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Series solutions for seepage in three
dimensional aquifers
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Abstract

Most models of seepage in homogeneous aquifers assume a two di-
mensional flow regime. We present a series method that can be used to
provide three dimensional solutions for saturated seepage problems in
real time. The aquifer lies on a horizontal aquiclude and can have ar-
bitrary soil surface geometry. We show that exponential convergence
can be achieved for the correct choice of soil surface representation.
The series solutions obtained are used to generate velocity profiles and
streamline solutions, once again in real time. These solutions demon-
strate the significant differences between two and three dimensional
models of seepage.
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1 Introduction

The conservation and effective management of subsurface water resources is
extremely important, particularly in relatively dry countries like Australia.
Quantitative knowledge of the seepage and flow paths through saturated
aquifers is crucial in the development of effective management policies. Un-
fortunately, accurate solutions for the flow field can be extremely difficult to
find, even when the soil profile is fully saturated. This problem is exacerbated
by the large length to depth ratios common in most practical problems. Con-
sequently, most solution techniques are for two dimensional soil profiles [5].
Although these solutions provide valuable insights into an important class
of (simplified) seepage problems, they do not provide any understanding of
seepage in genuinely three dimensional aquifers.
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Analytic series solutions for the flow equations can be obtained for steady
seepage through two dimensional irregular flow domains [1, 2, 3, 4]. Both the
potential solution φ and the conjugate stream function ψ are immediately
available. Unfortunately, for the three dimensional problem, there does not
exist a unique stream function formulation, and a number of the powerful
features of these techniques are not applicable in this case. However, an
analytic series solution can still be obtained for three dimensional seepage
using separation of variables. Here we develop a series method for the three
dimensional problem, where the soil surface can have arbitrary geometry. We
present solutions for the flow field that evince exponential convergence, and
use these solutions to derive velocity fields and stream lines. These solutions
highlight the difference between two and three dimensional models.

In Section 2, a formal mathematical description of the problem is de-
veloped. The series solution method is described in Section 3, followed by
the test problem results in Section 4. Finally, the method and results are
discussed in Section 5.

2 Mathematical problem description

Consider steady seepage through a homogeneous, saturated aquifer that lies
on a horizontal aquiclude with vertical impermeable side boundaries. We
non-dimensionalise the problem in terms of the hydraulic conductivity K
and the depth d of the aquifer at the origin of the coordinate system. Our
non-dimensional variables are φ = φ∗/K , x = x∗/d , y = y∗/d and z = z∗/d .
A schematic of the flow domain is given in Figure 1.

In the saturated domain, the hydraulic head φ(x, y, z) satisfies Laplace’s
equation:

∇2φ = 0 . (1)
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Figure 1: Schematic of the flow domain.
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Along the impermeable aquiclude z = 0 , the normal derivative is zero:

∂

∂z
φ(x, y, 0) = 0 . (2)

On the impermeable, vertical side boundaries x = 0, s and y = 0, r , the
normal derivatives are also zero:

∂

∂x
φ(0, y, z) =

∂

∂x
φ(s, y, z) =

∂

∂y
φ(x, 0, z) =

∂

∂y
φ(x, r, z) = 0 . (3)

On the soil surface z = f t(x, y) (the superscript t indicates the top boundary),
the hydraulic head equals the elevation:

φ(x, y, f t(x, y)) = φt(x, y) = f t(x, y) . (4)

3 Series solution

Separation of variables solves Laplace’s equation (1). We assume a solution
of the form

φ(x, y, z) = X(x)Y (y)Z(z) . (5)

After substitution into the differential equation, we obtain three ordinary
differential equations (odes) for X(x), Y (y) and Z(z):

X ′′
α + α2Xα = 0 , Y ′′

β + β2Yβ = 0 , Z ′′
γ − γ2Zγ = 0 , (6)

where γ2 = α2 + β2 . The eigenvalues α2 and β2 are obtained using the
homogeneous side boundary conditions

X ′
α(0) = X ′

α(s) = 0 , Y ′
β(0) = Y ′

β(r) = 0 , (7)

with solutions

α = mπ/s , m = 0, 1, . . . , β = nπ/r , n = 0, 1, . . . ,
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and the eigenfunctions Xα(x) = cos(mπx/s) and Yβ(y) = cos(nπy/r) .

The solution to the remaining ode for Z becomes

Zγ(z) = Aγ cosh γz +Bγ sinh γz , (8)

where

γ = π

√
m2

s2
+
n2

r2
. (9)

Using the bottom boundary condition (2), the series solution is written sim-
ply as

φ(x, y, z) =
∞∑

m=0

∞∑
n=0

Amn cos
mπx

s
cos

nπy

r
cosh γmnz . (10)

Using vector space notation, the series solution becomes

φ(x, y, z) =
∞∑

m=0

∞∑
n=0

Amnpmn(x, y, z) , (11)

where
pmn(x, y, z) = cos

mπx

s
cos

nπy

r
cosh γmnz . (12)

In vector space notation, the top boundary condition (4) becomes

φt(x, y) = f t(x, y) =
∞∑

m=0

∞∑
n=0

Amnp
t
mn(x, y) , (13)

where
pt(x, y) = p(x, y, f t(x, y)) . (14)

The top boundary condition is now used to determine the series coeffi-
cients Amn and so define fully the solution for the hydraulic head φ(x, y, z).
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3.1 Evaluation of the series coefficients

We adopt a pseudo spectral approach [6] to evaluate the series coefficientsAmn.
First, we truncate the series after m = M − 1 , n = N − 1 terms:

φMN(x, y, z) =
M−1∑
m=0

N−1∑
n=0

Amnpmn(x, y, z) . (15)

The top boundary condition (4) now determines the series coefficients.
We collocate at I × J equally spaced collocation points (xi, yj), where i =
0, 1, . . . , I − 1 , j = 0, . . . , J − 1 , with xi = is/(I − 1) and yj = jr/(J − 1) .
The top boundary condition (4) becomes

φt
MN(xi, yj) = f t(xi, yj) . (16)

We write these equations concisely as

f t
ij =

M−1∑
m=0

N−1∑
n=0

pijmnAmn . (17)

These equations are written in matrix form by transforming m, n, i and j
as follows. Letting k = Mn+m and ` = Ij + i , then k = 0, 1, . . . ,MN − 1 ,
` = 0, 1, . . . , IJ − 1 . The inverse transformations are n = bk/Mc , m =
k −Mn and j = b `

I
c , i = `− Ij . Next, let

ak = Am,n, f t
` = f t(xi, yj) and [P]`k = pijmn . (18)

Then, in matrix form, the series coefficients satisfy

Pa = ft (19)

When M = N = I = J , the matrix P is square and can be solved
directly, assuming P is nonsingular. When IJ > MN and this is not the
case, the discrete least squares approach can be used: PTPa = PTft . This
reduces (19) to a square system, and can now be solved as before, once again
assuming PTP is nonsingular.
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3.2 Velocity profiles and streamlines

The velocity distribution u = (u, v, w) is determined by differentiating the
series solution, assuming the new series converges. That is,

u = −∇φ = −
(
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)
, (20)

and in terms of the series solution

u =
π

s

∞∑
m=1

∞∑
n=0

mAmn sin
mπx

s
cos

nπy

r
cosh γmnz , (21)

v =
π

r

∞∑
m=0

∞∑
n=1

nAmn cos
mπx

s
sin

nπy

r
cosh γmnz , (22)

w = −
∞∑

m=0

∞∑
n=0

γmnAmn cos
mπx

s
cos

nπy

r
sinh γmnz . (23)

The streamlines are determined by suitably integrating the velocity field.
Given the location (x, y, z) of a fluid particle, the velocity of the particle is

(u, v, w) =

(
dx

dt
,
dy

dt
,
dz

dt

)
. (24)

If we now change to a coordinate ξ, the distance measured along the stream-
line and positive in the direction of the flow, then

dξ

dt
= |u| =

√
u2 + v2 + w2 , (25)

and

(u, v, w) =

(
dx

dξ

dξ

dt
,
dy

dξ

dξ

dt
,
dz

dξ

dξ

dt

)
= |u|

(
dx

dξ
,
dy

dξ
,
dz

dξ

)
. (26)

Hence (
dx

dξ
,
dy

dξ
,
dz

dξ

)
=

(u, v, w)√
u2 + v2 + w2

. (27)
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The autonomous system of odes (27) can be solved using standard pack-
ages, or integrated directly. For example, consider the x coordinate:

x =

∫
u√

u2 + v2 + w2
dξ . (28)

These integrals are simply approximated using the following scheme. For the
streamline passing through (xi, yi, zi), the point (xi+1, yi+1, zi+1) estimated
by

(xi+1, yi+1, zi+1) = (xi, yi, zi) + (δx, δy, δz)

= (xi, yi, zi) +
(ui, vi, wi)√
u2

i + v2
i + w2

i

δξ. (29)

will also lie on this streamline. Obviously the success of this scheme will
depend on the size of the increment δξ.

4 Results

We examine the effectiveness of this method on the following test problem.
We choose s = 50 , r = 100 and

f t(x, y) =

(
(a+ 1)

2
− (a− 1)

2
cos

πx

s

) (
(b+ 1)

2
− (b− 1)

2
cos

πy

r

)
, (30)

with a = 1.5 and b = 2 . The series coefficients are calculated accurately and
efficiently using matlab, and this software has been used to generate all the
results shown in this paper. Figure 1 shows a 21 × 21 mesh plot of the soil
surface.
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4.1 Error analysis

The error in the series approximation can be determined by examining the
error in the boundary approximations. Note that the only error (in the least
squared sense) is due to the truncation error

εMN(x, y, z) = φ(x, y, z)− φMN(x, y, z) (31)

in the series approximation, and that this truncation error also satisfies
Laplace’s equation, due to the choice of basis functions. As Laplace’s equa-
tion satisfies a maximum principle, the maximum error will occur on the
boundary. This error bound is an absolute bound—this bound is one of the
most powerful features of the analytic series method.

The root mean squared error εt
MN for the approximation on the boundary

is calculated using

εt
MN =

(∫ s

0

∫ r

0
εMN(x, y, f t(x, y))2 dy dx∫ s

0

∫ r

0
dy dx

)1/2

=

(
1

rs

∫ s

0

∫ r

0

(
f t(x, y)− φt

MN(x, y)
)2
dy dx

)1/2

. (32)

This integral can be estimated using quadrature or by discretising the integral
using the trapezoidal rule. For the soil profile chosen, Figure 2 shows a log
plot of the rms errors (log10 ε

t
mn) versus m and n values ranging from 1 to 20.

It is clear from an examination of Figure 2 that the series is converging
exponentially to machine precision for m,n ≥ 12 . For m = n ≈ 12 , the
series coefficients can be calculated in less than 0.2 seconds on current laptop
computers.

4.2 Velocity and streamline plots

The velocity field can be calculated anywhere in the solution domain, at any
resolution. Figure 3 shows a plot of the velocity field on the soil surface at
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Figure 2: Error plot for the test geometry
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Figure 3: Velocity field on the soil surface.
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Figure 4: Streamlines for the test flow domain.
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the mesh plot points in Figure 1. The velocity field on this grid is gener-
ated in approximately half a second. Note that fluid enters the hill-slope
at (50, 0, 1.5) and seeps from the hill-slope at (0, 100, 2), even though the
elevation is higher at this second point.

The streamlines for the test problem have been calculated using the 11×
11 mesh grid in Figure 1 and are shown in Figure 4. We chose an 11 ×
11 grid instead of the 21 × 21 grid so that the streamlines can be clearly
seen. However, in this case we have only plotted the streamlines at the mesh
points where water is entering the soil—that is, at the upstream mesh points.
We also marked the point where the streamline cuts the soil surface when
the water is seeping out with an arrow. The streamlines can be calculated
using the matlab routine ode43. However, we found that the simple update
scheme (29) gave results with similar accuracy when δξ was chosen so that

δξ <

√
s2 + r2

200
. (33)

This approach had the advantage of being much more efficient to calculate.
Using this approach, the streamline plot presented was calculated in less than
7 seconds on a modern laptop computer (≈ 20 seconds for the 21× 21 grid).
Note that the streamlines in the plot are genuinely three dimensional and
cannot be represented accurately by any two dimensional model.

5 Discussion

We have presented an accurate and very efficient method for solving three
dimensional seepage problems. Exponential convergence of the series solu-
tion has been achieved, thus providing non-trivial solutions to the partial
differential equation that are accurate to machine precision. In addition,
these solutions are calculated in real time—less than one second of elapsed
time. The velocity field and streamline plots are immediately available, once
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again in real time. The solutions for the test problem demonstrate the need
for three dimensional models. No two dimensional model would be able to
predict flow into an unconfined aquifer below a region where there is outflow!
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