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Abstract: This paper discusses optimal design of the series proportional–integral–derivative–accelerative
(PIDA) controller for integral-plus-dead-time (IPDT) plants. The article starts with the design of
disturbance reconstruction and compensation based on proportional-derivative-accelerative (PDA)
stabilizing controllers. It shows that by introducing positive feedback by a low-pass filter from
the (limited) output of the stabilizing PDA controller, one gets disturbance observer (DOB) for the
reconstruction and compensation of input disturbances. Thereby, the DOB functionality is based
on evaluating steady-state controller output. This DOB interpretation is in full agreement with the
results of the analysis of the optimal setting of the stabilizing PDA controller and of its expanded
PIDA version with positive feedback from the controller output. By using the multiple real dominant
pole (MRDP) method, it confirms that the low-pass filter time constant in positive feedback must
be much longer than the dominant time constant of the stabilized loop. This paper also shows that
the constrained PIDA controller with the MRDP setting leads to transient responses with input
and output overshoots. Experimentally, such a constrained series PIDA controller can be shown
as equivalent to a constrained MRDP tuned parallel PIDA controller in anti-windup connection
using conditional integration. Next, the article explores the possibility of removing overshoots of the
output and input of the process achieved for MRDP tuning by interchanging the parameters of the
controller transfer function, which was proven as very effective in the case of the series PID controller.
It shows that such a modification of the controller can only be implemented approximately, when
the factorization of the controller numerator, which gives complex conjugate zeros, will be replaced
by a double real zero. Neglecting the imaginary part and specifying the feedback time constant
with a smaller approximative time constant results in the removal of overshoots, but the resulting
dynamics will not be faster than for the previously mentioned solutions. A significant improvement
in the closed-loop performance can finally be achieved by the optimal setting of the constrained
series PIDA controller calculated using the performance portrait method. This article also points
out the terminologically incorrect designation of the proposed structure as series PIDA controller,
because it does not contain any explicit integral action. Instead, it proposes a more thorough revision
of the interpretation of controllers based on automatic reset from the controller output, which do not
contain any integrator, but at the same time represent the core of the most used industrial automation.
In the end, constrained structures using automatic reset of the stabilizing controller output can
ensure a higher performance of transient responses than the usually preferred solutions based on
parallel controllers with integral action that, in order to respect the control signal limitation, must be
supplemented with anti-windup circuitry. The excellent properties of the constrained series PIDA
controller are demonstrated by an example of controlling a thermal process and proven by the circle
criterion of absolute stability.

Keywords: filtration; automatic reset; stability; robustness; multiple real dominant pole method;
derivative action; performance portrait method; constrained control; circle criterion; absolute stability
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1. Introduction

A whole chain of discoveries, their further modifications, improvements and patents
gradually led to the development of pneumatic controllers at the beginning of the twentieth
century. Due to the internal structure of the controllers, they were the heart of industrial
automation [1–3]. The most important part of the structure was a positive feedback from the
overall output of the controller to the output of the proportional controller, which generated
a signal (automatic reset) that served to eliminate the permanent control error caused by
acting disturbances. Even before the beginning of World War II, there was a generalization
of the mentioned control structure with a stabilizing proportional (P) and a proportional–
derivative (PD) term, also called Pre-Act (Taylor Instrument Companies), or Hyper-Reset
(Foxboro). The control structures with automatic reset were later interpreted as integrating
controllers [4], since automatic reset acts like an integrator in the linear domain. The name
change was originally attributed to disturbance compensation control of the temperature
measured by the thermocouple. By getting the potentiometer of the measuring bridge with
the null balancing method, the integration of the control error was achieved by summing
the increments of the angle of the motor rotating with the potentiometer [1–3]. Although
both control methods with explicitly integrating controller and with automatic reset can
be equivalent under certain (linear) circumstances, the equivalence is lost when working
with a saturating controller (actuator). Such problems in connection with equivalent
controllers with integral action became clearly apparent during the transition to digitally
implemented controllers by the occurrence of so-called undesired integration, also called
integrator windup [5–12]. Although a number of different anti-windup controllers have
been developed to address the problem, the evaluation of constrained structures based on
the use of an automatic reset with a special parameterization of numerator terms of the
PID controller in [13] proved to be more practical than the anti-windup structures based on
integrating controllers [14]. Subsequently, the question was raised whether these useful
properties could not be further improved by combining the automatic reset with a higher
derivative-order controller, referred to as proportional–derivative–accelerative (PDA).

However, before we start to look at the structure of the PDA-based controller, we need
to clarify the terminology. The original automatic reset controller is usually referred to
as a series proportional–integral (PI) controller. Similarly, an automatic reset combined
with a stabilizing PD controller (originally Pre-Act) is today called a series PID controller.
If an automatic reset is added to the PDA controller, it could also be called a series PIDA
controller. However, all of these designations are inherently illogical because the structure
under consideration does not contain an explicit integrator. The confusing terminology is
due to the fact that, for a whole century since the invention of the automatic reset, it was
not noticed that it can also be interpreted as a disturbance observer for the reconstruction
of input disturbances. The properties of the disturbance observer become clear when
analyzing the steady states of controllers designed with integrating process models [15–18].
In this context, the terminology is also important from the point of view of controller tuning.

Many works deal with the optimal design of PIDA controllers, also known as PIDD2,
PIDD2 or PIDC controllers [19–33]. The growing use of these controllers is the result of
ever-growing demands on the performance of transients typically occurring especially in
connection with speed control in high-end robotic and mechatronic applications.

One of the first attempts to obtain an analytical PIDA controller design procedure
for a third-order system [19,20] neglected the effects of derivative filters required in the
implementation of the controller transfer function. To determine the four parameters of
the ideal series controller, four equations were solved using the root locus method. The
proposed solution was based on the choice of a pair of complex conjugate poles of the
closed loop, a real pole with the same real part and a real pole shifted to higher frequencies
(resulting in negligible dynamics). The approach has been verified with different types
of third-order plants and using different performance metrics such as percent overshoot,
settling time and peak time. The setpoint responses of this approach typically exhibited
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overshoot, even without considering control signal limitations. In ref. [21], this approach
was further modified by Kitti’s method to reduce overshoot and provide robust stability.

In ref. [23], the PIDD2 (i.e., PIDA) controller is presented as an alternative to fractional-
order (FO) PID controllers (which are implemented by higher-order filters). The optimal
setting of the four controller parameters for the automatic voltage regulator (AVR) of
a synchronous generator was realized by minimizing the integral of the time-weighted
absolute error (ITAE) using particle swarm optimization. Among the main implementation
problems was the use of filters required to obtain the derivative and the second derivative
of the control error signal. The use of PIDA control was extended with the aim of balancing
the differences between the generated power and the constantly changing load demand in
a power system from the AVR to the load frequency control (LFC). To achieve robust and
reliable performance, the work proposed to optimize the parameters of the ideal parallel
PIDA controller with soft computing techniques using ITAE criteria without considering
the necessary filters and control signal constraints. The work [30] continues with the
application of artificial intelligence methods. An optimal design of a PIDA controller
for a higher-order nonlinear time-delay system using a modified butterfly optimization
algorithm is proposed to achieve an optimal control response complemented by a mutuality
system. The goal is to reduce overshoot due to large disturbances but the focus is on the
computational aspects of the optimization. Filter and signals have not been investigated.

Another application of PIDA control with derivative filter was developed by [31] to
improve the flight stability of a quad copter in a noisy environment. It is associated with a
heuristic genetic filter design that addresses the challenges of nonlinearity, uncertainties,
coupling and measurement noise that cause instability in flight and in automatic hover.
The tuning of the proposed parallel PIDA controller with multiple inputs and outputs is
performed by a stochastic dual simplex algorithm.

Despite the fact that the controller’s filter has a significant impact on the closed-loop
stability [34], the filters required for a reliable implementation of PIDA controllers in
practice have not yet been studied in detail. For this reason, ref. [28] considered designing
a PIDA controller using an interactive tool for designing a parallel PIDA controller with
minimum order filters in the derivative and acceleration terms. However, such an approach
unnecessarily increased the number of controller parameters and did not allow the design
of a controller for signal limitations. Furthermore, similarly to in [35], with two additional
filter parameters, the complexity of controller tuning increases.

The authors of [25] recognized the importance of controller filters in terms of circuit
robustness and considered the time constant of the first-order filter as a tuning parameter in
their design of an IMC-PIDA controller for an interconnected time-delayed power system.
In Ref. [26], an optimal low-pass filter is combined with each derivative term of an IMC-
PIDA (PIDD2) controller applied to a dual rotor aerodynamic system. The parameters of
the PIDA controller for controlling the output voltage of a non-ideal dc–dc converter were
obtained using a modified Gray-Wolf optimizer [27].

In ref. [32] the authors deal with the detailed modeling and design of load frequency
controllers (LFCs) of single and multi-area power systems using PID controllers and
PID controllers with serial compensators. These controllers, referred to as PIDC, can be
considered equivalent to PID controllers with higher-order derivatives (PIDA controllers
are equivalent to PIDC1 control). The explicit tuning formulas for the different turbine
types are characterized by the use of two free parameters that affect the performance
and robustness of the system. They define a single and a triple real pole of a closed-loop
control system and the corresponding poles and zeros of the controller under study. The
integral performance measures IAE and ITAE, the total variation TV used to evaluate
the control effort, and the sensitivity indices derived by simulations and calculations
(maximum sensitivity Ms, maximum complementary sensitivity Mp and measurement
noise sensitivity Mn) are analyzed in terms of these tuning parameters. The parallel PIDD2
controller combined with a second-order binomial filter [33] for the automatic voltage
regulator (AVR) of a synchronous generator is designed by minimizing the load disturbance
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response while considering the constraints on the sensitivity functions: Ms, Mp and Mn.
The five controller parameters are obtained by iteratively solving the optimization problem
for given sensitivities Ms and Mn and for a fixed value of controller zeros damping factor
ξ. The robustness index Mp is then calculated using the auxiliary parameter ξ. Although
several limitations of the internal signals are mentioned in the description of the AVR
control process, the experiments performed were linear.

Several approaches are based on setting the multiple real dominant poles [14,36].
Other solutions [37,38] propose conditions for the maximum decay rate. The paper shows
that the formulation of conditions for the closed-loop poles can be avoided by considering
the performance portrait method. The method can be advantageous both with regard to
the transcendental nature of a closed circuit with an infinite number of poles and also with
regard to the nonlinear character due the control signal limitations.

In this context, the paper is organized as follows. Section 2 summarizes the main
results of the design of an ideal PDA controller for the IPDT system using the multiple real
dominant poles method, its extension by a prefilter and low-pass implementation filters.
Section 3 extends the problem to the series PIDA controller with a simple disturbance-
observer-based disturbance reconstruction and a compensation of the disturbance by a
positive feedback from the controller output. This section also includes a brief analysis of
the problems caused by saturation of the control signal. In Section 4, the optimal tuning of
the PIDA controller is performed using the performance portrait method and illustrated by
an example of controlling a thermal process. Absolute stability of the loops with modified
PIDA controllers are proven by the circle criterion in Section 5. The main results of the
work are discussed in Section 6, emphasizing the superior properties obtained by reliable
controller tuning and in the saturating control. A paper summary and future developments
are included in the conclusions.

2. Tuning of PDA Controllers for IPDT Plant

In this paper, the velocity of the transients is evaluated using the absolute integral error

IAE =
∫ ∞

0
|e(t)|dt ; e = w− y (1)

To keep the paper short, the evaluation deals only with the step responses of the input
disturbance, with all corresponding performance values denoted by the subscript “d”.

For the process output y(t) and the controller output u(t), the robustness analysis will
focus on an IPDT process model described by the transfer function

S(s) =
Y(s)
U(s)

= S0(s)e
−Tdps; S0(s) =

Ksp

s
(2)

with a gain Ksp and a dead time Tdp. In the “optimal” controller tuning, the omitted plant
model index “p” corresponds to the “nominal” model parameters Ks and Td.

For the dead time present in the loop, the design of stabilizing controllers can be carried
out by the multiple-real-dominant-pole (MRDP) method [39]. An ideal stabilizing proportional–
derivative–accelerative (PDA) controller with the gains Kp, Kd, Ka [40] is given by

R(s) = Kp + Kds + Kas2 (3)

when
u(t) = Kp(w− y)− Kdẏ− Kaÿ (4)

yields for a nominal plant with parameters Ks and Td the closed-loop transfer function

Fc(s) =
R(s)S(s)

1 + R(s)S(s)
=

Ks(Kp + Kds + Kas2)

seTds + KsKas2 + KsKds + KsKp
(5)
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2.1. Quadruple Real Dominant Pole Controller Tuning

From the characteristic quasi-polynomial

A(s) = seTds + KsKas2 + KsKds + KsKp (6)

the condition of quadruple real dominant pole so can be formulated as follows{
A(s);

d
ds

A(s);
d2

ds2 A(s);
d3

ds3 A(s)
}

s=so

= 0 (7)

From
d3

ds3 A(s) = [sT3
d + 3T2

d ]e
Tds = 0 (8)

one gets optimal values of the dominant pole and the dominant closed-loop time con-
stants as

so = −3/Td; To = −1/so = Td/3 (9)

From the remaining conditions (7) then follow the “optimal” controller parameters

Kpo =
27

2KsTde3 =
0.6721
KsTd

; Kdo =
5

Kse3 =
0.2489

Ks
; Kao =

Td
2Kse3 =

0.0249Td
Ks

(10)

If we introduce the controller time constants using

TD = Kd/Kp = 0.3704Td; T2
A = Ka/Kp = 0.0370T2

d (11)

we can further introduce a pre-filter Fp(s), the task of which is to cancel the zeros from the
Fc(s) (5)

Fp(s) =
b2s2 + b1s + 1

T2
As2 + TDs + 1

(12)

and possibly also some of the closed-loop poles so (time constants To). In the simplest but
the most robust case, one can choose

b2 = 0; b1 = 0; (13)

Setpoint step responses can be accelerated by selecting the Fp numerator so that it
cancels one closed-loop pole so = −1/To

b2 = 0; b1 = To; (14)

Two closed-loop dominant time constants To can be cancelled by the numerator tuning

b2 = T2
o ; b2 = 2To; (15)

2.2. Implementation and Noise Attenuation Low-Pass Filters

To get proper controllers and at the same time achieve appropriate damping of the
measurement noise, the ideal PDA transfer function has to be combined with binomial
low-pass filter Qn(s) with the relative degree n ≥ 2

Qn(s) = Yf (s)/Ym(s) = 1/
(

Tf s + 1
)n

= 1/Pn(s) (16)

Fixed with already specified n and Tf , Qn(s) expressing the necessary filtration of
the measured output ym(t) can be taken into account and included into the system’s step
response [13]. Then, the index “f ” of its output y f (t) can be omitted. This means that the
output of the filter is considered directly as the output value of the controlled system.
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If you need to search the filter parameters interactively and adapt the PIDA parame-
ter proposal to the selected filter settings for a system, given by the IPDT model transfer
function (2), the additional filter delay can be considered by a chosen delay equivalence [41],
when the total loop dead time Td consists of an estimate of the process delay Tdp (represent-
ing the sum of the process, actuator and measurement sensor delays with a communication
and computation delay) and an intentionally introduced equivalent filter delay estimate Te

Td = Tdp + Te (17)

approximated as (see, e.g., [15,41])

Te = nNTf (18)

The coefficient N can be specified by values ranging from N = 0.5 (equivalence based
on “half rule”) to N = 1 (equivalence based on “average residence time”).

2.3. Illustrative Examples of PDA Control

Figure 1 shows an example of setpoint and disturbance step responses for an IPDT
process (Tdp = 1) and a PDA controller with different prefilter tuning completed by a
fourth-order filter with Te = 0.8 tuned by the average residence time equivalence Te = 4Tf .

Figure 1. IPDT process ẏ(t) = u(t− 1) + di and series PDA controller with different prefilter tuning
corresponding to a setpoint step to w = 1 at t = 0 followed by a disturbance step di = −0.2 at t = 10;
Te = 0.8; n = 4; Pn(s) = (1 + Tf s)4; Tf = Te/4; Ksp = Ks = 1.

When wishing to compensate for piecewise constant input disturbances di ∈ [−0.2, 0],
the control signal constraints must allow the compensating signal −di to be set and at
the same time leave a sufficient reserve for imposing the required dynamics of the circuit,
i.e., to fulfill for all considered di the conditions Umin < −di < Umax. Figure 2 shows an
example of setpoint and disturbance step responses for an IPDT process (Tdp = 1) and
a PDA controller with different prefilter tuning completed by a fourth-order filter with
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Te = 0.8 tuned by the average residence time equivalence Te = 4Tf with the control signal
constraints chosen as

Umin = −0.02; Umax = 0.22; (19)

Figure 2. IPDT process ẏ(t) = u(t− 1) + di and constrained series PDA controller with different
prefilter tuning corresponding to a setpoint step to w = 1 at t = 0 followed by a disturbance
step di = −0.2 at t = 10; Te = 0.8; n = 4; Pn(s) = (1 + Tf s)4; Tf = Te/4; Ksp = Ks = 1;
Umax = 0.22; Umin = −0.02.

Remark 1 (Steady-state controller output). Note that for a fixed input disturbance value
di = const the steady-state controller output is equal to−di in both constrained and unconstrained case.

Remark 2 (Effect of control signal constraints). Under the impact of admissible input distur-
bances, the conditions of control signal constraints do not cause any deformations of transient
responses; their nature does not change compared to unconstrained control; only their course is
slowed down.

3. Analytical Tuning of Series PIDA Controller

On the basis of Remark 1, it might seem that the reconstruction of the acting distur-
bances can be very easily realized by evaluating the controller output in steady states.
Evaluating the achievement of steady states, however, is far from a trivial matter [17,42],
which is especially true when accounting for measurement noise. It can be avoided by
filtering the controller output using a low-pass filter with a time constant Ti long enough
to smooth out control activities arising during process stabilization. In the case of stable
processes, it is then possible to assume that after a sufficiently long time the filter output is
dominated by the steady-state value of the controller output.

By introducing a disturbance observer in the form of a low-pass filter 1/(1 + Tis)
connected to the (possibly saturated) output of the controller and compensating the recon-
structed disturbance at the output of the stabilizing PDA controller, the overall transfer
function of the controller changes in the proportional zone of control to

R(s) =
(Kp + Kds + Kas2)(1 + Tis)

Tis
(20)
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Despite the terminology reservations, in the following we will call this structure the
series PIDA controller (Figure 3). For a nominal plant with parameters Ks and Td the
closed-loop transfer function is

Fc(s) =
R(s)S(s)

1 + R(s)S(s)
=

(KsKas2 + KsKds + KsKp)(1 + Tis)
s2TieTds + (KsKas2 + KsKds + KsKp)(1 + Tis)

(21)

a1 a0

s

1

s

1
a0

ym(t) yf(t) yf(t)
.

Kp

Kd

FP(s)sFP(s)

w(t)

1+sTi

1

u
+

+

+

+

+

+

wp(t)wp(t)
.

+

+

measurement filter reference filter

+

yf(t)
..

s
2
FP(s)

wp(t)
..

Ka

+

a2

s

1

+

yf(t)
...

+

Figure 3. Series PIDA controller (20) with two degrees of freedom: a third-order filter Qn(s),
n = 3 (16) of the measured output ym(t), the automatic reset with time constant Ti, with pro-
portional, derivative and accelerative controller gains Kp, Kd and Ka, with the reference setpoint w(t)
and a prefilter Fp(s).

3.1. Quintuple Real Dominant Pole Controller Tuning

The characteristic quasi-polynomial now changes to

A(s) = s2TieTds + (KsKas2 + KsKds + KsKp)(1 + Tis) (22)

and the increased number of controller parameters requires increasing the multiplicity of
the dominant pole considered to 5. From the fourth derivative of A(s) equivalent to (8)
it is now possible to calculate two values −6/Td and −2/Td. Of them, however, only the
second one meets the conditions of a dominant pole so, thus

so = −2/Td; To = −1/so = Td/2 (23)

Evidently, the introduction of the disturbance observer slowed down the closed-loop
transient responses. They are now characterized by the quadruple time constant To = Td/2
instead of the triple time constant To = Td/3 (9). The remaining controller parameter can
now be calculated as

Kpo =
0.932273

KsTd
; Kdo =

0.388543
Ks

; Kao =
0.045112Td

Ks
; Ti = 2.583231Td (24)

Remark 3 (Comparison of PDA and series PIDA controller parameters). In addition to the
fact that the absolute optimal values of the Kp, Kd and Ka coefficients of the PDA controller have
increased, which is reflected in the higher amplification of the measurement noise, it should be noted
that, with respect to To = Td/3 (9), the value of Ti ≈ 2.6Td >> To = Td/3 (Ti is more than seven
times larger). From the point of view of the dynamics of transient responses characterized by the
value To of PDA control, we can therefore speak with sufficient accuracy about the reconstruction of
the disturbance from steady-state controller output.

3.2. Prefilter Design

If we again introduce the controller time constants

TD = Kd/Kp = 0.4168Td; T2
A = Ka/Kp = 0.0484T2

d (25)
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we can further introduce a pre-filter Fp(s), the task of which is to cancel the zeros from the
Fc(s) (21)

Fp(s) =
b3s3 + b2s2 + b1s + 1

(T2
As2 + TDs + 1)(Tis + 1)

(26)

and possibly also some of the closed-loop poles so (time constants To). In the simplest and
the most robust case, one can choose

b3 = 0; b2 = 0; b1 = 0; (27)

Setpoint step responses can be accelerated by selecting the Fp numerator so that it
cancels one closed-loop time constant To = −1/so = Td/2 (23)

b3 = 0; b2 = 0; b1 = To; (28)

Two closed-loop dominant time constants To can be cancelled by the numerator tuning

b3 = 0; b2 = T2
o ; b2 = 2To; (29)

Three closed-loop dominant time constants To could be cancelled by the numera-
tor tuning

b3 = T3
o ; b2 = 3T2

o ; b2 = 3To; (30)

We will expect the highest parametric sensitivity from this solution, which will mani-
fest itself at least at shorter values of the equivalent delay Te used when setting the low-pass
filters Qn(s) (16).

3.3. Illustrative Examples of PIDA Control

Figure 4 shows example of setpoint and disturbance step responses for an IPDT process
(Tdp = 1) and a PIDA controller with different prefilter tuning completed by a fourth-order
filter with Te = 0.8 tuned by the average residence time equivalence Te = 4Tf . Control
signal (process input) u(t) serves in the first phase of transients to stabilize the output
around the new setpoint signal value w = 1. Because this signal also enters the disturbance
observer, a “phantom” disturbance signal is reconstructed at its output with a delay given
by the time constant Ti, despite the fact that no external disturbance actually occurs. By
using a pre-filter with canceling of several poles of the closed circuit, the setpoint responses
are accelerated, but the sensitivity of the circuit is also increased, which is also manifested in
the partial deformation of the control signal transients at the fastest setting. From the point
of view of the output, however, the responses remain monotonic after the setpoint change.
After the disturbance step, the output monotonically returns to the required setpoint value
with gradual reconstruction and compensation of the external disturbance value. The
correct values of the external constant disturbance are reconstructed only after reaching a
sufficiently close neighborhood of steady states.

When wishing to compensate for piecewise constant input disturbances di ∈ [−0.2, 0],
the control signal constraints must allow the compensating signal −di to be set and at the
same time leave a sufficient reserve for imposing the required dynamics of the circuit, i.e.,
to fulfill for all considered di with a sufficient margin the conditions Umin < −di < Umax.
Figure 5 shows an example of setpoint and disturbance step responses for an IPDT process
(Tdp = 1) and a PIDA controller with different prefilter tuning completed by a fourth-
order filter with Te = 0.8 tuned by the average residence time equivalence Te = 4Tf with
the control signal constraints chosen as (19). In the case of setpoint step responses, the
limitations of the process input are manifested only when using pre-filters with canceling
of several poles of the closed loop. The consequence of the limitation here is an overshoot
of the output over the required setpoint value. In the case of disturbance step responses,
when a significant part of the permissible range of process input is used up to compensate
for an external disturbance, a substantial extension of transient length occurs. From the
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point of view of the control action transition from a fully saturated level to a steady state,
the critical parameter of the controller is the size of the time constant Ti [5,7]. From the
shape of the transient of u(t) with undershoot, which manifests itself during the output
y(t) with overshoot, it can be concluded that the value Ti = 2.583Td (24) is too large.

Figure 4. IPDT process ẏ(t) = u(t− 1) + di and series PIDA controller with different prefilter tuning
corresponding to a setpoint step to w = 1 at t = 0 followed by a disturbance step di = −0.2 at t = 20;
Te = 0.8; n = 4; Pn(s) = (1 + Tf s)4; Tf = Te/4; Ksp = Ks = 1.

Remark 4 (Opposing requirements for choosing Ti). If we want to preserve the good properties
of the stabilizing PDA controller even after the introduction of positive feedback with the time
constant Ti, the value of Ti must be as large as possible and, in addition, the coefficients Kp, Kd and
Ka must be increased (to achieve a quintuple real dominant pole). However, to achieve high-quality
transients with a limited control signal, the value of Ti should be as small as possible.

Calculated controller transfer function (24) and (25) with complex polynomial zeros
T2

As2 + TDs + 1 = 0.0484s2Td2 + 0.4168Tds + 1

s1,2 = (−4.305785124± 1.456492874j)/Td, (31)

however, does not give a direct possibility to choose some smaller time constant from the
calculated parameters for Ti, as was the case in the design of the PID controller in [13,43].
The replacement of the constants appearing in the role Ti can only be realized by neglecting
the imaginary part of the pole (31), when we use the approximation

T2
As2 + TDs + 1 ≈ 0.0538s2T2

d + 0.4640Tds + 1 = (0.2320Tds + 1)2 (32)
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Figure 5. IPDT process ẏ(t) = u(t− 1) + di and constrained series PIDA controller with different
prefilter tuning corresponding to a setpoint step to w = 1 at t = 0 followed by a disturbance
step di = −0.2 at t = 20; Te = 0.8; n = 4; Pn(s) = (1 + Tf s)4; Tf = Te/4; Ksp = Ks = 1;
Umax = 0.22; Umin = −0.02.

In such a case, we recalculate parameters of the controller transfer function (24) as
follows:

Ti = 0.2320Td; Kp =
0.932273 0.232

2.583KsTd
=

0.0837
KsTd

;

TD = 2.583Td + 0.232Td = 2.815Td; Kd = KpTD = 0.2356/Ks;
T2

A = 2.583Td 0.232Td = 0.599T2
d ; Ka = T2

AKp = 0.0502Td/Ks

(33)

Transient responses in Figure 6 indicate the removal of output overshoots and con-
trol signal undershoots, thereby achieving the same number of monotonic sections of
changes at the input and output as with transient responses without control signal sat-
uration. However, setpoint step responses are somewhat slower than with unmodified
controller parameters.
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Figure 6. IPDT process ẏ(t) = u(t− 1) + di and modified constrained series PIDA controller with
different prefilter tuning corresponding to a setpoint step to w = 1 at t = 0 followed by a disturbance
step di = −0.2 at t = 20; Te = 0.8; n = 4; Pn(s) = (1 + Tf s)4; Tf = Te/4; Ksp = Ks = 1;
Umax = 0.22; Umin = −0.02.

4. Calculation of the Series PIDA Controller for the IPDT System Using the Performance
Portrait Method (PPM)

Since the imaginary part of the poles of the polynomial T2
As2 + TDs + 1 should be

neglected to get a polynomial with real time constants applicable as Ti, the analytical re-
tuning of the PIDA controller according to [13,43] provides limited performance. Although
we can calculate the optimal controller settings using analytical methods just approximately,
they are still useful, by offering simplifications and time savings, when we search for
optimal solutions using numerical methods.

The core of the performance portrait method (PPM) is to search all relevant solu-
tions and find the best one based on performance measures. An important advantage
of numerical optimization of controller parameters based on a set (database) of system
responses [44–46] is that it can be easily reused in case of changed specifications for the
target system performance. In the first phase of the method, the transient responses are
determined by simulation or experimentation on a real process with different relevant sets
of control parameters. Then, the closed-loop step responses are evaluated using perfor-
mance measures that approximate actual real-world requirements. The obtained data are
stored in a set (database) of relevant solutions, also referred to as a performance portrait
(PP). After creating a sufficiently large database, it is then relatively easy to find a controller
that comes as close as possible to the expected desired performance. Of course, such a
controller should be included in the final database of solutions.

An important performance specification is that the closed-loop responses should be
as fast as possible, i.e., that the minimum IAE value (1) for the setpoint and disturbance
responses or their weighted combination is guaranteed. Furthermore, the selected con-
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troller should guarantee smooth process responses with a minimum number of monotonic
intervals at the process input and output.

The estimation of the optimal parameters of the series PIDA controller can start
with the modified parameter set (33). To simplify the notation, we introduce here
dimensionless parameters

τi = Ti/Td = 0.2320; κ = KpKsTd = 0.0837;

τD = TD/Td = 2.815; τA =
√

T2
A/T2

d = 0.7741
(34)

The actual experiments resulted in slightly modified parameters to obtain better
transients. Optimal settings are finally found from the performance portrait corresponding
to the parameter ranges

κ ∈ [0.155, 0.2]; ∆κ = 0.005;
τD ∈ [2.6, 3.05]; ∆τD = 0.005;
τA ∈ [0.75, 0.87]; ∆τA = 0.015;
τi ∈ [0.33, 0.45]; ∆τi = 0.015;

(35)

The differences in τi and κ values are mainly due to the simplification in computing
the initial parameter estimates (34).

To simplify the calculations, only one performance portrait based on unit disturbance
steps with control signal constraints Umin = −1.1; Umax = 0.1 was created for process
gain Ks = 1 and delay Tdp = 1. The controller was implemented using the second-order
filter (n = 2) (16) with a relatively small time constant Tf = 0.1. When the half-rule-
equivalence [41] was chosen, the resulting circuit delay was

Td = Tdp + Tf = 1.1 (36)

Optimal transients satisfactorily corresponded to the values

TV1(yd) ≤ εyd ; TV1(ud) ≤ εud ; εyd = εud = 0.001 (37)

whereby

TV1(y) = TV(y)− |2ym − y∞ − y0|; ym /∈ (y0, y∞); TV(y) = ∑i|yi+1 − yi|
TV1(u) = TV(u)− |2um − u∞ − u0|; um /∈ (u0, u∞); TV(u) = ∑i|ui+1 − ui|

(38)

with ym and um representing extreme points separating two monotonic intervals of one-
pulse (1P) disturbance step responses at the process input and output (see, e.g., [13,44]).
The parameters of the optimal controller have been identified as

Kp = 0.1545; TD = 2.9150; Kd = 0.4504; TA = 0.9075; Ka = 0.1272; Ti = 0.3960 (39)

For the loop dead time (36) it yields the following dimensionless parameters:

κ = KpKsTd = 0.17;
τD = TD/Td = 2.650;
τA = TA/Td = 0.825;
τi = Ti/Td = 0.36.

(40)

When comparing the calculated dimensionless setting with the analytically tuned
controllers in Figure 7, the average-residence-time-equivalence [41] yielding Tf = Te/n
was used to calculate the time constant of the fourth-order filter Q4(s) with Te = 0.8, chosen
to be comparable to the process time delay Tdp = 1. Figure 7 shows the responses of the
constrained PIDA controller tuned with the MRDP method (24), the approximate tuning (33)
in which the imaginary part of the numerator zeros of the MRDP controller is neglected, the
PIDA controller with the PPM tuning (40) and the constrained PIDA controller modified by
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the conditioning technique of [14,47]. The corresponding performance measures expressing
the speed and shapes of the transients are shown in Table 1.
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Figure 7. IPDT process ẏ(t) = u(t − 1) + di and constrained series PIDA controller with MRDP
tuning (24), modified approximative tuning (33), PPM tuning (40) and constrained parallel PIDA controller
modified by conditional integration according to [14]: disturbance step di = 1 at t = 0 and di = 0 at
t = 30; Te = 0.8; n = 4; Pn(s) = (1 + Tf s)4; Tf = Te/4; Ksp = Ks = 1; Umax = 0.1; Umin = −1.1.

Table 1. Performance measures IAE, TV1(y) and TV1(u) corresponding to the disturbance steps
y1 = y(t1), u1 = u(t1), di1 = 1, t1 ∈ [0, 30) and y2 = y(t2), u2 = u(t2), di2 = 0, t2 ∈ [30, 60).

IAE1 TV1(y1) TV1(u1) IAE2 TV1(y2) TV1(u2)

MRDP 23.2146 0.2691 0.0570 23.2778 0.3081 0.2865

APR 27.7230 1 ×10−20 0.0056 27.58388 1 ×10−12 0.1924

PPM 14.3636 1 ×10−20 1 ×10−20 14.3527 5 ×10−13 2 ×10−16

AW 23.6241 0.2648 0.0551 23.6981 0.3084 0.2886

The design based on the parallel PIDA controller tuned with the MRDP method and
modified with AW based on the conditioning technique is found to be equivalent to the
series PIDA controller tuned with the MRDP method. However, the approximate design
(APR) with a reduced Ti value (33) shows smoother responses with a minimum number of
monotonic segments at the process output. In addition, the shape deviations at the process
input have been partially decreased, while the IAE values partially increased.

The PPM significantly reduces both the IAE values and the maximum deviations of
the process output signals due to the applied disturbances, while maintaining the minimum
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number of monotonic segments. It is worth noting that excellent closed-loop results were
obtained with the unmodified controller structure, which does not require anti-windup
modifications used in parallel PIDA controllers. Moreover, the series controller structure
directly provides the reconstructed disturbance signal.

4.1. Real-Time Temperature Control

To illustrate the performance of the proposed PIDA schemes in practice, the same
thermo-opto-mechanical system (TOM1A system) as in [14] is used. This process has
already been used to test several well-known types of disturbance observer (DOB) under
the classical state-space approach, the simplified version based on IPDT models in the
ADRC approach, the polynomial approach using inverse process models, and to test the
new version of the disturbance reference model control [14,40,48–51]. Since each of these
DOBs can be combined with higher-order stabilizing controller, and there are too many
possible combinations, we decided not to compare all the mentioned approaches within
the scope of this paper.

The thermal process, consisting of a heat source (light bulb), a temperature sensor
(Pt1000) and a cooling fan, was approximated by the following IPDT model:
Ksp = 0.01, Tdp = 0.3, similar to that used, for example, in [48,51]. By approximating
the fastest possible temperature rise, we meet the requirements derived from the robust
stability analysis in [52]. When controlled by an embedded Arduino-Due controller, the
process can be represented by a simple block in the Matlab/Simulink programming en-
vironment with a sampling period greater than Ts = 15 ms. To highlight the differences
between each of the considered modifications of the PIDA controller, which increase with
the value of Td, the process delay was artificially increased by 0.7 s using a Simulink time
delay block, so that the values

Tdp = 1s; Ksp = 0.01; Te = 0.6s (41)

were taken into account in the design.

4.2. Organization of the Experiment

The use of a simplified IPDT model allows the design of a high quality control loop,
even though the actual dynamics of the controlled process is more complicated. Heat
transfer from the bulb to the sensor is achieved by conduction and radiation, and is
nonlinear, distributed and time-varying, and varies with ambient temperature. This is also
well illustrated by the transient response in Figure 8.

The whole experiment starts with setting the initial temperature y at 30 °C. The actual
transient response is initiated by a step change in the reference set point to w = 40 °C at
t = 100 s. The controller output is limited (at the upper limit u = 100) during most of the
setpoint change.

The initial increase in the setpoint is followed by a decrease in the setpoint to w = 30 °C
at t = 200 s. This temperature setpoint is only slightly higher than the ambient temperature
(≈ 25 °C), which without additional cooling leads to a large asymmetry of the transient
responses. During the output reduction, the controlled variable is mostly around u = 0.

At t = 500 s, a smaller setpoint increase to w = 35 °C is performed, during which the
control signal remains just below the limit, so that a comparison of the transient response
in the “linear” region is possible.

By switching on the fan with an input voltage of of u f = 10, an external distur-
bance step is realized at t = 600 s. The speed of the fan is not stabilized internally and,
together with the turbulent flow, leads to a significant increase in the temperature measure-
ment noise.
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Figure 8. Temperature control corresponding to the series PIDA controllers from previous example
with the simplest prefilter (26) and (27), a setpoint step from w = 30 °C to w = 40 °C at t = 100
followed by a setpoint step to w = 30 °C at t = 200, a setpoint step w = 35 °C at t = 500 and a
disturbance step produced by a fan control u f = 10 applied at t = 600; Td = 1 s; Te = 0.6 s; n = 4;
Pn(s) = (1 + Tf s)4; Tf = Te/4; Ksp = Ks = 0.1.

4.3. Evaluation of the Dynamics of Transient Responses

Since the MRDP-PIDA controller is now used to control a stable system, the overshoot of
the output temperature (beyond the set point, as seen in Figure 9) is lower than it would be in
the case of the actual integrating process. At higher Te values, it may even be absent altogether.
Instead of absolute values of the shape deviations TV0(y) and TV1(y) (38), the relative shape
deviations will be used defined as

tv0(y) = TV0(y)/|y∞ − y0|; TV0(y) = TV − |y∞ − y0|;
tv1(y) = TV1(y)/|2ym − y∞ − y0|;
tv1(u) = TV1(u)/|2um − u∞ − u0|

(42)

These numbers indicate how much the total sum of the absolute values of the indi-
vidual increments is greater than the total useful change of the given signal. Ideally, the
relative shape deviations should take on zero values. The larger the given numbers, the
greater was the range of useless redundant changes of the given signals.

Shape deviations of individual responses are reduced by the fact that they take place
to a considerable extent with the (same) limit value of the control signal and their dynamics
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are about the same. The lowest shape deviations of the MRDP-PIDA controller (see Table 2)
are the result of a longer actuating of the (smooth) limit value of the control signal. The slow
control signal decrease after the setpoint is reached by output is due to thermal conduction
neglected by the IPDT model (the actual process is second-order with an additional zero).
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Figure 9. Detail of temperature control corresponding to the proposed series PIDA controllers with
the simplest prefilter (26) and (27) and a setpoint step from w = 30 °C to w = 40 °C at t = 100
Td = 1 s; Te = 0.6 s; n = 4; Pn(s) = (1 + Tf s)4; Tf = Te/4; Ksp = Ks = 0.1.

Table 2. Performance measures IAE1, tv0(y1), ∆η(y1) and tv1(u1) corresponding to the first setpoint
step with y1 = y(t1), u1 = u(t1), t1 ∈ [100, 200) s, ∆η(y1)—percentage overshoot over the setpoint value.

- IAE1 tv0(y1) ∆η(y1) tv1(u1)

MRDP-PIDA 76.2942 0.5854 3.2934 0.5257

APR-PIDA 75.4978 0.6154 0.5000 0.5317

PPM-PIDA 73.8782 0.6633 0.2994 1.4753

During the setpoint decrease from w = 40 °C to w = 30 °C (see Figure 10 and
Table 3), when the control signal is mostly u = 0, the higher order of the actual process
associated with multiple heat transfer modes is most evident. When testing the MRDP-
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PIDA controller, the process was significantly cooler than with the APR-PIDA and PPM-
PIDA controllers, which gives the lowest IAE value. Since the identified parameters of the
IPDT model actually correspond to heat dissipation by radiation, the controlled system
is significantly slower than the approximate model and there are no major undershoots
in process temperature below the set point—the “fast” controller has enough time to stop
the fall.
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Figure 10. Details of temperature control corresponding to the proposed series PIDA controllers
with the simplest prefilter (26) and (27) and a setpoint step from w = 40 °C to w = 30 °C at t = 200
Td = 1 s; Te = 0.6 s; n = 4; Pn(s) = (1 + Tf s)4; Tf = Te/4; Ksp = Ks = 0.1.

Table 3. Performance measures IAE2, tv0(y2), ∆η(y2) and tv1(u2) corresponding to the second
setpoint step with y2 = y(t2), u2 = u(t2), t2 ∈ [200, 500) s, ∆η(y2)—percentage undershoot below
the setpoint value.

- IAE2 tv0(y2) ∆η(y2) tv1(u2)

MRDP-PIDA 548.3830 1.3706 0.3996 3.2381

APR-PIDA 659.6626 1.0840 0.3000 1.7996

PPM-PIDA 671.9482 1.0808 0.2991 4.2985
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Applying a small setpoint step change at time t = 500 (see Figure 11) shows that, in
the “linear” control range, all three derived PIDA controllers can be considered nearly
equivalent. However, in terms of IAE values, the APR-PIDA is slightly worse than the
MRDP-PIDA; the PPM-PIDA is the best (see Table 4).
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Figure 11. Detail of temperature control corresponding to the proposed series PIDA controllers with
the simplest prefilter (26) and (27) and a “small” setpoint step from w = 30 °C to w = 35 °C at t = 500
Td = 1 s; Te = 0.6 s; n = 4; Pn(s) = (1 + Tf s)4; Tf = Te/4; Ksp = Ks = 0.1.

Table 4. Performance measures IAE3, tv0(y3), ∆η(y3) and tv1(u3) corresponding to the third setpoint
step with y3 = y(t3), u3 = u(t3), t3 ∈ [500, 600) s, ∆η(y3)—percentage overshoot over the setpoint
value.

- IAE3 tv0(y3) ∆η(y3) tv1(u3)

MRDP-PIDA 26.9294 1.2760 0.6000 0.5285

APR-PIDA 27.2956 1.4480 0.6000 0.6453

PPM-PIDA 26.5804 1.3333 0.5988 1.4719

The cooling initiated by switching on the fan voltage u f = 10 leads to turbulent flow
and a significant increase in the measured noise level. Although the IPDT model used
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does not closely correspond to the process behavior due to the given external disturbance
(the waveforms obtained in Figure 12 differ from those in Figure 7), the comparison of the
individual controllers shows approximately the same conclusions as in Table 1: in terms of
IAE values, the APR-PIDA is slightly worse than the MRDP-PIDA; the PPM-PIDA is the
best (see Table 5).
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Figure 12. Details of temperature control corresponding to the proposed series PIDA controllers with
the simplest prefilter (26) and (27) and an external disturbance produced by switching on the fan
voltage u f = 10 at t = 600; Td = 1 s; Te = 0.6 s; n = 4; Pn(s) = (1+ Tf s)4; Tf = Te/4; Ksp = Ks = 0.1.

Table 5. Performance measures IAE4, tv0(y4), η(y4) and tv1(u4) corresponding to the fourth (dis-
turbance) step with y4 = y(t4), u4 = u(t4), t4 ∈ [600, 700) s, η(y4)—output decrease below the
setpoint value.

- IAE4 tv0(y4) η(y4) [°C] tv1(u4)

MRDP-PIDA 9.7366 5.5057 −0.8800 6.7714

APR-PIDA 9.9496 4.4651 −1.0500 8.4301

PPM-PIDA 7.7930 6.2360 −0.7800 16.4729
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5. Inspection of the Constrained Loops by Circle Criterion—The Saturation Nonlinearity

Traditional sensitivity functions Ms and Mp cannot be used to analyze the occurrence
of overshooting when using PIDA control with limited input—the transfer functions of the
linear loop L(s) corresponding to both possible parameterizations of the series controllers
are (ideally) the same. Although we partially violate this equality by approximate factoriza-
tion based on the neglect of imaginary parts, the difference in individual parameterizations
can be seen rather by means of procedures common in the analysis of absolute stability
of nonlinear systems with sector nonlinearity and linear part (see Figure 13 above) by
circle criterion.

-1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2

Re L
s
(j )

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

Im
 L

s
(j

)

T
d
=1, T

e
=1

MRDP-PIDA

APR-PIDA

PPM-PIDA

Critical Disk

Figure 13. Standard nonlinear loop with saturation for analysis of the absolute stability by circle
criterion (above) and Nyquist curve of the linear part Ls(s) (below) drawn with the help of the
average residence time equivalence.

The circle criterion can be considered as a generalization of the Nyquist criterion for
circuits with sector nonlinearity and a linear part described by the transfer function Ls(s). A
nonlinearity u = F(ẽ) satisfies sector conditions [α, β], if it for all ẽ holds α ≤ F(ẽ)/ẽ ≤ β. As
with the Nyquist criterion, the position of the Nyquist curve is used, except that the critical
point −1 of the real axis is replaced by a critical circle defined by vertices −1/α,−1/β on
the real axis. If the transfer function of the linear part Ls(s) does not have an unstable pole
and the Nyquist curve must pass the critical point on the left hand to achieve closed-circuit
stability with an omega increase from 0 to ∞, the same requirement applies to the critical
circle in absolute stability. This means that the Nyquist curve cannot even penetrate the
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critical circle. Fulfillment of the conditions of absolute stability means that we can find c > 0
and δ > 0 such that any closed-loop solution of the system satisfies the following relation

|ẽ(t)| ≤ ce−δt|ẽ(0)|, ∀t > 0 (43)

of a monotonic decrease of the equivalent disturbance ẽ.
In our case, the considered saturation nonlinearity satisfies sector conditions [0, 1].

Such a sector corresponds to the critical circle defined by the points −∞ and −1 of the real
axis, with a radius R → ∞. Its boundary is therefore projected as a vertical line passing
through the point −1 of the real axis (see Figure 13). By transforming the circuit with PIDA
controller from Figure 3 into the standard form in Figure 13, expressing deviations from a
required steady-state, the combination of PDA controller (3) with Qn(s) (16), the positive
feedback 1/(1 + Tis) and process (2) gives

Ls(s) = R(s)Qn(s)S(s)−
1

1 + Tis
(44)

With respect to the critical point (−1, 0j), apparently all Nyquist curves from Figure 13
correspond to stable linear parts Ls(s). However, the critical disk is only crossed by curves
corresponding to the MRDP-PIDA controller. This means that there will be a problem with
meeting the condition (43) of a monotonic decrease of the deviation from the steady state,
which is well demonstrated by previous responses.

6. Discussion

The MRDP method enables a simple analytical design of a PIDA controller while en-
suring nearly ideal dynamics of setpoint and disturbance step responses. If the requirement
is to ensure corresponding shapes of responses even for saturating control, its resulting con-
troller transfer function can be modified by approximate factorization (inspired by [13,43])
with neglect of the imaginary part of numerator zeros. A further increase in dynamics is
possible with the help of PPM.

Although the parallel and series structures yield the same transient responses under
linear control, the responses under limited control are significantly different. The parallel
PIDA control with traditional anti-windup solutions based on conditioning techniques [47]
always result in overshoot [14], while the proposed modified solutions have no or negli-
gible overshoot. As pointed out in the first articles dedicated to the performance portrait
method [44], its advantages are particularly evident when other methods fail. However,
the preliminary design of the controller using the modification of the MRDP method has
significantly contributed to finding intervals for the controller parameters that allow for
optimal control loop dynamics.

From the point of view of calculating the optimal value of Ti, the solved task represents
a typical compromise in engineering applications. However, it should be noted that in
order to study the effect of Ti in combination with a nonlinear saturation block (which
is a special case of sectoral nonlinearity), the control loop must be transformed into a
canonical equivalent circuit with saturation and a linear part [9,53–55]. In such a case,
however, different controller parameterizations correspond to different transfer functions
of the linear part, which could explain the different behavior.

7. Conclusions

This article brought several new results concerning the design of control structures
with reconstruction and compensation of constant input disturbances based on proportional–
derivative–accelerative (PDA) controllers. It was shown how it is possible to create a simple
series PIDA controller with a disturbance observer (DOB) for reconstruction and compensa-
tion of input disturbances consisting of a positive feedback in the form of a low-pass filter
from the (limited) output of the PDA controller. Here, the disturbances are reconstructed by
evaluating steady states. The importance of this interpretation of DOB was confirmed by
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comparing the settings of the original PDA controller and its DOB-based modification, both
of which satisfy multiple real dominant pole (MRDP) conditions. The DOB functionality,
based on the evaluation of steady states, results in a much longer low-pass filter time con-
stant Ti than the closed-loop time constant of the stabilized loop. The article also pointed
out the terminological misnomer of the proposed structure as a series PIDA controller, since
it does not contain an explicit integral action.

It was shown that the MRDP method provides PIDA tuning that results in setpoint
and disturbance step responses with nearly ideal input and output shapes. However, the
constrained series PIDA controller with the MRDP setting already results in transient re-
sponses with some distortions (overshoots) at the process input and output. Experimentally,
the given controller proved to be equivalent to the MRDP-based parallel PIDA controller
with anti-windup circuit using the conditioning technique. The simplest way to eliminate
these swings is to factorize the transfer function of the controller, where we neglect the
imaginary parts of the numerator zeros and choose the smallest of their real time constants
as the integrating (automatic reset) time constant. A simplified version of this procedure
has already been proved for the series PID controller [13].

Even with the optimal setting of the series PIDA controller derived using the per-
formance portrait method, a significant improvement in control performance occurred.
Controllers with automatic reset realized by filtered positive feedback from the stabilizing
controller output still represent the basis of industrial automation. The equivalence of the
transfer functions of the individual solutions in the proportional control band contributed
to their subsequent interpretation among the integrating controllers. However, for the
disturbance responses in Figure 7, or for the real-time responses in Figure 8, the control
signal lies in the linear regions for only a small portion of the transients. Add to this the
fact that the PIDA controller tuned by PPM ensures much better dynamics than the parallel
PIDA controller modified by the conditioning technique, while its design and structure is
also much simpler, and the question arises whether the subject of PID control design is not
ripe for a thorough revision.

As for the novelties of the present paper, besides the unique simple solution to the
saturation control problems, it is worth highlighting the clear solution to the proposal of
the implementation filters, which proved to be dominant in the recently published paper in
terms of robust stability and the resulting dynamics of the circuit with PIDA controllers. In
future research, we will focus on saturation control and robust stability evaluation when
higher-order derivative terms are used.
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Abbreviations
The following abbreviations are used in this manuscript:

1P One-pulse, response with 2 monotonic segments (1 extreme point)
AVR Automatic voltage regulator
AW Anti-windup
IAE Integral of absolute error
IMC Internal model control
IPDT Integrator plus dead time
ITAE Integral of the time weighted absolute error
LFC Load frequency control
MRDP Multiple real dominant pole
PDA Proportional–derivative–accelerative
PI Proportional–integral
PIDA Proportional–integral–derivative–accelerative
PIDD2 Proportional–integral–derivative–second-order derivative
PPM Performance portrait method
TV1 Deviation from 1P shape
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50. Huba, M.; Bisták, P.; Vrančić, D.; Zakova, K. Dead-Time Compensation for the First-Order Dead-Time Processes: Towards a
Broader Overview. Mathematics 2021, 9, 1519. [CrossRef]

http://dx.doi.org/10.1109/TCST.2020.3043447
http://dx.doi.org/10.1007/s10846-021-01322-4
http://dx.doi.org/10.1016/j.ifacol.2022.09.287
http://dx.doi.org/10.1080/00207179.2022.2135019
http://dx.doi.org/10.1002/jnm.3016
http://dx.doi.org/10.1109/TAES.2021.3134751
http://dx.doi.org/10.1016/j.ijepes.2019.105416
http://dx.doi.org/10.1016/j.ijepes.2022.108646
http://dx.doi.org/10.3390/math9121340
http://dx.doi.org/10.1016/j.jfranklin.2021.03.030
http://dx.doi.org/10.1016/j.automatica.2022.110669
http://dx.doi.org/10.3390/app11041671
http://dx.doi.org/10.3390/math9040328
http://dx.doi.org/10.1016/j.jprocont.2013.01.002
http://dx.doi.org/10.3390/math10060971
http://dx.doi.org/10.3390/s22103753
http://dx.doi.org/10.1016/0005-1098(87)90029-X
http://dx.doi.org/10.1016/j.ifacol.2019.08.130
http://dx.doi.org/10.3390/math9131519


Appl. Sci. 2023, 13, 2040 26 of 26
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