SERIES EXPANSION METHODS FOR STRONGLY INTERACTING LATTICE MODELS

JAAN OITMAA, CHRIS HAMER AND WEIHONG ZHENG

School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia.

Contents

	Prefa	ce	<i>page</i> viii
1	Introduction		1
	1.1	Lattice models in theoretical physics	1
	1.2	Examples and applications	1
	1.3	The important questions	10
	1.4	Series expansion methods	14
	1.5	Analysis of series	19
2	High- and low-temperature expansions for the Ising model		26
	2.1	Introduction	26
	2.2	Graph generation and computation of lattice constants	30
	2.3	A case study: high-temperature susceptibility for the Ising	
		model on the simple cubic lattice	36
	2.4	Low-temperature expansion	39
	2.5	Reducing the number of graphs	42
	2.6	More on Ising models	47
3	Models with continuous symmetry and the free graph expansion		53
	3.1	Introduction	53
	3.2	The free graph expansion	55
	3.3	The plane rotator $(N = 2)$ model	66
	3.4	Analysis of the $N = 2$ susceptibility	69
	3.5	Discussion	72
4	Quantum spin models at $T = 0$		74
	4.1	Introduction	74
	4.2	Linked cluster expansions	' 74
	4.3	An example: the transverse field Ising model in one dimension	n 78
	4.4	Magnetization and susceptibility	82
	4.5	One-particle excitations	84
	4.6	The transverse field Ising model in two and three dimensions	92

∼.

5	Quant	um antiferromagnets at $T = 0$	99
	5.1	Introduction: simple antiferromagnets	99
	5.2	Dimerized systems and quantum phase transitions	106
	5.3	The $J_1 - J_2$ square lattice antiferromagnet	112
	5.4	Other systems	118
	5.5	Open questions	122
6	Correl	ators, dynamical structure factors and multi-particle excitations	124
	6.1	Introduction	124
	6.2	Two-spin correlators for the Heisenberg	
		antiferromagnet	125
	6.3	Dynamical and static structure factors	126
	6.4	Two-particle and multi-particle excitations	134
	6.5	Two-particle structure factors	145
	6.6	Summary and further work	147
7	Quant	um spin models at finite temperature	150
	7.1	Introduction	150
	7.2	Derivation of high-temperature series	151
	7.3	The cubic (SC and BCC) lattices	165
	7.4	Generalizations	168
	7.5	Perturbation expansions at finite T	169
	7.6	Further applications	175
	7.7	Fitting to experimental data	176
8	Electronic models		179
	8.1	Introduction	179
	8.2	The Hubbard model	180
	8.3	The $t-J$ model	197
	8.4	Further topics and possibilities	209
9	Review of lattice gauge theory		211
	9.1	Quantum chromodynamics	211
	9.2	The path integral approach to field theory	214
	9.3	Euclidean lattice gauge theory	217
	9.4	Confinement and phase structure on the lattice	219
	9.5	Renormalization theory and the continuum limit	221
	9.6	Monte Carlo simulations	222
	9.7	Including fermions on the lattice	225
	9.8	The Hamiltonian lattice formulation	227
	9.9	Conclusions	228
10	Series	expansions for lattice gauge models	230
	10.1	Strong coupling expansions for Euclidean lattice	
		Yang–Mills theory	230

vi

.

	Contents	vii		
10.2 Strong co	upling expansions in Hamiltonian Yang–Mills theory	244		
10.3 Models w	ith dynamical fermions	251		
10.4 The <i>t</i> -exp	ansion	259		
10.5 Conclusio	ons	263		
11 Additional topic	S	265		
11.1 Disordere	d systems	265		
11.2 Other seri	es expansion methods	274		
Appendix 1: some g	graph theory ideas	283		
Appendix 2: the 'pegs in holes' algorithm				
Appendix 3: free gr	aph expansion technicalities	288		
Appendix 4: matrix perturbation theory				
Appendix 5: matrix block diagonalization				
Appendix 6: the moment-cumulant expansion				
Appendix 7: integral equation approach to the two-particle				
Schröd	linger equation	299		
Appendix 8: corresp	pondences between field theory and			
statisti	cal mechanics	304		
Appendix 9: compu	iter programs	307		
Bibliography				
Index		324		

.