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Abstract: In this article, the mathematical modelling on magnetohydrodynamic peristaltic flow of Jeffrey fluid in the gap between two

eccentric tubes has been discussed in the presence of applied magnetic field. Geometrically, we considered two eccentric tubes in which

the inner tube is rigid while the tube at the outer side has a sinusoidal wave propagating along the wall. The governing equations for

Jeffrey fluid in a cylindrical coordinates for three dimensional flow are given. The approximations of low Reynolds number and long

wavelength have been employed to reduce the highly nonlinear partial differential equations. The problem has been solved with the

help of homotopy perturbation method alongwith eigen function expansion method. The graphs of pressure rise, pressure gradient and

velocity (for two and three dimensional flow) have been drawn. The streamlines have also been presented to discuss the trapping bolus

discipline.

Keywords: Peristaltic flow, Eccentric cylinders, Jeffrey fluid, Magnetohydrodynamic (MHD),Nonlinear partial differential equations,

Analytical solutions, HPM.

1 Introduction

Peristaltic pumping is a phenomenon in which fluid
transport happens when a gradually wave of area
contraction or expansion propagates along the length of
distensible duct. It is an instinctive property of many
biological disciplines possessing smooth muscle tubes
which helps in flowing biofluids by its propulsive
movements and is found in the transport of urine from
kidney to the bladder, the movement of chyme in the
gastro-intestinal tract, intra-uterine fluid motion,
vasomotion of the small blood vessels and in many other
glandular ducts. The mechanism of peristaltic transport
has been exploited for industrial applications like sanitary
fluid transport, blood pumps in heart lung machine and
transport of corrosive fluids where the contact of the fluid
with the machinery parts is prohibited. Peristaltic
transport of a Newtonian fluid in a vertical asymmetric
channel with heat transfer and porous medium have been
analyzed by Srinivas and Gayathri [1] . Kothandapani and
Srinivas [2] have examined the peristaltic transport of a

Jeffrey fluid under the effect of magnetic field in
asymmetric channel under the assumptions of long
wavelength and low Reynolds number. A number of
analytical and numerical studies [3,4,5,6] of peristaltic
flows of different fluids have been reported. Mekheimer
[7] measured the effect of magnetic field on peristaltic
transport of blood in a non-uniform two dimensional
channel, when blood is characterized by a couple stress
fluid. In recent years, peristaltic transport through a
concentric annulus has obtained much concentration. A
lot of investigations are available in the literature to study
the effect of an endoscope on peristaltic motion of
Newtonian and non-Newtonian fluids [8,9,10,11,12] The
eccentric annulus is normally not easy to discuss even
without peristalsis. There are only a few studies take into
attention the effect of the eccentricity attribute [13,14].

To be more specific, only one study is available which
discusses the peristaltic flow of a viscous fluid through
eccentric cylinders [15] To the best of author’s
knowledge, the peristaltic flow of non-Newtonian fluid
through the eccentric cylinders has not been explored so
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for. Therefore, the main purpose of the present paper is to
discuss the effect of peristaltic transport on the Jeffrey
fluid flow in the gap between two eccentric tubes, the
outer tube gets the sinusoidal wave propagating down the
wall and the inner tube is rigid. A motivation of the
present work is the anticipation that such a problem will
be beneficial in many clinical applications. This analysis
gives a better judgement for the speed of injection and the
fluid flow characteristics within the syringe. Also, the
injection can be carried out more proficiently and pain of
the patient can be extenuated.

2 Mathematical formulation of the problem

The MHD flow of an incompressible non-Newtonian
Jeffrey fluid is considered here. The flow geometry is
described as the inner tube is rigid and sinusoidal wave is
travelling at the outer tube down its wall. The radius of
the inner tube is δ but we require to consider the fluid
motion to the centre of the outer tube. The centre of the
inner tube is now at the position r = ε , z = 0, where r and
z are coordinates in the cross-section of the pipe as shown
in the Fig. 1. The radially varying magnetic field is
applied normally to the direction of the flow. Then the
boundary of the inner tube is described to order ε by
r1 = δ + ε cosθ, where ε is the parameter that controls
the eccentricity of the inner tube position. The geometry
of the walls is visualized in Fig. 1.

The equations for the radii are

r1 = δ + ε cosθ,

r2 = a+bcos

[
2π
λ

(z− ct)

]
,

where δ and a are the radii of the inner and outer tubes, b
is amplitude of the wave, λ is the wavelength, c is the
propagation velocity and t is the time. the problem has
been considered in the system of cylindrical coordinates
(r,θ,z) as radial, azimuthal and axial coordinates,
respectively.

The continuity and momentum equations for an
incompressible Jeffrey fluid are described as follow

divV = 0, (1)

ρ
dV
dt

=−∇ p+divS+J×B, (2)

where ρ is the density, d/dt is the material time
derivative, V is the velocity field, p is the pressure, S is
the stress tensor for Jeffrey fluid, J is the electric current
density, B is the total magnetic field, b is the body force.
Note that considering the cylindrical coordinates system
for the velocity field V = (v,w,u) and in the absence of
body force, equations (1) and (2) correspondingly take
the following form

∂u
∂ z

+
∂v
∂ r

+
v
r
+

1

r
∂w
∂θ

= 0, (3)

Fig. 1: The simplified model of geometry of the problem.

ρ
[

∂v
∂ t +u ∂v

∂ z + v ∂v
∂ r +

w
r

∂v
∂θ − w2

r

]
=− ∂ p

∂ r +
1
r

∂
∂ r (rSrr)+

1
r

∂
∂θ (Srθ)+

∂
∂ z (Srz)−

Sθθ
r ,

(4)

ρ
[

∂w
∂ t +u ∂w

∂ z + v ∂w
∂ r +

w
r

∂w
∂θ − wv

r

]
=− 1

r
∂ p
∂θ + 1

r2
∂
∂ r

(
r2Srθ

)
+ 1

r
∂

∂θ (Sθθ)+
∂
∂ z (Sθz) ,

(5)

ρ
[

∂u
∂ t +u ∂u

∂ z + v ∂u
∂ r +

w
r

∂u
∂θ

]
=− ∂ p

∂ z +
1
r

∂
∂ r (rSrz)+

1
r

∂
∂θ (Sθz)+

∂
∂ z (Szz)−σB2

0(r)u,

(6)
where v, w and u are the velocity components in r, θ

and z−directions, respectively, µ is the viscosity, Srr, Srθ ,
Srz, Sθθ , Sθz and Szz are stresses for Jeffrey fluid which can
be computed with the help of following stress [11]

S =
µ

1+λ 1

(
·
γ+λ 2

··
γ
)
.

According to the flow geometry, the boundary conditions
are defined as

u = 0, at r = r2, (7)

u =V, at r = r1, (8)

where V is the velocity of the inner tube. The velocity
component in the azimuthal direction is assumed to be
unaffected, so the velocity field is taken as (v,0,u). The
governing equations are made dimensionless by using the
following non-dimensional parameters

p
′
= a2

µcλ p, u
′
= u

c , v
′
= λ

ac v, t
′
= c

λ t, r
′

1 =
r1
a , φ = b

a , δ
′
= δ

a , ε ′
= ε

a , δ0 =
a
λ , z

′
= z

λ ,

r
′

2 =
r2
a , Re = ρca

µ , M
2
(r) =

σB2
0(r)a

2

µ , θ
′
= θ, V

′
= V

c ,
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where φ is the amplitude ratio, M is the MHD parameter,
Re is the Reynold’s number, δ0 is the dimensionless wave
number, ε is the eccentricity parameter. After using the
above dimensionless parameters, the governing equations
(after dropping dashes) are reduced to the following form

∂v
∂ r

+
v
r
+

∂u
∂ z

= 0, (9)

Reδ3
0

[
∂v
∂ t +u ∂v

∂ z + v ∂v
∂ r

]
=− ∂ p

∂ r +
δ
r

∂
∂ r (rSrr)+

δ
r

∂
∂θ (Srθ)+δ2 ∂

∂ z (Srz)−δ Sθθ
r ,

(10)

0 =− 1
r

∂ p
∂θ + δ

r2
∂
∂ r

(
r2Srθ

)
+ δ

r
∂

∂θ (Sθθ)+δ2 ∂
∂ z (Sθz) ,

(11)

Reδ0

[
∂u
∂ t +u ∂u

∂ z

]
=− ∂ p

∂ z +
1
r

∂
∂ r (rSrz)+

1
r

∂
∂θ (Sθz)+δ ∂

∂ z (Szz)−M
2
(r)u.

(12)
The components of non-dimensional stresses for Jeffrey
fluid are evaluated as

Srr =
2δ

1+λ 1

(
1+

λ 2cδ
a

(
∂
∂ t

+ v
∂
∂ r

+u
∂
∂ z

))
∂v
∂ r

,

Srθ =
δ

1+λ 1

(
1+

λ 2cδ
a

(
∂
∂ t

+ v
∂
∂ r

+u
∂
∂ z

))
1

r
∂v
∂θ

,

Srz =
1

1+λ 1

(
1+ λ 2cδ

a

(
∂
∂ t + v ∂

∂ r +u ∂
∂ z

))(
δ2 ∂v

∂ z +
∂u
∂ r

)
,

Sθθ =
2δ

1+λ 1

(
1+

λ 2cδ
a

(
∂
∂ t

+ v
∂
∂ r

+u
∂
∂ z

))
v
r
,

Sθz =
1

1+λ 1

(
1+

λ 2cδ
a

(
∂
∂ t

+ v
∂
∂ r

+u
∂
∂ z

))
1

r
∂u
∂θ

,

Szz =
2δ

1+λ 1

(
1+

λ 2cδ
a

(
∂
∂ t

+ v
∂
∂ r

+u
∂
∂ z

))
∂u
∂ z

.

(13)
Using the long wavelength approximation (δ0 → 0) and
taking M(r) = M

r , the governing equations (10−12) are
simplified to the following form

∂ p
∂ r

= 0, (14)

∂ p
∂θ

= 0, (15)

(1+λ 1)
∂ p
∂ z

=
∂ 2u
∂ r2

+
1

r
∂u
∂ r

+
1

r2

∂ 2u

∂θ2
− (1+λ 1)

M2

r2
u

or

(1+λ 1)
∂ p
∂ z

=
∂ 2u
∂ r2

+
1

r
∂u
∂ r

+
1

r2

∂ 2u

∂θ2
−

N2

r2
u, (16)

where N = M
√

1+λ 1. Eqs. (14) and (15) show that p
is not a function of r and θ . The corresponding boundary
conditions in non-dimensional form are

u = 0, at r = r2 = 1+φcos [2π(z− t)] , (17)

u =V, at r = r1 = δ + ε cosθ. (18)

3 Solution of the problem

Solution of the above boundary value problem is
evaluated by using homotopy perturbation method
[16−17]. The homotopy equation for the given problem
is defined as

H(u,q) = (1−q)(L [ũ]−L [ũ0])+q
(
L [ũ]+ 1

r2
∂ 2ũ
∂θ2 − (1+λ 1)

d p
dz

)
= 0,

(19)

where L , the linear operator is assumed to be L = ∂ 2

∂ r2 +
1
r

∂
∂ r −

N2

r2 . We define the following initial guess

ũ0 =V sinh(N (log [r]− log [r2]))csch(N (log [r1]− log [r2])) .
(20)

Now we describe

ũ(r,θ,z, t,q) = u0 +qu1 + ... (21)

Using the above equation into Eq. (19) and then taking the
terms of first two orders, we get the following problems
alongwith corresponding boundary conditions

Zeroth order system

L [u0]−L [ũ0] = 0, (22)

u0 = 0, at r = r2, (23)

u0 =V, at r = r1. (24)

The solution of the above zeroth order system can be
obtained by using Eq. (20) and is directly written as

u0 (r,θ,z, t,q) = ũ0 =V sinh(N (log [r]− log [r2]))csch(N (log [r1]− log [r2])) .

(25)
First order system

L [u1]+L [ũ0]+
1

r2

∂ 2u0

∂θ2
− (1+λ 1)

d p
dz

= 0 (26)

or

∂ 2u1

∂ r2
+

1

r
∂u1

∂ r
−

N2

r2
u1 = (1+λ 1)

d p
dz

−
1

r2

∂ 2u0

∂θ2
, (27)

u1 = 0, at r = r2, (28)

u1 = 0, at r = r1. (29)

The solution of the above linear ordinary differential
equation is found as

u1 =
1

4N(N2−4)

(
csch

(
N log

[
r1
r2

])((
−4N d p

dz r2
2 + f

(
N2 −4

)
log

[
rr1

r2
2

])
×

sinh
(

N log
[

r
r1

])
− f

(
N2 −4

)
log

[
r
r1

]
sinh

(
N log

[
rr1

r2
2

])
+4N d p

dz

(
r2

1 sinh
(

N log
[

r
r2

])
−

r2 sinh
(

N log
[

r1
r2

]))
−4N d p

dz

(
r2

2 sinh
(

N log r
r1

)
− r2

1 sinh
(

N log r
r2

)
+

r2 sinh

(
N log

r1

r2

))
λ 1

))
, (30)
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where

f = 1

(δ+ε cosθ)2

(
NVε csch

(
N log

[
δ+ε cosθ

r2

])(
(ε +δ cosθ)coth

(
N
(

log
[

δ+ε cosθ
r2

]))
+

Nε
(

1+2csch2

(
N

(
log

[
δ + ε cosθ

r2

])))
sin2 θ

))
.

Now for q → 1, we approach the final solution. So from
Eq. (21) , we get

u(r,θ,z, t) = u0 +u1, (31)

where u0 and u1 are defined in Eqs. (25) and (30) . The
instantaneous volume flow rate Q(z, t) is given by

Q(z, t) = 2π
∫ r2

r1

rudr, (32)

Q/2π= 1

4N(N2−4)
2

((
N2 +4

)(
2 f r2

2 +N d p
dz

(
r4

1 − r4
2

))
+8N

(
N2 −4

)
r2

1V −2 f
(
N2 +4

)
r2

1×

cosh
(

N log
[

r1
r2

])
+2N csch

(
N log

[
r1
r2

])(
2Nr2

2

(
2

d p
dz r2

1 +
(
N2 −4

)
V
)
− f

(
N2 −4

)
r2

1×

log
[

r1
r2

])
−2N coth

(
N log

[
r1
r2

])(
2N

(
d p
dz

(
r4

1 + r4
2

)
+
(
N2 −4

)
r2

1V
)
− f

(
N2 −4

)
r2

2×

log
[

r1
r2

])
+8 f Nr2

1 sinh
(

N log
r1
r2

)
+N d p

dz

((
N2 +4

)(
r4

1 − r4
2

)
−4N

(
r4

1 + r4
2

)
coth

(
N log

r1
r2

)
+

8Nr2
1r2

2 csch

(
N log

r1

r2

))
λ 1

)
. (33)

The mean volume flow rate Q over one period is given as
Mekheimer et. al. [15]

Q(z, t) = Q
π − φ2

2
+2φcos [2π(z− t)]+φ2 cos2[2π(z− t)],

(34)
where Q is the time average of the flow over one period of
the wave. Now we can evaluate pressure gradient d p/dz
by solving Eqs. (33) and (34) and is obtained as

d p
dz =

(
2
(
−4 f πr2

2 +N
(

2
(
N2 −4

)2
Q+π

(
f Nr2

2 −4
(
N2 −4

)
r2

1V
))

+N
(
N2 −4

)2 πφ×

(4cos [2π(z− t)] +φcos [4π(z− t)])+ f
(
N2 +4

)
πr2

1 cosh
(

N log
[

r1
r2

])
+

Nπcsch
(

N log
r1
r2

)(
2 f r2

1 −2N
(
N2 −4

)
r2

2V + f r2
1

(
2cosh

(
2N log

r2
r1

)
+

(
N2 −4

)
log

r1
r2

)
+
(
N2 −4

)
cosh

(
N log

[
r1
r2

]) (
2Nr2

1V + f r2
2 log

[
r2
r1

]))))
/

(
Nπ

((
N2 +4

)(
r4

1 − r4
2

)
−4N

(
r4

1 + r4
2

)
coth

(
N log

[
r1
r2

])
+

8Nr2
1r2

2 csch

(
N log

[
r1

r2

])
(1+λ 1)

)
. (35)

The pressure rise ∆ p(t) in non-dimensional form is
defined as

∆ p(t) =
∫ 1

0

∂ p
∂ z

dz. (36)

4 Results and discussions

The analytical and numerical results obtained above for
the given analysis are discussed graphically in this
section. The comparison table and graph of the results
found in the present case with that of the previous one are
presented. The graphical treatment for the data of
pressure rise ∆ p, pressure gradient d p/dz and velocity

profile u(r,θ,z, t) with the variation of all emerging
dimensionless parameters like time t, flow rate Q,
amplitude ratio φ, the velocity of the inner tube V, the
eccentricity parameter ε, Jeffrey fluid parameter λ 1 and
the MHD parameter M has been analyzed. In the end, the
stream lines observing the peristaltic flow are drawn for
the parameters M, Q, λ 1 and φ while other parameters
remain fixed.

Table. 1 is shown to see the matching of results for the
current case and the previously discussed case.

Table 1: Variation of velocity distribution for r.
Mekheimer et al. [15] Present work

r u(r,θ,z, t) u(r,θ,z, t) f orM = 0,λ 1 = 0 u(r,θ,z, t) f orM = 0.5,λ 1 = 1.0
0.20 0.1000 0.1000 0.1000

0.25 0.1093 0.1081 0.0969

0.30 0.1119 0.1116 0.0944

0.35 0.1119 0.1120 0.0918

0.40 0.1096 0.1099 0.0887

0.45 0.1054 0.1057 0.0848

0.50 0.0995 0.0997 0.0801

0.55 0.0919 0.0920 0.0743

0.60 0.0829 0.0829 0.0674

0.65 0.0724 0.0723 0.0593

0.70 0.0606 0.0604 0.0501

0.75 0.0474 0.0472 0.0395

0.80 0.0329 0.0327 0.0277

0.85 0.0171 0.0170 0.0145

0.90 0.0000 0.0000 0.0000

The comparison graph for the values obtained in
present work with the results of Mekheimer et. al. [15] is
displayed in Fig. 2. The graphs for the pressure rise
∆ p(t) versus flow rate Q under the effects of given
parameters are drawn in Figs. 3-7. These graphs show the
pumping regions, that is, the peristaltic pumping
(Q > 0, ∆ p > 0) , the augmented pumping
(Q > 0, ∆ p < 0) and the retrograde pumping
(Q < 0, ∆ p > 0) . The pressure gradient d p/dz against
the the coordinate z with the variation of pertinent
parameters are shown in Figs. 8-12. The velocity field
u(r,θ,z, t) versus the radial coordinate r is plotted in
Figs. 13-17 for both two and three dimensions. The
stream line graphs are shown in Figs. 18-21.

Fig. 2: Variation of velocity distribution with r for fixed δ = 0.1,
θ = 0.01, φ = 0.1, z = 0, t = 0.5, V = 0.1, ε = 0.1, Q = 0.6.

It is observed from Fig. 2 that the results obtained in
the present case are in good agreement with that of
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previous calculations in most part of the geometry. It is
also observed that the presence of magnetic field for
Jeffrey fluid causes to slow down the flow.

Fig. 3: Variation of pressure rise ∆ p with Q for fixed δ = 0.1,
φ = 0.2, t = 0.1, M = 0.5, V = 0.5, λ 1 = 1.5.

Fig. 3 is plotted to see the variation of pressure rise
for different values of the eccentricity parameter ε and the
angle θ while all other parameters are kept fixed. It is
observed that peristaltic pumping region is in between
Q ∈ [0,0.9] , augmented pumping is in Q ∈ [0.9,2] and
retrograde pumping part is Q ∈ [−1,0]. It is also observed
from this graph that the pressure rise increases with the
variation of ε but decreases with the angle θ in between
the region Q ∈ [−1,0.9] and opposite behavior is seen in
the remaining part. The graph of pressure rise for the
parameter M and δ is plotted in Fig. 4.

Fig. 4: Variation of pressure rise ∆ p with Q for fixed ε = 0.01,
φ = 0.2, t = 0.1, θ = 500, V = 0.5, λ 1 = 1.5.

The peristaltic pumping occurs in the region
Q ∈ [0,0.6] , augmented pumping is in Q ∈ [0.6,2] and
retrograde pumping part is Q ∈ [−1,0] . It is clear that the
similar behavior is seen in this case for the parameter M
but the opposite attitude is observed with the variation of
δ as compared to that of ε and θ. It tells that the flow rate
decreases with M while increases with δ, so this shows
that the back flow increases and decreases with M and δ,
respectively.

Fig. 5 shows that the peristaltic pumping part is Q ∈
[0,0.3] , while augmented and retrograde pumping regions
are Q∈ [0.3,2] and Q∈ [−1,0] , respectively. The variation

Fig. 5: Variation of pressure rise ∆ p with Q for fixed δ = 0.1,
M = 0.5, t = 0.1, θ = 500, V = 0.5, λ 1 = 1.5.

of pressure rise ∇ p for V is similar to that of M (See Fig.
6).

Fig. 6: Variation of pressure rise ∆ p with Q for fixed ε = 0.01,
M = 0.5, t = 0.1, θ = 500, φ = 0.2, λ 1 = 1.5.

Fig. 7: Variation of pressure rise ∆ p with Q for fixed ε = 0.01,
M = 0.5, t = 0.1, θ = 500, φ = 0.2, V = 0.5, λ 1 = 1.5.

Fig. 7 indicates the effect of the parameters λ 1 and δ
upon pressure rise. This plot reveals that the peristaltic
pumping area lies in between Q ∈ [0,0.6] , the retrograde
pumping appears in the part Q ∈ [−1,0] and the
augmented pumping region is Q ∈ [0.6,2] . The pressure
gradient d p/dz for the parameters M and δ is drawn in
Fig. 8.

It is measured from this figure that pressure gradient
is in linear relation with both of the parameters in
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Fig. 8: Variation of pressure gradient d p/dz with z for fixed ε =
0.01, V = 0.3, t = 0.3, θ = 500, φ = 0.1, Q = 0.5, λ 1 = 1.5.

narrowest parts of the cylinders but inverse relation is
seen in the wider parts. The variation of pressure gradient
with the parameters φ and ε is very much similar to that
of the parameters M and δ and is shown in Fig. 9.

Fig. 9: Variation of pressure gradient d p/dz with z for fixed δ =
0.1, V = 0.3, t = 0.3, θ = 500, M = 0.5, Q = 1, λ 1 = 1.5.

The only difference is that the pressure gradient is
minimum on the left and right sides of the cylinder while
appears maximum at the centre. It means that flow can
easily pass without imposition of large pressure gradient
in the two sides of the channel while much pressure
gradient is required to maintain the flux in the central part
near z = 0.8. This is in good agreement with the physical
condition.

Fig. 10: Variation of pressure gradient d p/dz with z for fixed

ε = 0.01,V = 0.3, t = 0.3, θ = 500, M = 0.5, φ= 0.1, λ 1 = 0.5.

Fig. 11: Variation of pressure gradient d p/dz with z for fixed

ε = 0.01, Q = 0.5, t = 0.3, θ = 500, M = 0.5, φ= 0.1, λ 1 = 0.5.

It can be observed from Figs. 10 and 11 that the
pressure gradient increases with the parameters Q and V ,
while when δ is increased the pressure gradient decreases
on the left and right sides but increases at the centre of the
cylinders. It is also seen that the variation of pressure
gradient remains same in the two sides of the channel and
become different at the central part with changing V but
this variation remains same throughout for the parameter
Q. The pressure gradient graph for the parameters λ 1 and
δ is drawn in the Fig. 12.

Fig. 12: Variation of pressure gradient d p/dz with z for fixed

ε = 0.01, Q = 0.5, t = 0.3, θ = 500, M = 0.5, φ = 0.1, V = 0.3.

It is seen here that the pressure gradient increases with
δ at the middle but decreases at the two sides of the
cylinders. However, the effect of the parameter λ 1 is
totally opposite with that of δ.

Fig. 13: Variation of velocity profile u with r for fixed ε = 0.1,
Q = 0.5, t = 0.5, z = 0, V = 0.1, θ = 500, φ = 0.1, λ 1 = 1.5.
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The Fig. 13 shows that the velocity field is an
increasing function of the parameter δ while decreasing
with the parameter M. The velocity field is in inverse
relation with Q but have a direct variation with ε (See Fig.
14).

Fig. 14: Variation of velocity profile u with r for fixed δ = 0.1,
M = 0.5, t = 0.5, z = 0, V = 0.1, θ = 500, φ = 0.1, λ 1 = 1.5.

Fig. 15: Variation of velocity profile u with r for fixed Q = 0.1,
M = 0.5, ε = 0.01, z = 0, V = 0.1, θ = 500, λ 1 = 1.5.

It is observed from Fig. 15 that the velocity distribution
is increasing with δ and φ while reducing for t.

Fig. 16: Variation of velocity profile u with r for fixed Q = 0.1,
M = 0.5, t = 0.5, ε = 0.1, z = 0, δ = 0.2, θ = 500, λ 1 = 1.5.

Fig. 16 shows that the velocity profile is linearly
changing with φ and V .

From Fig. 17, it is measured that velocity is lessened
with the increasing effect of the parameter λ 1. It is also
observed that velocity is decreasing function of δ in the
region r ∈ [0.2,0.4], while increasing on the rest of the
domain.

Fig. 17: Variation of velocity profile u with r for fixed Q = 0.5,
M = 0.5, t = 0.5, ε = 0.1, z = 0, θ = 500, φ = 0.1, V = 0.1.

Fig. 18: Stream lines for different values of M. (a) for M = 0.3,
(b) for M = 0.4, (c) for M = 0.5, (d) for M = 0.6. The other

parameters are ε = 0.4, V = 0.3, t = 0.2, θ = 500, φ = 0.05,
Q = 0.6, δ = 0.05, λ 1 = 1.

Fig. 18 is drawn to see the stream lines for the
parameter M. It is measured from this figure that numbers
of bolus are not changing but size is increasing with the
increasing effects of M in the bottom of the cylinder,
while bolus are lessened in number when seen in the
upper part. The boluses are reduced both in size and
number when seen for the parameter Q in both parts of
the geometry (see Fig. 19).

Fig. 19: Stream lines for different values of Q. (a) for Q = 0.6,
(b) for Q = 0.7, (c) for Q = 0.8, (d) for Q = 0.9. The other

parameters are ε = 0.4, V = 0.3, t = 0.2, θ = 500, φ = 0.05,
M = 1, δ = 0.05, λ 1 = 1.
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Fig. 20: Stream lines for different values of φ. (a) for φ = 0.05,
(b) for φ = 0.1, (c) for φ = 0.15, (d) for φ = 0.2. The other

parameters are ε = 0.4,V = 0.3, t = 0.2, θ = 500, Q = 0.6, M =
0.4, δ = 0.05, λ 1 = 1.

It is seen from Fig. 20 that the numbers of bolus are
decreasing with different values of the parameter φ in
both sides of the cylinder but in the lower half of the
channel, the bolus becomes smaller with increasing
magnitude of the parameter φ. Fig. 21 reveals the fact that
when we increase the value of the parameter λ 1, the
boluses decreased in number but expanded in size.

Fig. 21: Stream lines for different values of λ 1. (a) for λ 1 = 0.5,
(b) for λ 1 = 0.7, (c) for λ 1 = 0.9, (d) for λ 1 = 1.1. The other

parameters are ε = 0.4,V = 0.3, t = 0.2, θ = 500, Q = 0.6, M =
1, δ = 0.05, φ = 0.05.
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