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Series Expansion of Wide-Sense Stationary 
Random Processes 

ELIAS MASRY, MEMBER, IEEE, BEDE LIU, MEMBER, IEEE, AND KENNETH STEIGLITZ, MEMBER, IEEE 

Absfracf-This paper presents a general approach to the deri- 
vation of series expansions of second-order wide-sense stationary 
mean-square continuous random process valid over an infinite-time 
interval. The coefficients of the expansion are orthogonal and con- 
vergence is in the mean-square sense. The method of derivation is 
based on the integral representation of such processes. It covers both 
the periodic and the aperiodic cases. A constructive procedure is 
presented to obtain an explicit expansion for a given spectral distri- 
bution. 

I. INTRODUCTION 

s 

ERIES expansions of random processes are useful 
in various areas of communication theory and also 
provide some insight into the structure of random 

processes. Quite generally we write 

x(t) = c r&&(t) (1) 

where the convergence is usually taken to be in the sto- 
chastic mean. 

Various constraints may be imposed on x(t), p,(t), 
and the coefficients r,. In the familiar Karhunen-Loeve 
expansion, {p,(t) ) is a set of square integrable and orthog- 
onal functions and t,he coefficients r,, are orthogonal. It is 
known that +~~(t) is a solution of the linear integral equa- 
tion 

s 

1 
P(t) = x Wt, MT) dT; Itl < T (2) 

-T 

where R(t, 7) is the covariance function of x(t). The 
Karhunen-Loeve expansion may fail when the interval 
(- T, T) is infinite if the kernel R(t, T) does not behave 
properly. For example, for R(t, T) = e-‘“-” the spectrum 
for the integral equation 

s 

T 
p(t) = X e-‘“-“(p(T) dT (3) --T 

is not discrete [l]. In fact, eieL is a solution for the eigen- 
value X = fr (1 + (Y”). Thus every X > 3 is an eigenvalue. 

Expansions other than the Karhunen-Loeve are also 
known under different assumptions. If the process is 
bandlimited, we have the well-known sampling theorem 
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x(t) = 2 x(nl’) “‘“,‘;““,~ ; (4) -m e WC 

where the spectral density s(X) vanishes outside of the 
interval [- w,, 0~1. The coefficients x(n T) are orthogonal 
if and only if the s(X) is constant over [-w,, w,]. Papoulis 
[2] derived an interesting expansion for nonperiodic 
processes with the p*&(t) being trigonometric functions and 
the r, orthogonal. Recently Campbell [3] gave an expansion 
for random processes whose spectral densities vanish 
outside of the interval [-a, a]. It includes the sampling 
theorem as a special case.’ 

This paper presents a general approach to the deriva- 
tion of series expansions of second-order wide-sense sta- 
tionary mean-square continuous random process valid 
over an infinite-time interval. The coefficients (r,) will be 
orthogonal and convergence will be in the mean-square 
sense. The method of derivation is based on the integral 
representation of such processes. It covers both the 
periodic and aperiodic cases. A constructive procedure 
is presented to obtain an explicit expansion for a given 
spectral distribution. Campbell’s result, which was derived 
in a different manner, may be regarded as a special case 
of our expansion. 

II. GENERAL DERIVATION OFTHEEXPANSION 

Let x(t, w), t E R’, be a second-order wide-sense sta- 
tionary mean-square continuous random process with 
autocorrelation function R(T). Then [4] x(t, w) admits the 
spectral representation 

m 
x(t, w) = s eith d{ (X, w), E Idi- (A, w> I:-= dS 04 (5) -m 

if and only if 

R(t) = [I eith dS (A). (6) 

Let H(z) be the Hilbert space spanned by the set of ran- 
dom variables {xt(w); t E RI) with inner product defined 
by (E(w), V(W)) = E{~v*}, t, rl E H(x). Furthermore, let 
L2 = L’(dX (A); - a, a) denote the space of all complex- 
valued functions f(x) satisfying 

i From the published abstract of Campbell’s paper [3], it ap- 
peared that the expansion is for bandlimited processes only. How- 
ever, upon receiving his full manuscript, it became clear that the 
interval [-a, a] need not be finite. 
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It can be shown that [4] the Hilbert spaces H(x) and L2 
are isomorphic.’ For each t, ei”’ and x(t, w) are correspond- 
ing element’s in L2 and H(x), respectively. 
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111. EXPANSION IN THE REPROINJCING 
KERNEL RILBEIW SPICE 

For every non-negative-definite kernel K(t, s) defined 
on R’ X R’, there exists a reproducing kernel Hilbert 
space H(K) such that 

K( ., s) E H(K); for all s E R’; (16.1) 

For each f E EI(K), we have the inner product 

(fC.1, KC., s))m = I(s). (16.2) 

It follows that the set of functions (K( ., s); s E R’} span 
H(K). Denote by H(R*) the reproducing kernel Hilbert 
space with the reproducing kernel R*(t, T). Then H(R*) 
is isomorphic to H(z) [5] with R*(., 7) E H(R*) and 
~(7, w) E W(x) corresponding elements for each 7. It can 
be shown from this isomorphism and (16.1) that the set 
of functions (a*,(t) } is orthonormal and complete in 
H(R*). Hence R(t, T) admits a series representation 

Theoyenz 2 

Let x(t, W) be a second-order wide-sense stationary 
mean-square continuous random process with autocor- 
relation function R(7). Let the set of functions (f%(X)] 
be orthonormal and complete in L’. Then x(t, w) admits 
an orthonormal series expansion 

x(4 u) = C an(tbn(w) (7) 

xv-here 

s 

m 
r,(w) = fnod dS- 0, w); E[r&] = Bnk (8) -m 

and 

40 = j-1 e”““/:(A) dX (A). (9) 

ProoJ: The space H(z) is separable since the process is 
mean-square continuous [4]. Hence by the isomorphism, 
L” is separable. For each t, the function eitX admits the 
series expansion 

where 

and 

e itX = c a&M~> 

a,,(t) = S_:, e”““fn*(A) dS (A) 

(10) 

(11) 

s 
m 

dX (A) = C ja,(t)]“. 
-m 

The isomorphism between L” and H(a) then implies 

x(4 w> = C a,(t)m(~) (12) 

where 

s 

cc 
r,(w) = fnW &- (A, ~1 (13) -m 

and the set (Y,(W) ) is orthonormal and complete in H(x). 
Q.E.D. 

Define the process ys(t, a) as a linear transformation of 
44 ~1 by 

dt, ~1 = [l ei”f&> di+ (A, ~1. (14) 

The random variable T,(W) can then be written as 

r,(w) = Y,(O, u> (15) 

which may be interpreted formally as the output at time 
t = 0 of a linear system with transfer function f%(X) sub- 
jected to the input x(t, u). 

2 By an isomorphism we mean a one-to-one onto inner product 
preserving transformation. 

R*(t - T) = c an(T)a (17.1) 

By putting 7 = 0 in (17.1) we have 

R(t) = C a*,(O)a,(O. 

IV. DERIVATION OF COMPLETE ORTTIOSORMM, 
SETS IN L2 

From the results of previous sections, we can obtain 
an explicit series expansion of a random process provided 
an orthonormal basis in L2 can be constructed for the given 
spectral distribution. 

Let the spectral distribution X(h) be normalized so that 
X(X+) = S(X). By the spectral decomposition of S(X) 

SW = SlO) + X20) 

where X,(h) is a step function which includes all the jumps 
of S(X) and X,(X) is the continuous part that is the sum 
of the absolutely continuous component and the con- 
tinuous singular component of X(X). Correspondingly, 
there exists a decomposition of the process x(t, w) into 
the mutually orthogonal processes 

x(t, cd) = Xl& cd) + x2(t) w). 

The representation of x1(& 0) by an orthonormal series 
can be carried out as follows. Denote the points of jumps 
of X(X) by {A,} and let elk = X(X,) - X(X,-). Then [6] 

(18) 
where 

-3 1 T 
= a* 1.i.m. -- 

T-em 2T s 

(19) 
x(t, u)eeithr dt. 

--T 

We consider now the expansion of the process x2(t, w). 
If X,(X) is constant over a measurable subset A C R’, 
we can define the Hilbert space, isomorphic to H(x2), as 
L’(dX (A); R’ - A). Let E be the set over which X,(X) 
is strictly increasing. 
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Theorem 2? where T,(W) is given by the stochastic integral 

Let the spectral distribution X,(X) of the process x2(4 w) 
be continuous and strictly increasing over set E. Then 
the set of functions defined by 

I‘ 

lr 
r,(w) = --li 

x(t) $$ dt 
R 

and a,(t) is given by 

u,(t) = cr;+eint. fn(X) = $==== einFcx’; 

where 

n = 0, fl, f2, . .. (20) 

s 

A 
d& (0) 

F(X) = 2a inf BR ; 2 R, = [ dS, (0) (21) E 

is orthonormal and complete in L’(dS, (X); E). 
Proof: For orthonormality, let y = F(X). Then 

L fn@)fZ(X) dS, (A) = $ 1” eicnvk)’ dy = L. (2% 

For completeness, let f(x) be an arbitrary function in 
L2(dSz (X); E) and consider the error fad - -& c C.e’.“‘“‘~2 dS, (X). (23) 

Let y = F(X). Then there exists an inverse function 
X = F-‘(y), which is also continuous and strictly increas- 
ing. Substituting in (23) results in 

1 
5, s 

2n 1 dz f@‘-‘(y)) - c CneinV12 dy. (24) 

Since f(F-‘(y)) belongs to L2(dy; 0, 2~) and the set of 
functions {ein”j is complete in L’(dy; 0, 27r), the integral 
(24) can be made as small as desired by proper choice of 
C, (see also references [3] and [7]). Q.E.D. 

For bandlimited processes, we may use as f=(X) the set 
of functions obtained by orthonormalizing the basic 
polynomials 1, X, h2, . . . . It is known [8] that these are 
complete in L’(dS (X); a, b). 

V. EXAMPLES 

We illustrate the theorems with some examples. 

A. The Periodic Case 

Let the process x(t, w) be periodic with period 2a. The 
spectral distribution S(X) is then given by the step func- 
tion 

S(X) = c a,. 
VL<lXl 

The set of functions defined by 

(25) 

is orthonormal and complete in L’(dS (A); - m, a). 
Hence, by theorem 1, x(t, w) admits an orthonormal series 
expansion 

(26) 

Therefore expansion (26) can be written in the form 
m 

x(t, w) = C c&,(W)eint. 
n=-co 

The expansion of the autocorrelation R(t) is clearly given 
by 

(28) 

In the following, x(t, w) is assumed to be real with 
spectral density s(X). 

B. Low-Pass Processes 

The set {fn(X) ) can be taken to be the polynomials ob- 
tained by orthonormalixing 1, X, X2, . 1 . with respect to 
the weight function s(X). For the particular case 

s(X) = 
1 

4; 1x1 I 1 
(29) 

0; otherwise 

f%(X) is the nth Legendre polynomial 

and from (9) 

n = O,l, .a. (30) 

u,(t) = drr(n + 3) (-i)TiJn+$(t) 

where J”(x) is the vth order Bessel function of the first 
kind. The random variable T,(W) is given by the stochastic 
integral 

r74-4 = s 

m 
x(t, w)u,(t) dt. (31) -m 

It is easy to verify that integral (31) converges in the 
mean to the random variable defined by (8). 

Note that the sampling representation for the above 
bandlimited process can be obtained from theorem 1 
with f%(h) = einrX; n = 0, fl, ~2, . . . . 

C. Nonbandlimited Processes 

This is the more interesting case. Assume first 

s(X) = e-l”. 

Define 

1 

5 -j$ [e-“X”]u(X) ; 7220 
f&9 = . (32) 

f-n-1(- A) ; n < 0. 
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as the nth Laguerre polynomial. The a,(t) can be cal- 
culated easily. 

VI. THE DISCRETE CASE 

Let (Z,,(W) } be a second-order wide-sense stationary 
discrete-time random process. Then (Z,(W)) admits the 
spectral representation 

_I__. 

I 

(4)” 
dt) = 

(1 - ityl ’ n>O 
(33) 

(it)-“-’ ____. 
(1 + it>-* ’ n < 0. 

Since f%(x) is a polynomial, r,(o) can be written as a 
linear combination of the derivatives of s(t, w). 

T,(W) = 2 Cn,kXCk)(O, cd). (34) k=O 

Again, (34) is equal to Y,,(W) defined by (8) in the mean. 
The existence of the derivatives is guaranteed by the 
analyticity of R(7). 

As a last example, suppose 

R(T) = 8”; s(X) = &. 

Then by theorem 2 we obtain 

L(X) = (-l)“(p$ n = 0, Al, . . . 

and a,(t) is given by 

i 
--Iti. e , n=O 

(35) 

(36) 

(37) 

where LLal (x) is the kth generalized Laguerre polynomial 
of order a! [9]. Note that a,(t) is bounded by one, uni- 
formly continuous, and belongs to L’(dt; - ~0, a). How- 
ever, the functions a,(t) are not orthonormal. The random 
variable r,(o) is given by the stochastic integral 

I 

40,4; n=O 

T,(W) = .,x(0, W) - 2 lrn x(t, w)e-tLl?l(2t) dt; n21 
0 

x( - t, w)eetL1y-,(2t) dt; n 5 - 1. 

(38) 

It is seen that for n 2 1, T,(W) is evaluated by a linear 
transformation of the future of the process ~(1, w). The 
converse is true for n 5 -1. Using the fact that u,(t), 
n # 0 is a one-sided function we can write 

4t, w) = (40, w)e-“u(t) + g r,,(~)u,(t)) 

(3% 
where the terms in the first bracket represent x(t, w) 
for t 2 0 and those in the second bracket represent z(t, w) 
for t < 0. Expression (35) is equal to r,(w) defined by (S) 
in the mean. This example can also be derived from Camp- 
bell’s result [3]. 

s 

T 
z,(w) = einA d( (X, w), 

-?r 

E Id{ (A, w) j2 = dP (A) ; n = 0, fl, =t2, ... 

if and only if 

R(n) = s_: einX dP (X) 

where R(n) is the nth correlation coefficient and P(h) 
is the spectral distribution of the process. It is evident that 
the Hilbert space H(x) spanned by the process is separable 
and so is the isomorphic space L’(dP (A); --a, T). Let the 
set of functions (Hk(X) )km,-m be orthonormal and complete 
in L,“(dP (A); -in, r). Then the process (X,(W) ) admits an 
orthonormal series expansion 

x?b) = c %I ,kTk(4 (40) 
k 

where 

%ak = 
s 

T einxH$ (A) dP (A) (41) 
--r 

and 

As in the continuous-time case, the random variable 
r,(w) can be interpreted formally as the output at instant 
k = 0 of a linear time-invariant digital filter with x- 
transform H,(X), z = eix subjected to the input (x,(w) ). 

Given any spectral distribution P(A), it is known [lo] 
that the set (ei”x)~~-_ is closed in L’(dP (X); -T, n). 
Orthonormalizing this set results in a complete orthonor- 
ma1 system (H,(h)} in L’(dP (X); -g, ?r), which may be 
used in (40) and (41) for the expansion. 

Suppose the sequence of random variables (x,(w)) is 
orthonormalized, so that 

Tk(4 = c bk,iq(4 (43) 
i 

or, in matrix form, r = Bx. 
The inverse relationship is, formally, 

x = B-‘r. (44) 

If the gram-Schmidt procedure is applied to the sequence 
{x,(w)} and the set {ei”‘}~~-, in the same manner, then 
the resulting expansion given by (40) and (44) can be 
shown to be identical. Thus for the orthonormal set ob- 
tained from ( einA ) ,y=+ expansion (40) may be regarded 
as a method of inverting the matrix B. 

A somewhat different approach to generating {H,(X) ) 
is to orthonormalize the polynomials 1, X, X2, . * . . The 
resulting set is complete and orthonormal in L’(dP (A); 
-r, 7r). 
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Correlation Function Estimation by a Polarity Method 
Using Stochastic Reference Signals 

HELMUT BERNDT, MEMBER, IEEE 

Absfract-Instead of estimating correlation functions by conven- 
tional means, a specific polarity scheme may be used on bounded 
processes. The method is based on a rather simple relationship 
between the correlation functions before and after infinite clipping, 
provided that stochastic reference signals of uniform distribution 
are added to the process. 

This correlation technique has been known for some time. Because 
of the apparent computational advantages, its application to the 
estimation of correlation functions from discrete or sampled data is 
being examined. A general derivation of the appropriate moment 
relationship is given and a complete mean-square error analysis of 
estimates is provided under the assumption of white-noise-type 
reference signals. It is shown that correlation function estimates 
obtained by this polarity method possess a mean-square error that 
differs from the error of conventional estimates only by a term pro- 
portional to l/N, where N is the sample size. This term may be 
made arbitrarily small. Thus, only small degradations in the accu- 
racy of estimates have to be expected when using the polarity ap- 
proach. 

I. INTR~DUOTION 

MONG the correlation techniques and correlator 
designs reported in the literature of recent years, 
there is one method justifying special attention. 

It appears to be very well suited for digital processing at 
high data rates because the computational effort may be 
considerably reduced in comparison to more conventional 
methods. In this polarity correlation scheme, stochastic 
reference signals are added to the signal of interest and 
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infinite clipping is performed before correlation. Thus, 
similar advantages may be gained as with the more com- 
mon polarity-coincidence correlation of Gaussian processes. 
However, no inherent property of the signal is assumed 
and these two methods should be well distinguished. 

In this paper, we shall be concerned with some of the 
theoretical aspects of polarity correlation measurements 
using stochastic reference signals. Instrumentational and 
computational questions will only be stated to the extent 
needed in the theoretical development. This correlation 
technique has been known for well over five years, but a 
complete error analysis had yet to be given. We shall 
show that under suitable conditions, easily met in most 
cases of physical reality, an application of this method 
causes only a small degradation in the accuracy of the 
measured correlation function as compared to a conven- 
tional estimate. The error may even be made arbitrarily 
small by increasing the sample size and vanishes, in the 
limit, for continuous processes. This general result agrees 
with an earlier known approximation for large lag values. 

Only the autocorrelation case will be considered. While 
slightly more complex or, better, because more care is 
needed, the discussion of an autocorrelation function 
measurement offers a better insight into the procedure as a 
whole. The specialization to the cross-correlation case may 
thus be left to the reader. 

II. POLARITY CORRELATION 

If a stationary Gaussian process t(t) is subjected to 
infinite clipping, the autocorrelation function of the 
resulting square wave is given by 

2 
BgE(7) = ;sin-’ p&7) (1) 


