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Abstract. Computing short regular expressions equivalent to a givatefautomaton is a hard
task. In this work we present a class of acyclic automata tuchvit is possible to obtain in time
O(n?logn) an equivalent regular expression of s@én). A characterisation of this class is made
using properties of the underlying digraphs that corredpionthe series-parallel digraphs class.
Using this characterisation we present an algorithm foigérgeration of automata of this class and
an enumerative formula for the underlying digraphs withweeginumber of vertices.

1. Introduction

Computing a regular expression from a given finite automatm be achieved by well-known algo-
rithms based on Kleene’s theorem [20], establishing thavabtpnce between languages accepted by
finite automata and languages represented by regular sigmes However the resulting regular expres-
sion depends on the order in which the automaton’s stateasidered in the conversion. In particular,
this is the case if the algorithm is based on stegte elimination algorithni35]. Consider, for example,
the following automaton:

If we remove the state, and then the state;, the expressiofu + d)d + ((a + d)c + b)eis obtained.
But if we remove firstss and thenss, we obtain the regular expression+ (a + d)(ce + d). In the first
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case, the expressian+ d occurs two times, and in the second, the symbotcurs two times. The first
case corresponds to the application of the distributivitg on the right, and the second to the application
of that rule on the left. In this last case the resulting esgi@n has less symbols than the first one. If
our goal is to obtain an equivalent regular expression withrtssize from a given automaton, the order
in which we consider the automaton states is of great impoetaMoreover, given an automaton with
n States and: alphabetic symbols the upper bound for the size of the elgnivaegular expression is
O(nk4™) (and no general smaller lower bounds are known) [18, 6]. Toblpm of obtaining a minimal
regular expression equivalent to a given automaton is P&R&@nplete and NP-complete for acyclic
automata [19]. If an unary regular language= 1) is accepted by a (non)deterministic automaton with
n states there exists an equivalent regular expression®{@iz:?)) O(n), respectively [6].

In this work we characterise a class of acyclic automata tauchvit is easy to find an order of state
elimination such that the resulting regular expressiong I&ze linear in the number of the automata
transitions. The characterisation of this class is madegugioperties of the underlying digraphs that
correspond to the series-parallel digraphs class.

The work reported in this paper was partially presented imdideet al. [25, 26] and Reis [27], and
is organised as follows. In the next section, we review soaschnotions and introduce notation used
in this paper. Section 3 defines the class of series-pai@R) automata in terms of the underlying
digraphs and shows that it is possible to compute a linearsgular expression from &P automaton.
Section 4 presents an efficient algorithm for determiniraniutomaton iSP, and if it is the case shows
how to obtain the correspondent short regular expressieatid® 5 introduces another characterisation
of SP digraphs that is used to give an enumerative formula. Solattework is discussed in Section 6
and Section 7 concludes.

2. Preliminaries

We recall the basics of digraphs, finite automata and reg@xjaressions that can be found in standard
books [18, 16, 1]. A digraptD = (V, E) consists of a finite sét’” of vertices and a sef’ of ordered
pairs of vertices, calledrcs. If (u,v) in E, u is adjacent to(or incident toyv andv is adjacent fromu.
For each vertex, theindegreeof v is the numben; of vertices adjacent to it and tleaitdegreeof v is
the numbenmn,, of vertices adjacent from it, and we writén;; n,). An arc(u,v) can be denoted byv.
A path betweenvy andwv,, is a sequencegvy, v1vo, ..., v, 10, Of arcs, and is denoted -, or
Vo Uk - Un, fOr 1 < k < n. A path issimpleif all the vertices in it are distinct. The length of a path
is the number of arcs in the path. A path isyeleif vy = v, andn > 1. A digraph that has no cycles is
calledacyclic For an acyclic digraptD = (V, E), there is aopological orderingo of its vertices,.e.,
such that if(u, v) € E theno(u) < o(v).

An alphabety is a nonempty set of symbols. A string over an alphabés a finite sequence of
symbols ofy2. The empty string is denoted lay The se®* is the set of all strings ovet. A languagel
is subset ob*. If L; and L, are two languages, theh - Ly = {zy | € L, andy € Ls}. The operator
- is often omitted. A regular expression (r.e.pverX represents a (regular) languafe-) C ¥* and is
inductively defined byf) is ar.e and.()) = 0; eisar.e and.(¢) = {e}; a € Lisar.eand.(a) = {a};
if r1 andry are r.e.(ry +r2), (rir2) and(ry)* are r.e., respectively with((ry +r2)) = L(r1) U L(rq),
L((ryre)) = L(r1)L(r2) and L((r1)*) = L(r1)*. We adopt the usual convention thahas precedence
over -, and- has higher priority than-, and we omit outer parentheses. L&t be the set of regular
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expressions over. Two regular expressions andr, are equivalent ifL(ry) = L(r2), and we write
r1 = ro. In this work, we will take thesizeof a regular expressionto be the number of symbols from
¥, contained inr, and we denote it bjt|.

A nondeterministic finite automatqNFA) A is a quintuple(S, X, 0, sg, F') whereS is finite set of
states is the alphabety C S x ¥ U {¢} x S the transition relations, the initial state and” C S the
set of final states. An NFA withouttransitions isdeterministic(DFA) if for each pair(s,a) € S x ¥
there exists at most on€ such that(s, a, s’) € §. Fors € S anda € X, we denote by(s,a) = {p |
(s,a,p) € §}, and we can extend this notationoc >*, by i(s,ax) = 6(d(s,a),z). Thelanguage
accepted byl is L(A) = {z € ¥* | 0(s0, ) N F # 0}. Two NFA areequivalentf they accept the same
language. Thsizeof an NFA is the number of its transitions.

Theunderlying digraphof an NFA A = (S, %, 6, so, F) is the digraphD = (S, F) such thatt) =
{(s,¢") | s,¢ € Sand3a € ¥ U {e} such that(s,a,s’) € §}. Note that even there can be more than
one symbol of between two statesands’, only one arc exists in the underlying graph. We aaitial
vertexthe vertex that corresponds to the initial stditeal verticesthe ones that correspond to final states
andintermediate verticesall the others. An automaton isefulif in its underlying digraph, every vertex
is in a path from the initial vertex to a final vertex. An autdoraisacyclicif its underlying digraph is
acyclic. We will use the above terminology both for digraplnsl for automata.

An extended finite automatdiEFA) A is a quintuple(S, X, 0, sg, F'), whereS, 3, sy and F' are as
before and) : S x S — Ry. We assume thal(s, s') = 0, if the transition froms to s’ is not defined.
A string x € ¥* is said to be accepted by if © = z1---x,, for z1,...,2, € ¥* and there is a
state sequencs), s1,. . ., s, With s, € F, such thate; € L(6(sg,51)),. - 2n € L(d(Sp—1,5,)). The
language accepted by is the set of all strings accepted By Thesizeof an EFA is the number of its
transitions. Theinderlying digraphof an EFA is a digraptD = (S, E) such that(s, ') € E if and only
if 4(s,s’) # 0. Any NFA can be easily transformed into an equivalent EFAhwiie same underlying
digraph: for each pair of statés, s') one needs to construct a regular expressio# - - - + a,, such that
(s,ai,8') €0,a; € XU{e}, 1 <i<n.

Finally, we recall the conversion of an EFA into a regular expression, using thestate elimi-
nation algorithm(SEA). In each step, a non-initial and non-final state of tité ks deleted and the
transitions are changed in such way that the new EFA is elgmivdo the older one. Formally, let
A= (S,%,0,s0, F) be an EFA. Then

1. (a) Ifsyp € F or existss € S such thati(s,sg) # 0, then add a new state to .S, define
0(a, sp) = e anda is the new initial state.

(b) If |[F| > 1, then add a new state and transitioni(s,w) = ¢, for all s € F. The set of final
states becomegv}.

Without lost of generality, letl’ = (5, %, ', «, {w}) denote the new EFA. We denote by the
regular expressiofi(s, s’).

2. If 8 = {a,w}, then the resulting regular expressionris,r*,, and the algorithm terminates.
Otherwise continue to step 3.

3. Chooses € S’ \ {a,w}. Eliminates from A’, consideringS” \ {s} the new set of states, and for
eachsy, so € "\ {s},

/ *
0 (317 32) = Tsys5 T V5157557 5525
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Continue to step 2.

Let us observe that, in each step, if we hayg; (), the contribution ofs for the size of the final
regular expression can be measured by

k l
(k—1) Z rs,s| + (= 1) Z [rss; | + (KL= 1)[rss]. 1)
i=1 j=1

This contribution i90) if s(1;1). To illustrate, this dependence from the order of stateirtion in the
resulting regular expression, consider the following maton:

If the order of state elimination i, s1, s4, andss we obtain the regular expression- (b+aa)(ba+
a(b+ a(b + aa))* (b + aaa) with 16 alphabetic symbols. If the order ig, s4, s2, ands;, the resulting
expression i%a(ba)*a + (a + bb + ba(ba)*bb)(ab + aa(ba)*bb)*aa(ba)*a)*(a + bb + ba(ba)*bb)(ab +
aa(ba)*bb)* with 44 alphabetic symbols. In each step, we could try to simpliy tegular expression
obtained, but our goal is to try to discover a state orderldwats to shorter regular expressions. One of
the advantage of this approach is to avoid the generatioiggébintermediate regular expressions.

3. SP Automata

In this section, we will consider only useful acyclic autdemavith one final state. The underlying di-
graphs of these automata are called in the literature (aggtidigraphs [1]. In arst-digraph there exists
only one vertexa of indegree 04/(0; m), for m > 1), only one vertexv of outdegree 04(n;0), for
n > 1), and each vertex occurs in some path frero w. In an acyclic automaton, the verticesandw
correspond to the initial and final state, respectively.

We are going to characterise a class of automata using tienraftdigraph homeomorphism. Two
digraphs are homeomorphic if both can be obtained from timeghigraph by a sequence of subdivisions
of arcs [16, 1]. Consider the digraph

F_é = ({‘917 52,383, 84}7 {(517 32)7 (517 33)7 (527 83)7 (527 54)7 (83, 34)})7

represented in Figure 1.

Definition 3.1. A useful acyclic NFA with one final state 8P (series-parallel) if its underlying digraph
does not contain a subgraph homeomorphiR.tdVe say that the underlying digraph is @R digraph

The digraph in Figure 2, is n@P, because its underlying digraph contains a subgraph homwreom
phic to R, namely, the one obtained by excluding the vergand the arc$sy, se), and(ss, s19) (with
dashed lines, in the figure). On the other hand, the digraptigiare 3 isSP. The automaton presented
in the introduction is obviously n@&P.
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Figure 1. Digrapfﬁ.

Figure 2. A nonSP digraph.

Series-parallel graphs and digraphs are extensivelyestudithe literature. Initially they were stud-
ied in relation with series-parallel electrical circuitg Riordan and Shannon [28]. Duffin [5] charac-
terisedSP graphs by a forbidden undirected subgraph charactenisatidghe one in Definition 3.1. This
class of (di)graphs is also important because many NP-aimgraph problems become polynomial (or
even linear) when restricted to it [32, 34].

In our preliminary work [26] this class of automata was @l#DR as an acronym dfinique for the
Distributivity Rule If an automaton is ndBP, there are at least two states (with outdegree or indegree
greater than 1) such that the order chosen to eliminate thadslto two different regular expressions,
where one results from the application of a distributivityerto the other. In general, one of the choices
will lead to a shorter expression, but it is not easy to deiteerwhich. In the next section, we show that
this is not the case if the automatorSB. In anSP automaton, in each step there is always a statel )
that we can select to eliminate.

Proposition 3.1. Any acyclic NFA is equivalent to aBP automaton.

Proof:
Every acyclic NFAA = (S, X, s, F') is equivalent to a regular expressiondisjunctive normal form
i.e,r1 +---+r, where forl <[ <n,

€ or,
= .
all---alk,l CL[J.EE,ISJSICZ.

From this r.e. we can construct an equivalent NFA

= ({e}u{wtu |J 8,50, {w})

1<l<n

R is a directed version of the complete graph with 4 verti¢eg.(
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D
Figure 3. AnSP digraph.
whereS; = {s;,,..., Slk’z}’ 1 <[ < n, and such that

5’(0&, all) - {Sll }7

(5,(81]., a’lj+1) - {Slj+1}7 for 2 S] S kl*lv
&' (si,,6) = {w}
The automatord’ is trivially SP. 0

An interesting open problem is to desigh a method to obtadm fan acyclic NFA, ailSP automaton
with a minimal number of transitions (size).

Without loss of generality, we can just consi&® digraphs (instead of automatd),= (S, F, o, w),
wherea denotes the initial vertex and denotes the final vertex. It is obvious that,

Lemma 3.1. An st-digraph subgraph of aBP digraph is arSP digraph.

Lemma3.2. Let D = (S, E, a,w) be anSP digraph. Leta(0; k), w(m;0), andk, m > 1. Suppose
thatu andw’ are two distinct vertices adjacent fram andv andv’ are two distinct vertices adjacent to
w. If there are two disjoint pathsu -- - vw andau’ - - - v'w then there cannot exist a path. - - - v/w nor

a pathau/ - - - vw.

Proof:
Suppose that there exists a path- - - v'w, partially in dashed line in the picture below:

N
~
~
~
~
N
~
~
S
A,

It is obvious that there will be a subgraph Bf homeomorphic tR. This subgraph will contain the
vertices{a, u, s’,w} (corresponding to the vertices Rj, wheres’ is the first vertex common to the path
au---v'w and to the patln/ - - - v'w (at leastv’ or v/). The proof is analogous if there exists a path
au’ - vw. O
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If a(0; k) andk > 1, letU be the set of the vertices adjacent framForu € U, let
Xy ={u} U{s|se S\ {w} andthere exists a pathr--s}.
Consider the binary relationin U x U, such that: | «’ if and only if X, N X, # 0.
Lemma 3.3. If D is anSP digraph, the relation is an equivalence relation da.

Proof:

The reflexivity and the symmetry are trivial, we only need tove the transitivity. Leti;, uo, us € U,
uy | ug, anduy | us. Then there exist; € X,,, N X, andsy € X, N X,,. If 51 = so thenu; | us.
Suppose that; # so and that there is no pa#y -~ s3 nors3---s1. Then, we will have the following
diagram:

The vertices{«, us, s1,w} define a subgraph homeomorphic Ro which contradicts the fact thab
is SP. O

Lemma3.4. Let D = (S, E, a,w) be anSP digraph. Letx(0; k), w(0;m), andk,m > 1. LetU and
X, foru € U be as above. Ifu] is an equivalence class of the relatipmvith more than one element,
then there exists € S\ {w} such that:

1l se ﬂule[u]Xu/

2. Foralls’ € Uyep Xo , every pathy - - - s'w containss.

Proof:

The existence of, satisfying 1 is a direct consequence of the argument givehd proof of the tran-
gitivity of |. If condition 2 does not hold, then the digraghwill have a subgraph homeomorphic to
R. O

Now we can characterise the essential property @Rmigraph.

Theorem 3.1. Let D = (S, E, a,w) be anSP digraph and.S| > 2. ThenD has at least a vertexsuch
thats(1;1).

Proof:

The proof is made by induction on the number of vertices offigeaph,|S| = n. If n = 3, itis trivially
true. TheSP digraphs withd vertices are enumerated in Figure 4, and it is easy to sealttatthem
have one vertex such thats(1; 1). Assume that the theorem holds P digraphs with less than > 4
vertices. We want to show that the same is true fd» & (S, F, o, w) with |S| = n. If a(0;1), let
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Figure 4. SP digraphs with 4 vertices.

©
®

©

®
0w
O—@

©
©

©

u € S\ {w} be the vertex adjacent from. Then the digraptD’ = (S \ {a}, E \ {(o,u)},u,w) is
an SP digraph withn — 1 vertices, and by induction hypothesis it has a vestesxich thats(1;1). An
analogous argument can be givew(fl; 0). Let us suppose that(0; k,,) andw(k.;0), with k,,, k, > 1.
As we are seeking for an intermediate vertex, we can ign@eatb(a,w) € E, if it exists. LetU, X,
and| be as defined above. For every U, we have one of the following cases:

1. The clasgu| has an unique element. L&' = (X, N {w}, E',u,w), whereE’ has all the arcs
of D with vertices inX,, N {w}. Then by Lemma 3.1D’ is anSP digraph and has less than
vertices. If| X, N {w}| = 2, thenu(1;1) in D. Otherwise, by induction hypothesi)’ has a
vertexs’ such thats’(1; 1), and, inD we have alsa’(1;1) (by Lemma 3.2).

2. The clasgu] has more than one element. LBt = (Nycjy Xw, E'; , s), where E' has all the
arcs of D with vertices inU, ¢, X,» ands as defined in Lemma 3.4. Then by Lemma JX4,is
an SP digraph and has less thanvertices. By induction hypothesis, it has a vertésuch that
s'(1;1), and, inD we have alsa’(1;1).

O

Theorem 3.2. Let A = (S, %, «, §,w) be a useful acyclic NFA with an unique final state. We can obtai
a regular expression equivalentAausing the state elimination algorithm (SEA) in such way thaach
step we remove a statewith s(1;1) if and only if A is SP.

Proof:

Suppose thatl is SP. If S = {a,w} then there is nothing to be proven. Otherwise, by Theorem 3.1
we can choose a stateto eliminate such that(1;1). The resulting EFAA’ is SP, since with that
elimination step no automaton state increases its indegreits outdegree (at most the adjacent state to
s decreases its outdegree by one and the adjacent state fteoteases its indegree by one).

If we apply the SEA to a useful acyclic n@P EFA A, then the underlying digraph of has a
subgraph homeomorphic R, Let sy, s, s3, andsy be the corresponding vertices. All of them have
either indegree or outdegree greater than 1, and all thageekecannot decrease to 1 unless one of the
states is eliminated. O
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Corollary 3.1. Given anSP automatonA, it is possible to construct an equivalent regular expogssi
with size linear in the size ofl.

Proof:

In the application of the SEA, in each stepiis the state to remove (and1; 1)), then there exists one
and only one pair of statés;, so) such that’ (s, so) = rs,s, + 's;s7ss, @nd all the other transitions are
not changed. The size of the regular expression obtainbe isumber of transitions of with alphabetic
symbols (counting its multiplicities). O

4. An algorithm to decide if a digraph is SP

Fortuneet al. [9] have shown that the problem of determining if an acyclgrabh D = (V| E) has a
subgraph homeomorphic to a fixed digraph= (V’, E') has a polynomial time algorithr® (n*+*),
wheren = |V|, k = |E’| ands = |V’|. However, to determine if a digraph &P, specialised algorithms
can be designed. Recognition of series-parallels graphdeadone in linear time [34] and several
parallel algorithms were described in the 1990's [17, 7,\8% present a new sequential algorithm that
can be easily adapted to obtain a short regular expression.

Let us suppose that we have already determinedZfhat (V, E, «,w) is an (acyclic)st-digraph,
with a topological ordering (this can be achieved i@ (n + m)). Forv € V, let Adj(v) be a list of
vertices adjacent to, let od(v) be the outdegree af, letid(v) be the indegree aof and letinc(v) be a
list of vertices adjacent from (incident to)

In Figure 5 we present the algorithm in pseudo-code. Thecesrf the digraph are going to be
traversed in topological order. Each drc v) € E is annotated with a list of relevant vertices with
outdegree greater thdrthat precedes (in a path fromw). Those labels are denoted Hyu, v) and they
can be a list of vertices or a reference to another equivalembtation. We write. = b to denote that
becomes a reference iand we writea # b to test ifa is not a reference th. We use— as the standard
assignment operator. The empty list is denotedJognd!l.v represents the concatenationvolvith the
list I. We use other standard list operationsfasst (first element of the list){ast (last element of the
list) andbutlast (the list without the last element).

The algorithm proceeds as follows. While the visited vedibave indegree less than.2, they are
not a confluence, the relevant predecessors are colleated (I7-21). If a vertex has indegree greater
than1, then either we can “resolve” all the precedent bifurcationthe digraph must be n@P (lines
4-16). A confluence is “resolved” if there are two verticesandu adjacent ta with labels that have
equal values but which are not references to the same oljethis case, those labels can be unified,
and ifw’ is the last element of those labelg(w’) is decreased by. When that value i, the vertexu
is no longer relevant and can be deleted from the labelss(Brd.5).

Example 4.1. Consider the digraph in Figure 6, which has the verticestlmlbopologically ordered.
The algorithm execution can be summarised as follows:

1. Forsg, asod(sg) = 1 we haveA(sg, s1) < [].
2. Forsy, asod(s1) = 2 we haveA(sy, s9) < [s1] and A(sq, sg) < [s1].

3. Forsg, asod(s2) = 2 we haveA(ssy, s3) < [s1, s2] and A(sz, sg) < [s1, s2].
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def spgp(S,FE):
for ve S (S topologically ordered)
e — |Inc(v)|
while e>1 do
m «— max{|A(u,v)| | u € Inc(v)}
L — [u € Inc(v) | |A(u,v)| = m]
w « first(L)
if (Juel\{w}) (A(u,v) Z A(w,v)) A (A(u,v) = A(w,v)) then
w' — last(A(w,v))
od(w'") « od(w'") — 1
if od(w')=1 then
A(u,v) < butlast(A(u,v))
A(w,v) = A(u, w)
Inc(v) « Inc(v) \ {u}
e—e—1
else return 0
if v=a then p«—J]
else p= A(first(Inc(v)),v)
for o € Adj(v)
if od(v)#1 then A(v,v') « pw
else A(v,v')=p
return 1

Figure 5. Determining if a digraph BP.

. Forss, asod(s3) = 3 we haveA(ss, s4) « [s1, 52, 53], A(s3,56) < [51, 52, s3], and A(s3, s8) —
51, 52, 53].

. Forsy, asod(s4) = 2 we haveA(sy, s5) < [s1, S92, s3, S4] @and A(sy, sg) < [s1, S2, S3, S4].

. Forss, asod(s5) = 1 we haveA(ss, s¢) = A(s4, $5). The statess is not relevant, the arc must be
equivalent to its predecessor.

. Forsg, asid(sg) = 3 (is a confluence) and(s4, s¢) = A(ss, s¢) (one of the arcs can be resolved),
we haveA(ss, s¢) = A(s4, S6), 0d(s4) < od(s4) — 1, andid(sg) < id(sg) — 1.

. Becaused(sy) = 1, we haveA(sy, s¢) «— butlast(A(sy, sg)), i.€., A(s4, Se) < [s1, 2, s3]. The
states, is no more relevant and so can be removed from the annotations

. Asid(sg) = 2 (the confluence is not yet resolved) aAdss, ss) = A(s4, s¢) (there is one more
arc to solve), them (ss, s¢) = A(s4, S6), 0d(s3) < od(s3) — 1, andid(sg) < id(sg) — 1.

. Asod(sg) = 1 we haveA(ss, s¢) < butlast(A(ss, sg)), 1.€. A(ss, s¢) < [s1, s2]-
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%
GD)—C9)

Figure 6. Example of aBP digraph.

11. The confluence ing is already solved, becausé(ss) = 1. We can go on. Asd(ss) = 1 the
vertex is not relevant and(sg, s7) = A(ss, s6)-

12. Forsy, asod(s7) =1, A(s7,s8) = A(se, s7).

13. It remains to process;. Asid(sg) = 3 (it is a confluence) andl(s7, ss) = A(se, sg), we have
A(s2,88) = A(s7,s8), 0d(s2) «— od(s2) — 1, andid(sg) < id(ss) — 1.

14. Nowod(s2) = 1, andsy can be removed from the annotationss, sg) < butlast(A(ss, ss))

(i.efs1]).

15. Although an arc was eliminated, the confluence remains:ind(ss) = 2. As A(sy,s3) =
A(sr, ss), we haveA(sy, sg) = A(sy, ss), od(s1) <« od(s1) — 1, andid(sg) < id(ss) — 1.

16. The vertex; is no more relevant (becausé(s;) = 1), SOA(s1, sg) < butlast(A(s1,ss)) (i.e.
A(s1,ss) < []), and all annotations have now the valye

17. Asid(ss) = 0 all confluences where resolved and the algorithm returnsahe1.
Theorem 4.1. The algorithmspgp is correct and has time complexity(n? log n).

Proof:
(Sketch)if the digraphD is not SP, it has a subgraph homeomorphicﬁo Let s1, s9, s3, andsy be
the corresponding vertices. The vertexhas indegree greater thdn When ss is visited, there are
v,v" € Inc(ss) such thats; € A(v, s3) andsy, sy € A(v', s3). Those labels can never refer to the same
object, thus the algorithm must retudbn Suppose that the algorithm returiisThen there exists € V'
such that(e; k) with e > 1 and there exist’, v” € Inc(v) such thatd(v', v) and A(v”, v) are different.
Letu € (A(v',v) \ A(v",v)). The outdegree of is greater thari (otherwise it was not relevant) and
u # «a. Then there must exist two disjoint paths~~«---v anda---v. There exists a path-—w
that does not go through and a pathv——w that does not go through. Thus D has a subgraph
homeomorphic tdR, defined bya, u, v, s’, wheres’ is a common ancestor afandv (at leastw). Thus
the digraphD is notSP.

To analyse the time complexity of the algorithm, first notattthe total cost of executing lines 17—
21 isO(m). For eachv € V, the lines 4-16 are, in the worst case, execute@{nlogn) (as the
annotations can be sorted only once). Thus the time contplekspgp is O(n?log n). O
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Proposition 4.1. If AisSP, the algorithnmspgp can be used to compute an equivalent regular expression
with size linear in the size of.

Proof:

Let A = (S,%,0,,w) be an EFA. In the algorithrepgp we can extend the arc annotations to contain
the automaton’s transition labels. For,s’) € S, let A(s,s’) be the list of vertices as before and
let R(s,s’) be the associated regular expression. Initially, theselaeg@xpressions are disjunction of
alphabetic symbols according to the transition relaipn

(Vs,s' € S)R(s,s") = Z a
d(s,a)=

78/

Whenever a state, (k; 1) is visited and its incident arcs have been resolved (line21)letrp be the
regular expression correspondent to the labellote that in line 17p is e and in line 26 its value must
be R(first(Inc(v),v)). Then, in line 22, we add the instruction:

R(v,v") < rp- R(v,v).
Whenever a confluence is resolved (in line 21) we add thevictibn:
R(u,v) «— R(u,v) + R(w,v).
And in line 12, we add another concatenationyffis not the initial state:
R(w,v) < rp- R(w,v),

whererp is the regular expressioR(first(Inc(w')),w’) (there must be at most one). In the end we
obtain the same regular expression of Corollary 3.1R@as, w). O

5. Counting SP digraphs

In the context of electrical networks Riordan and Shann@&j fizesented a formula for counting series-
parallel networks that arise from combinations of resistgrin series and in parallel. The correspondent
digraphs differ from the ones we consider here as they alloitipte edges between the same order pair
of vertices ultidigraphs) They give an enumerative formula (based on a generatingifum for the
number of (unlabelled) digraphs by number of edges and thregfmondent sequence appears as number
A000084 in the OEIS [31]. Many more related enumerative formulaseappn the OEIS, and were
studied, for instance, by Moon [23], Golinelli [12] and Fm{8]. More recently Bodirskyet al. [2]
studied the asymptotically behaviour for the number of llableseries-parallel graphs.

In this section, we present recursive formulae for the nunob&P (unlabelled) digraphs by num-
ber of vertices. We begin by giving a definition 8P digraphs in terms of compositions of series and
parallel operations. This definition is similar to the onesally called two-terminal series-parallel net-
works (see [34]), but differs by not allowing multiple edgéfith some assumed abuse of notation we
refer this set aSP.

Definition 5.1. (SP 1)
The set of series-parall&8IP digraphs is defined recursively as follows:
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() L=({o,w} {(eyw)}, a,w) € SP

(i) If D= (V,E,a,w) € SPandD’ = (V',E',a/,u') € SP such that NV’ = (), thenSDD’ =
(V" E" a,w") € SP, where

V"=V uv'u{s})\{wa'},

E"={(v,v") € E|v #w} U {(v,0)| (v,w) € E} U
U {(v,v') € E'|v#d'} U {(B,0)](,v) e E'}.

(i) Let D = (V,E,a,w) € SPandD’ = (V',E',d/,w') € SP whereV NV’ =0, (o,w) ¢ E, and
(o/,w'") & E',thenPDD' = (E", V" o",u") € SP, where

V=WV uvV'u{d ")\ {o,w,d W'},

E'={(v,v)e E|lv#a AV #w} U{" V) |(a,0v) € E}U
U {(v,") ] (v,w) € E} U{(v,v' )€ E'lv#d NV £} U
u {(a”, )] () e E'Y U {(v,")|(v,u)) € E'}.

(iv) If D= (V,E,a,w) € SP and(a,w) ¢ E, then the digrapPDL = (V, E U {(a,w)}, a,w) €
SP.

Example 5.1. Applying rule (ii) to the first twoSP digraphs we obtain that the third digraptSB:
52 @
9 ® ®
@
®
OO0
9
Applying the rule (iv) to the last digraph above we obtaint fiadlowing digraph isSP:

In the same manner, and applying rule (iii) to the first 8@ digraphs bellow, we conclude that the third
digraph isSP:

@
O—O—O—O
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)@
@ o @/@

The following theorem is analogous to other in the literatid4] and, for completeness, we give a proof
in Appendix 8.

Theorem 5.1. Definitions 5.1 and 3.1 define the same set of digraphs.

To count the number &P digraphs withn vertices we can use the Definition 5.1 with a modification
of rule (ii) to avoid double counting some identical digrapie illustrate the problem with a simple
example. Consider the following digraph:

It can be built using rule (ii) and considering the followitvgo digraphs:

PaTaTENTaS

Or considering this other pair of digraphs:

S S

So when applying rule (i) we must only take digraphs thatintdecomposabléy rule (ii). Two
digraphs aréndecomposablby rule (ii) if the last rule used in their construction wag ndae (ii).

Applying rule (i) to two digraphsD and D’ with, n andn’ vertices respectively, a digraghD D’
with n + n’ — 1 vertices is obtained. If we iterate this operation for digv&(D;);c(1 1) With (1;)sc1,1)
vertices, respectively, we obtain a digraph which numberfedtices is

Z n; | — k+1.
1€[1,k]
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Let U,, be the number o8P digraphs withn vertices, and IeU,(fi) be the number o8P digraphs
with n vertices which last rule of construction was rule (ii). Werda

k!
U(zz _ Unm , 2
2 L Wy =0 g @

T j€E[L,K]

wherer runs over all set§(n;, p;) }jcn g With k > 1, (V5 € [1,k]) (n; > 2 A p; > 0) and

Z nip;j | —k+1=n.
JFE[1K]

Let U,(f“) be the number o8P digraphs withn vertices which last rule of construction was rule
(iii). Because the parallel composition is commutative gwlobtaining a digrapR DD’ with rule (iii),
the number of vertices @b is not smaller than the number of verticeslof. Applying rule (iii) to two
digraphsD and D’ with, n andn’ vertices respectively, a digraghDD’ with n + n’ — 2 vertices is
obtained. The number of these digraphs is then given by tleniog formula:

i) = Z (Uy(fi) +U£f”))(U( 0) +U(m))_ (3)
n>2

It remains to determine the number 8P digraphs produced by rule (iv). These digraphs can be
obtained from anysP digraph withn vertices, produced by rules (ii) or (iii). So its number is

The total number o8P digraphs withn vertices is
Un — Ur(Lii) + Ur(Liii) + Ur(LiU)' (5)

Now we can simplify equation (3) to

u.,U.,
I S ©
n'4+n’" =n+2
n'>n'
n'’ >2

To complete the counting we consider the following baseaslu
Up=1, Uy=2, U =1 U =0, U =1

Table 1 summarises the numberS® digraphs with no more than 20 vertices.
This enumeration process was easily adapted for a genemtjorithm ofSP digraphs, and so of
SP automata.
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Table 1. Number 08P digraphs for some small values of
EX KN
2 1 3 2
4 8 5 38
6 228 7 1382
8 9342 9 62944
10 453724 11 3235216
12 24131728 13 178448548
14 1364523112 15 10339603930
16 80365190044 17 620051361254
18 4883464795602 19 | 38186977218324
20 | 303643041719194

6. Other related work

There are not many papers in the literature on the charsatem of the conversion from NFAS to
regular expressions, as was pointed by Edtubl. [6]. If the automaton’s underlying graph is planar it

is possible to obtain an equivalent regular expressionzef lsiss tharazo(\ﬂ”)), wheren is the number
of states of the automaton [6]. Generalising this resulttzaskd on graph separator techniques, Gruber
and Holzer [13] presented algorithms that when applied-ttate deterministic finite automata obtain
regular expressions of siz2(2.6").

Giammarresiet al. [11] characterised the automata generated by the Thompstimoch [33] for
converting regular expressions to automata. They calleditiderlying digraphs, Thompson digraphs.
By induction on the structure of those digraphs we can proae t

Corollary 6.1. Every acyclic Thompson digraph &P.

In the same way, Caron and Ziadi [4] characterised the autogemerated by the Glushkov method
for transforming regular expressions into finite automag.[As these automata may have more than one
final state, we cannot directly compare the acyclic Glustdigraphs and th&P digraphs. Introducing
e-transitions it is possible to obtain &P automata equivalent to an acyclic Glushkov automaton. Itis
also easy to see that eve®f? automaton is an acyclic Glushkov automaton.

More recently Han and Wood [15] studied the relation betwtensize of the resulting regular
expression and the state elimination order in the SEA algori They proved that in order to obtain
a more succinct expression, states that correspond tortiogge(on the underlying digraph) should be
eliminated after all others. Gulan and Fernau [14], integtdhe method presented in this paper and in
Moraiset al. [25, 26] into an iterative heuristic for general NFA.

Sakarovitch [29, 30] analysed the conversion algorithnte/éen equivalent regular expressions and
finite automata, and establishes some relationships betéheeregular expressions obtained from a
given automaton by applying different methods of computinggular expression from an automaton.
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Lombardy and Sakarovitch [22] consider the problem of egirig an automatom from an equivalent
regular expression that was obtained frgin Although their main focus is not on the size of the rep-
resentations, their approach clarifies the relationshgta/den these conversions and can lead to better
characterisations. Recently [21] they corrected the pobtieir main theorem that states that if an NFA
is co-deterministic it is possible to retrieve a new co-tatristic NFA.

7. Conclusion

In this work we show that if the underlying digraph of an acy®lFA is series-parallel then it is possible
to obtain in timeO(n?logn) an equivalent regular expression of si2én). We also presented an
enumerative formula for the number 8P digraphs withn vertices,U,,. For now, we do not know a
(closed form) generating function féf,, and so no asymptotic analysis was possible. We plan to explo
the methodology purposed by Fustyal.[10] for the enumeration of families of graphs.
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A. Appendix
Theorem A.1. Definitions 5.1 and 3.1 define the same set of digraphs.

Proof:

First we show by induction on the number of rules’ applicasighat a digraph described by Defini-
tion 5.1 does not contain a subgraph homeomorphi (@efinition 3.1). This is true if the digraph is
Suppose that all digraphs obtained by less thapplications of rules (i)-(iv) do not contain a subgraph
homeomorphic t&R. Let D = (V, E, a,w) be a digraph that results fromapplications of rules (i)-(iv).
The last rule must be one of rules (ii)-(iv). In the case oéfil), D = SD’'D"” andD is obtained by the
serial composition of two digraph®’ = (V', E’, o/, w’) and D" = (V" E" " ,w"), that by induction
hypothesis do not contain a subgraph homeomorphi% tAny patho’ - --v” (in D), with " € V" and
v” € V" must containg, so if D contained a subgraph homeomorphi&tﬁ should be a subgraph of
D’ or D, which is an absurd. If the last rule applied was rule (ilgrt.D = PD’D”. In this case, there
are no paths between any vertexiofand any vertex ofD”, different froma andw. So the conclusion
follows, as in the previous case. Finally, suppose thatdlerule is rule (iv) and> = PD’'L. The
arc(a,w) ¢ E’ and it is easy to see that Id contained a subgraph homeomorphi&tﬁ should be a
subgraph ofD’, which is an absurd.

We show now by induction on the number of arcs that if a digrdphs not contain a subgraph
homeomorphic t&R, then it can be built by rules (i)-(iv). It is easy to see thihtdigraphs with equal
or less than 4 arcs that has that property can be built usileg ()-(iv) (see Figure 4, fon = 4).
Suppose that the statement is valid for all digraphs with thatn arcs and that satisfy Definition 3.1.
Let D = (V, E,a,w) be a digraph withn arcs and that does not contain a subgraph homeomorphic
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to R. If D has a cutverted, that is a vertex that belongs to all patis—w, thenD = SD’D" with
D' = (VI,FE' a,3) andD" = (V" E" 3,w). Every vertex inD belongs to some pafii--w, so
we takeV’ as being the set of all vertices that belong to a path- 3 and £’ as being the natural
restriction of £ to V'. The digraphD” is defined in the same waj2 and D” can not contain a subgraph
homeomorphic t& and by induction hypothesis they can be built using rule§\)) ThusD verifies the
Definition 5.1. If D does not have a cutvertex then there exist two pdthsd B from « to w that do not
intersect each other (see for instance [16, page 27} .0if B is an arc, theD’ = (V, E\{(a,w)}, o, w)
does not contain a subgraph homeomorphi§ tmdD = PD’'L. ThusD verifies the Definition 5.1. If
neitherA nor B is an arc, then, as in Lemma 3.2, there can not exist a pattebatany vertex il and
any vertex ofB, different froma andw. Let V'’ be the set of vertices adD belonging to path& -
with non empty intersection witi. Let D’ = (V' E', a,w), whereE’ is the natural restriction of to
V'. LetD" = (V\ V', E” «,w) be defined analogously by considering the p&thThen, D’ and D"
can not contain a subgraph homeomorphi§'a:nd by induction hypothesis they can be built using rules
()-(iv). But thenD = PD’D" results from applying rule (iii) ta>’ and D”. O
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