2} \geq 1$, then

$$
b_{1}=2^{s_{2}-1} 2^{s_{12}-1} 2^{N-\left(s_{2}+s_{12}\right)}-1=2^{N-2}-1
$$

and $b_{2}=0$ in equality (49), whence

$$
\begin{equation*}
\sum_{c \in \gamma_{0}^{+}} 1=2^{N-2}-1 \tag{52}
\end{equation*}
$$

Similarly we obtain

$$
\begin{equation*}
\sum_{c \in \gamma_{0}^{-}} 1=2^{N-2} \tag{53}
\end{equation*}
$$

Relations (52) and (53) prove equality (47) for $s_{12} \geq 1, s_{1}=0$, and $s_{2} \geq 1$.
Finally if $s_{12} \geq 1, s_{1} \geq 1$, and $s_{2}=0$, then

$$
b_{1}=2^{s_{1}-1} 2^{s_{12}-1} 2^{N-\left(s_{1}+s_{12}\right)}-1=2^{N-2}-1, \quad b_{2}=0
$$

in equality (49) and thus $\sum_{c \in \gamma_{0}^{+}} 1=2^{N-2}-1$. The equality $\sum_{c \in \gamma_{0}^{-}} 1=2^{N-2}$ is easy to prove. Therefore (47) is proved for $s_{12} \geq 1$ and $s_{1}+s_{2} \geq 1$. It follows from (47) and (43) that (42) holds for $s_{12} \geq 1$ and $s_{1}+s_{2} \geq 1$. Lemma 2 is proved.

Lemma 3. If condition (1) holds, then

$$
f^{(0)}\left(x_{i j}, i \in I, j \in J\right)=\frac{P(N)}{P(m)}
$$

for $N \geq n \geq 1$.
Lemma 3 is proved in [2].

6. Proof of Theorem 2

Statement (i) of Theorem 2 can easily be proved by equality (2) for $n=1$ and by Lemmas 1 and 3

We prove statement (ii). Using representation (2) and (4) we find for $N \geq 2$ and $n=2$ that

$$
\begin{align*}
\mathrm{P}\{\chi(\mathbf{A})=1\}= & f^{(0)}\left(x_{i j}, i \in I, j \in\{1,2\}\right) \\
& +\sum_{s=1}^{N} \varepsilon^{s} \sum_{1 \leq i_{1}<\cdots<i_{s} \leq N}\left[\sum_{j=1}^{2} t_{R_{j}(s)} \prod_{q=1}^{s} x_{i_{q} j}+\varepsilon^{s} t_{R_{3}(s)} \prod_{j=1}^{2} \prod_{q=1}^{s} x_{i_{q} j}\right] \\
& +\sum_{s=2}^{2 N} \varepsilon^{s} \sum_{\substack{1 \leq i_{1}<\cdots<i_{s_{1}} \leq N}} \sum_{\substack{1 \leq i_{1}^{\prime}<\cdots<i_{s}^{\prime} \\
i_{12}^{\prime} \notin\left\{i_{1}, \ldots, i_{s_{1}}\right\}}} \sum_{\substack{1 \leq i_{1}^{\prime \prime}<\cdots<i_{s_{2}^{\prime}}^{\prime \prime} \leq N \\
i^{\prime \prime} \notin\left\{i_{1}, \ldots, i_{s_{1}}, i_{1}^{\prime}, \ldots, i_{s_{12}}^{\prime}\right\}}} t_{R_{4}(s)}\left(\prod_{q=1}^{s_{1}} x_{i_{q} 1}\right) \tag{54}\\
& \times\left(\prod_{j=1}^{2} \prod_{q=1}^{s_{12}} x_{i_{q}^{\prime} j}\right)\left(\prod_{q=1}^{s_{2}} x_{i_{q}^{\prime \prime 2}}\right)
\end{align*}
$$

in view of condition (1) where

$$
\begin{gathered}
R_{j}(s)=\left\{\left(i_{1}, j\right), \ldots,\left(i_{s}, j\right)\right\}, \quad j \in\{1,2\} \\
R_{3}(s)=\left\{\left(i_{1}, 1\right), \ldots,\left(i_{s}, 1\right),\left(i_{1}, 2\right), \ldots,\left(i_{s}, 2\right)\right\} \\
R_{4}(s)=\left\{\left(i_{1}, 1\right), \ldots,\left(i_{s_{1}}, 1\right),\left(i_{1}^{\prime}, 1\right), \ldots,\left(i_{s_{12}}^{\prime}, 1\right),\left(i_{1}^{\prime}, 2\right), \ldots,\left(i_{s_{12}}^{\prime}, 2\right),\left(i_{1}^{\prime \prime}, 2\right), \ldots,\left(i_{s_{2}}^{\prime \prime}, 2\right)\right\} .
\end{gathered}
$$

Taking Lemma 1 into account we obtain for $j \in\{1,2\}$ that

$$
\begin{equation*}
t_{R_{j}(s)}=-2^{-N}\left(1-2^{-N+1}\right) \tag{55}
\end{equation*}
$$

Lemma 2 implies that

$$
\begin{equation*}
t_{R_{3}(s)}=-2^{-N}\left(1-2^{-N+1}\right) \tag{56}
\end{equation*}
$$

and

$$
\begin{equation*}
t_{R_{4}(s)}=2^{-2 N+1} \tag{57}
\end{equation*}
$$

By Lemma 3

$$
\begin{equation*}
f^{(0)}\left(x_{i j}, i \in I, j \in\{1,2\}\right)=\left(1-2^{-N}\right)\left(1-2^{-N+1}\right) \tag{58}
\end{equation*}
$$

Substituting (55)-(58) into (54) we prove statement (ii). Theorem 2 is proved.

7. Concluding remarks

Theorems [1 and 2 together with results of [1]-3] allow one to find the distribution of the rank of an $(N \times n)$ matrix whose entries are independent nonidentically distributed random variables assuming values in the field $G F(2)$. Matrices with nonidentically distributed entries for which the difference between their distributions and the equiprobable distribution on $G F(2)$ is small appear not only in the theory ([4]-6]) but also in some applied problems (say, when testing the quality of pseudorandom $(0,1)$-sequences). One of the results in 4]-6] is that, under certain conditions, the limit distribution (as $n \rightarrow \infty$) of the rank of a random Boolean matrix is invariant and coincides with that in the case of the equiprobable distribution on $G F(2)$. At the same time, the use of the asymptotic results for finding the probability that a finite Boolean random matrix has maximal rank leads to a certain error, which can be "remedied" by using the results presented in this paper.

Bibliography

1. V. V. Masol, An expansion in a small parameter of the probability that a random determinant in the field $G F(2)$ is 1, Teor. Imovirnost. Mat. Stat. 64 (2001), 102-105; English transl. in Theor. Probability Math. Statist. 64 (2002), 117-121. MR1922957(2003g:60015)
2. V. V. Masol, Explicit representation of some coefficients in the expansion of the random matrix rank distribution in the field $G F(2)$, Theory Stoch. Process. 6(22) (2000), no. 3-4, 122-126.
3. V. V. Masol, Expansion in terms of powers of small parameter of the maximum rank distribution of a random Boolean matrix, Kibernetika i Sistemnyi Analiz 38 (2002), no. 6, 176-180; English transl. in Cybernetics and Systems Analysis 38 (2003), no. 6, 938-942.
4. I. N. Kovalenko, Invariance theorems for random Boolean matrices Kibernetika 11 (1975), no. 5, 138-152; English transl. in Cybernetics 11 (1976), no. 5, 818-834. MR 0458552 (56:16752)
5. A. A. Levitskaya, Invariance theorems for a system of random linear equations over an arbitrary finite ring, Dokl. AN SSSR 263 (1982), no. 2, 289-291; English transl. in Soviet Math. Dokl. 25 (1982), 340-342. MR0650154 (83g:60046)
6. C. Cooper, On the rank of random matrices, Random Structures and Algorithms 16 (2000), no. 2, 209-232. MR 1742352 (2000k:15050)

Department of Probability Theory and Mathematical Statistics, Mechanics and Mathematics Faculty, National Taras Shevchenko University, Academician Glushkov Avenue 6, Kyiv 03127, UkRaine

E-mail address: vicamasol@pochtamt.ru

[^0]: 2000 Mathematics Subject Classification. Primary 60C05, 15A52, 15A03.

