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Summary. In this paper, the unsteady boundary-layer flow of a micropolar fluid started impulsively from

rest near the forward stagnation point of a two-dimensional plane surface is studied by means of an

analytic approach, namely homotopy analysis method. This approach gives accurate approximations

uniformly valid for all dimensionless time. Besides, analytic results are given for the reduced velocity and

microrotation profiles, as well as for the skin friction coefficient when the material parameter K takes the

value K=0 (Newtonian fluid), 1, 3, 5 and 10. To the best of our knowledge, such a kind of series solutions

has been never reported.

1 Introduction

Stagnation point flows are classic problems in the field of fluid dynamics and have been

investigated by many researchers. These flows can be viscous or inviscid, steady or unsteady,

two-dimensional or three-dimensional, normal or oblique, and forward or reverse. Hiemenz [1]

and Homann [2] initiated the study of two-dimensional and axisymmetric three-dimensional

stagnation point flows, respectively. Wang [3] made an analysis on radial steady stagnation

point flows that impinged axisymmetrically on a circular cylinder. Gorla [4] investigated the

boundary-layer flow of a micropolar fluid near an axisymmetric stagnation point on a cylinder.

Proudman and Johnson [5], and Robins and Howarth [6] studied the unsteady boundary layer

flow near a two-dimensional rear stagnation point of a cylinder which started impulsively with

a constant velocity normal to the surface of the plane. Howarth [7], [8] extended the work of

Proudman and Johnson [5] and Robins and Howarth [6] on boundary-layer growth at a two-

dimensional rear stagnation point to the axisymmetric (e.g., the rear of a sphere) and three-

dimensional rear stagnation points. Further, Katagiri [9] considered the unsteady flow at the

forward stagnation point in the presence of a uniform magnetic field. Burdé [10] investigated

the effects of blowing through a porous flat surface on the unsteady stagnation point flow. Lok

et al. [11] solved the unsteady boundary-layer flow of a micropolar fluid which was started

impulsively with a constant velocity from rest near the forward stagnation point of an infinite

plane wall.

It is worth mentioning that studies of micropolar fluids have recently received considerable

attention due to their application in a number of processes that occur in industry. Such
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applications include the extrusion of polymer fluids, solidification of liquid crystals, cooling of a

metallic plate in a bath, animal bloods, exotic lubricants and colloidal and suspension solu-

tions, for example, for which the classical Navier-Stokes theory is inadequate.

The essence of the theory of micropolar fluid flow lies in the extension of the constitutive

equations for Newtonian fluids so that more complex fluids can be described by this theory. In

this theory, rigid particles contained in a small fluid volume element are limited to rotation

about the center of the volume element described by the micro-rotation vector. Physically

micropolar fluids may be described as the non-Newtonian fluids consisting of dumb-bell

molecules or short rigid cylindrical elements, polymer fluids, fluid suspensions, animal blood,

etc. The presence of dust or smoke, particularly in a gas, may also be modelled using micro-

polar fluid dynamics. The theory of micropolar fluids, first proposed by Eringen [12], [13] is

capable of describing such fluids. The key points to note in the development of Eringens

microcontinuum mechanics are the introduction of new kinematic variables, e.g., the gyration

tensor and microinertia moment tensor, and the addition of the concept of body moments,

stress moments, and microstress averages to classical continuum mechanics. However, a serious

difficulty is encountered when this theory is applied to real, nontrivial flow problems; even for

the linear theory, a problem dealing with simple microfluids must be formulated in terms of a

system of nineteen partial differential equations in nineteen unknowns, and the underlying

mathematical problem is not easily amenable to solution. These special features for micropolar

fluids were discussed in a comprehensive review paper of the subject and application of mi-

cropolar fluid mechanics by Ariman et al. [14], and in the recent books by Lukaszewicz [15] and

Eringen [16].

The aim of the present paper is to study the unsteady boundary-layer flow of a micropolar

fluid, which is started impulsively toward the wall from rest near the forward stagnation point

of an infinite plane wall and to obtain the series solutions of this problem. To the best of our

knowledge, no one has reported such kind of series solutions which are valid for all time

0 � s <1 in the whole region 0 � g <1. Recently, Liao [17] proposed a new analytic method

for highly nonlinear problems, namely the homotopy analysis method (HAM). Different from

perturbation techniques [18], the homotopy analysis method does not depend upon any small

or large parameters and thus is valid for many nonlinear problems in science and engineering.

Besides, it logically contains other non-perturbation techniques such as Lyapunov’s small

parameter method [19], the d-expansion method [20], and Adomian’s decomposition method

[21]. The homotopy analysis method has been successfully applied to many nonlinear problems

[22]–[25].

2 Mathematical description

Consider the unsteady boundary-layer flow of a micropolar fluid near the forward stagnation

point of an infinite plane wall. As shown in Fig. 1a, the fluid, which occupies a semi-infinite

domain bounded by an infinite plane and remains in rest for time t < 0, starts to move

impulsively toward the wall at t ¼ 0. Cartesian coordinates ðx; yÞ fixed in space are taken, the

x-axis being along the wall and the y-axis normal to it, respectively. It is well known that the

boundary-layer equations governing the unsteady flow of a viscous micropolar fluid with

constant properties are, see Rees and Bassom [27],

@u

@x
þ @v

@y
¼ 0; ð1Þ
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þ u
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þ v

@N

@y

� �
¼ c

@2N

@y2
� j 2N þ @u

@y

� �
; ð3Þ

subject to the initial/boundary conditions

t < 0 : uðt;x; yÞ ¼ 0; vðt;x; yÞ ¼ 0; Nðt;x; yÞ ¼ 0; ð4:1Þ

t ¼ 0 : uðt;x;1Þ ¼ ueðt;xÞ; Nðt;x;1Þ ¼ 0; ð4:2Þ

t > 0 : u ¼ 0; v ¼ 0; N ¼ �n
@u

@y
at y ¼ 0; ð4:3Þ

u! ueðxÞ; N ! 0 as y!1; ð4:4Þ

where u and v are the velocity components along x- and y-axes, N is the component of the

micro-rotation vector normal to the x-y plane, q is the density, l is the absolute viscosity, j is

the vortex viscosity, c is the spin-gradient viscosity given by c ¼ ðlþ j=2Þj (see [28]), j is the

micro-inertia density, n 2 ½0; 1� is a constant, and ueðxÞ is the free stream velocity defined by

ueðxÞ ¼ ax with að> 0Þ being a constant of dimension t�1. We follow the work of many

authors by assuming that j is a constant, and therefore it will be set equal to a reference value,

say j0 ¼ m=a. It should be mentioned that the boundary-layer equations (1)–(3) are valid for

large values of the Reynolds number Re ð� 1), where Re ¼ U1L=m with U1 being the constant

free stream velocity, L is a characteristic length and m is the kinematic viscosity of the fluid.

Thus the constant a can be defined as a ¼ U1=L (for more details, refer to [26]).

Note that the case n ¼ 0, which indicates N ¼ 0, represents concentrated particle flows in

which the microelements close to the wall surface are unable to rotate (Jena and Mathur [30]).

This case is also known as the strong concentration of microelements (see Guram and Smith

[31]). The case n ¼ 1=2 indicates the vanishing of the anti-symmetric part of the stress tensor

and denotes weak concentration [32] of microelements. The case n ¼ 1, as suggested by Ped-

U–

x

y

x

y

a

b

Fig. 1. Unsteady flow of a micropolar
fluid in the regions of stagnation

points: a forward stagnation point;
b rear stagnation point (see [26])
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dieson [33], is used for the modelling of turbulent boundary layer flows. We shall consider here

both the cases n ¼ 0 and n ¼ 1=2, respectively. However, it is easily shown that for n ¼ 1=2 the

governing equations can be reduced to the classical problem of unsteady boundary layer flow of

a viscous and incompressible fluid (Newtonian fluid) near the forward stagnation point of a

plane wall.

Let w denote the stream function. Following Nazar et al. [29] and Lok et al. [11], we use the

new similarity transformations

w ¼
ffiffiffiffiffi
am
p

xn f ðg; nÞ; N ¼
ffiffiffiffiffi
a3

m

r
x

n
gðg; nÞ; g ¼

ffiffiffi
a

m

r
y

n
; n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� expð�4sÞ

p
; s ¼ at: ð5Þ

Thus, Eqs. (2) and (3) become

ð1þ KÞ fggg þ ð1� n2Þ 2gfgg � 2nfgn
� �

þ Kgg þ n2 1þ ffgg � f 2
g

h i
¼ 0; ð6Þ

1þ K

2

� �
ggg þ ð1� n2Þ 2gþ 2ggg � 2ngn

� �
þ n2

fgg � gfg � K 2gþ fgg
� �� �

¼ 0; ð7Þ

subject to the boundary conditions

f ð0; nÞ ¼ fgð0; nÞ ¼ 0; gð0; nÞ ¼ �nfggð0; nÞ; fgð1; nÞ ¼ 1; gð1; nÞ ¼ 0; ð8Þ

where K ¼ j=l is the material parameter.

When n ¼ 0, corresponding to s ¼ 0, we have

ð1þ KÞ fggg þ 2gfgg þ Kgg ¼ 0; ð9Þ

1þ K

2

� �
ggg þ 2gþ 2ggg ¼ 0; ð10Þ

and when n ¼ 1, corresponding to s!1, we have

ð1þ KÞfggg þ Kgg þ 1þ ffgg � f 2
g ¼ 0; ð11Þ

ð1þ K

2
Þggg þ fgg � gfg � K 2gþ fgg

� �
¼ 0: ð12Þ

Further, we notice that for n ¼ 1=2 (weak concentration of microelements), it holds

g ¼ � 1

2
fgg; ð13Þ

and Eqs. (6) and (7) reduce to the following form:

1þ K

2

� �
fggg þ ð1� n2Þ 2gfgg � 2nfgn

� �
þ n2 1þ ffgg � f 2

g

h i
¼ 0; ð14Þ

subject to the boundary conditions

f ð0; nÞ ¼ 0; fgð0; nÞ ¼ 0; fgð1; nÞ ¼ 1: ð15Þ

Accordingly, when n ¼ 0, corresponding to s ¼ 0, we have

1þ K

2

� �
fggg þ 2gfgg ¼ 0; ð16Þ

and when n ¼ 1, corresponding to s!1, we have

1þ K

2

� �
fggg þ 1þ ffgg � f 2

g ¼ 0: ð17Þ
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The local skin friction coefficient Cf is defined as

Cf ¼
sw

qðaxÞ
ffiffiffiffiffi
ma
p ;

where sw is the wall skin friction given by

sw ¼ ðlþ jÞ @u

@y
þ jN

� 	
y¼0

: ð18Þ

Using variables (5) and the boundary conditions (8), we obtain

Cf ¼
1

n
½ð1þ ð1� nÞK � @

2f

@g2

� �
g¼0

: ð19Þ

3 Homotopy analysis solution

To enhance the convergence of our approximations, we introduce the transformation

f ¼ kg; ð20Þ

where k > 0 is a spatial-scale parameter. Using (20), Eqs. (6) and (7) become

ð1þ KÞk3
ffff þ ð1� n2Þk 2ffff � 2nffn½ � þ Kkgf þ n2 1þ k2

ffff � k2
f 2
f

h i
¼ 0; ð21Þ

ð1þ K

2
Þk2

gff þ ð1� n2Þ 2gþ 2fgf � 2ngn½ � þ n2 kfgf � kgff � K 2gþ k2
fff

� �� �
¼ 0; ð22Þ

subject to the boundary conditions

f ð0; nÞ ¼ ffð0; nÞ ¼ 0; gð0; nÞ ¼ �nk2
fffð0; nÞ; ffð1; nÞ ¼ k; gð1; nÞ ¼ 0: ð23Þ

From the boundary conditions (23), it is obvious that f ðf; nÞ and gðf; nÞ can be expressed by a

set of base functions

fn2k fm expð�nfÞj k � 0; n � 0; m � 0g ð24Þ

in the form

f ðf; nÞ ¼
Xþ1
k¼0

Xþ1
m¼0

Xþ1
n¼1

ak
m;nn2kfm expð�nfÞ; ð25Þ

gðf; nÞ ¼
Xþ1
k¼0

Xþ1
m¼0

Xþ1
n¼1

bk
m;nn2kfm expð�nfÞ; ð26Þ

where ak
m;n and bk

m;n are coefficients. These provide us with Solution Expressions for f ðf; nÞ and
gðf; nÞ, respectively. Based on the boundary conditions (23) and Solution Expressions denoted

by (25) and (26), it is straightforward to choose

f0ðf; nÞ ¼ k½expð�fÞ þ f� 1�; g0ðf; nÞ ¼ 0; ð27Þ

as the initial approximations of f ðf; nÞ and gðf; nÞ, and besides to choose

Lf ½Fðn; f; qÞ� ¼ @
3F

@f3
� @F

@f
; ð28Þ

Lg½Gðn; f; qÞ� ¼ @
2G

@f2
� G; ð29Þ
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as the auxiliary linear operators, which have the following properties:

Lf ½C1 expð�fÞ þ C2 expðfÞ þ C3� ¼ 0; ð30Þ

Lg½C4 expð�fÞ þ C5 expðfÞ� ¼ 0; ð31Þ

respectively, where C1, C2, C3, C4 and C5 are constants. From Eqs. (21) and (22), we are led to

define the nonlinear operators

Nf ½Fðf; n; qÞ� ¼ ð1þ KÞk3 @
3F

@f3
þ ð1� n2Þk 2f

@2F

@f2
� 2n

@2F

@f@n

� 	

þ Kk
@G

@f
þ n2 1þ k2

F
@2F

@f2
� k2 @F

@f

� �2
" #

; ð32Þ

Ng½Gðf; n; qÞ� ¼ ð1þ K

2
Þk2 @

2G

@f2
þ ð1� n2Þ 2Gþ 2f

@G

@f
� 2n

@G

@n

� 	

þ n2 kF
@G

@f
� kG

@F

@f
� K 2Gþ k2 @

2F

@f2

� �� 	
: ð33Þ

Then, let �hf and �hg denote the auxiliary parameters. We construct the zeroth-order deformation

equations

ð1� qÞLf ½Fðf; n; qÞ � f0ðf; nÞ� ¼ q �hf Nf ½Fðf; n; qÞ;Gðf; n; qÞ�; ð34Þ

ð1� qÞLg½Gðf; n; qÞ � g0ðf; nÞ� ¼ q �hg Ng½Fðf; n; qÞ;Gðf; n; qÞ�; ð35Þ

subject to the boundary conditions

Fð0; n; qÞ ¼ @Fðf; n; qÞ
@f






f¼0

¼ 0; Gð0; n; qÞ ¼ nk2@
2Fðf; n; qÞ
@f2






f¼0

;

Gð1; n; qÞ ¼ 0;
@Fðf; n; qÞ

@f






f¼þ1

¼ k;

ð36Þ

where q 2 ½0; 1� is an embedding parameter. Obviously, when q ¼ 0 and q ¼ 1, the above

zeroth-order deformation equations (34) and (35) have the solutions

Fðf; n; 0Þ ¼ f0ðf; nÞ; Gðf; n; 0Þ ¼ g0ðf; nÞ; ð37Þ

and

Fðf; n; 1Þ ¼ f ðf; nÞ; Gðf; n; 1Þ ¼ gðf; nÞ; ð38Þ

respectively. Expanding Fðf; n; qÞ and Gðf; n; qÞ in Taylor’s series with respect to q, we have

Fðf; n; qÞ ¼ Fðf; n; 0Þ þ
Xþ1
m¼1

fmðf; nÞqm; ð39Þ

Gðf; n; qÞ ¼ Gðf; n; 0Þ þ
Xþ1
m¼1

gmðf; nÞqm; ð40Þ

where

fmðf; nÞ ¼
1

m!

@mFðf; n; qÞ
@qm






q¼0

; gmðf; nÞ ¼
1

m!

@mGðf; n; qÞ
@qm






q¼0

; ð41Þ
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respectively. Note that Eqs. (34) and (35) contain two auxiliary parameters �hf and �hg.

Assuming that all of them are correctly chosen so that the above series are convergent at q ¼ 1,

we have, using Eq. (37), the solution series

f ðf; nÞ ¼ f0ðf; nÞ þ
Xþ1
m¼1

fmðf; nÞ; ð42Þ

gðf; nÞ ¼ g0ðf; nÞ þ
Xþ1
m¼1

gmðf; nÞ: ð43Þ

Define vectors

~fm ¼ f f0; f1; f2; . . . ; fmg; ~gm ¼ fg0; g1; g2; . . . ; gmg: ð44Þ

Differentiating the zeroth-order deformation equations (34) and (35) m times with respect to q,

then setting q ¼ 0, and finally dividing them by m!, we obtain the mth-order deformation

equations

Lf ½fmðf; nÞ � vmfm�1ðf; nÞ� ¼ �hf R
f
mð~fm�1;~gm�1Þ; ð45Þ

Lg½gmðf; nÞ � vmgm�1ðf; nÞ� ¼ �hgRg
mð~fm�1;~gm�1Þ; ð46Þ

subject to the boundary conditions

gmð0; nÞ ¼ nk2@
2fmðf; nÞ
@f2






f¼0

; fmð0; nÞ ¼
@fmðf; nÞ

@f






f¼0

¼ 0;

gmð1; nÞ ¼ 0;
@fmðf; nÞ

@f






f¼1
¼ 0;

ð47Þ

where

Rf
mð~fm�1;~gm�1Þ ¼ ð1þ KÞk3 @

3fm�1

@f3
þ ð1� n2Þk 2f

@2fm�1

@f2
� 2n

@2fm�1

@f@n

� 	

þ Kk
@gm�1

@f
þ n2 1� vm þ k2

Xm�1

i¼0

fi
@2fm�1�i

@f2
� k2

Xm�1

i¼0

@fi

@f
@fm�1�i

@f

" #
ð48Þ

and

Rg
mð~fm�1;~gm�1Þ ¼ ð1þ

K

2
Þk2 @

2gm�1

@f2
þ ð1� n2Þ 2gm�1 þ 2f

@gm�1

@f
� 2n

@gm�1

@n

� 	

þ n2 k
Xm�1

i¼0

fi
@gm�1�i

@f
� k

Xm�1

i¼0

gi

@fm�1�i

@f
� K 2gm�1 þ k2 @

2fm�1

@f2

� �" #
; ð49Þ

under the definition

vm ¼
0; m ¼ 1;

1; m > 1:

(
ð50Þ

Let f �mðf; nÞ and g�mðf; nÞ denote the special solutions of Eqs. (45) and (46). From Eqs. (30)

and (31), their general solutions read

fmðf; nÞ ¼ f �mðf; nÞ þ C1 expð�fÞ þ C2 expðfÞ þ C3; ð51Þ

gmðf; nÞ ¼ g�mðf; nÞ þ C4 expð�fÞ þ C5 expðfÞ; ð52Þ
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where the integral constants C1, C2, C3, C4, and C5 are determined by the boundary conditions

(47).

In this way, it is easy to solve the linear equations (45) and (46), one after the other in the

order m ¼ 1; 2; 3.

When n ¼ 1=2, substituting (13) into Eqs. (11), then using (20), it holds

1þ K

2

� �
k3

ffff þ ð1� n2Þk 2ffff � 2nffn½ � þ n2 1þ k2
ffff � k2

f 2
f

h i
¼ 0; ð53Þ

subject to the boundary conditions

f ð0; nÞ ¼ 0; ffð0; nÞ ¼ 0; ffð1; nÞ ¼ k: ð54Þ

Similarly, by using the above-mentioned method, we can obtain the series solutions for the case

n ¼ 1=2.

4 Result analysis

Liao [17] proved that, as long as a solution series given by the homotopy analysis method

converges, it must be one of solutions. Note that the solution series (42) and (43) contain three

unknown parameters, the spatial-scale parameter k, the auxiliary parameters �hf and �hg. These

parameters can be determined in the way described below. The residual error of the initial guess

f0ðn; fÞ can be expressed by

E0ðkÞ ¼
Z1

0

Z1

0

ðRf

1½~f0;~g0�Þ2dndf; ð55Þ

which is only dependent on k. Let

dE0

dk
¼ 0; ð56Þ

we can get the best value of k by solving the above equation. Then we can choose properly the

values of �hf and �hg by plotting the �h-curves to ensure that the solution series (42) and (43)

converge, as suggested by Liao [17]. The values of �hf , �hg and k used in our calculation are listed

in Table 1.

When n ¼ 0, corresponding to the initial state, and when n ¼ 1, corresponding to the steady

state, our series solutions agree well with numerical ones in the whole region 0 � g < þ1, as

shown in Figs. 2–4. Note that the numerical results are obtained by using the finite difference

method based on the homotopy analysis method [34] and Newton-Raphson technique. The

initial guesses of the numerical solutions are given by f0ðgÞ ¼ g� 1þ expð�gÞ and g0ðgÞ ¼ 0.

To satisfy the boundary conditions at infinity, an integration distance g1 ¼ 40, which is dis-

cretized into 10000 intervals, is found to be adequate. The iterative integration procedure is

repeated until the errors for each discretized Eqs. (11) and (12) are less than 5� 10�6. Similarly,

in the whole region n 2 ½0; 1�, the solution series (42) and (43) are convergent when we set the

proper values of �hf and �hg, as shown in Figs. 5 and 6. In fact, we find that our solution series

(42) and (43) are convergent for all n 2 ½0; 1�. Thus, by means of homotopy analysis method, we

obtain accurate series solutions uniformly valid for all n 2 ½0; 1� in the whole region

0 � g < þ1.

The dimensionless velocity profiles fgðg; nÞ as functions of s for some values of the parameter

K when n ¼ 0 (strong concentration of microelements) and when n ¼ 1=2 (weak concentration
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of microelements) are shown in Fig. 7 as s increases from s ¼ 0 (initial unsteady flow) to s!1
(steady-state flow). The dimensionless microrotation profiles gðg; n) as functions of s for some

values of the parameter K when n ¼ 0 (strong concentration of microelements) are shown in

Fig. 8 as s increases from s ¼ 0 (initial unsteady flow) to s!1 (steady-state flow). The graphs

for s ¼ 2 and s!1 are almost indistinguishable. The variable y
ffiffiffiffiffiffiffiffi
a=m

p
¼ gn in place of g has

been used. We can see that these profiles develop rapidly from rest as s increases from zero to

1. However, it is important to notice that the transition from the unsteady initial flow up to the

steady-state flow is completely smooth for all values of K and s. For the same value of the

parameter K , the thickness of the microrotation boundary layer is larger than the thickness of

the velocity boundary layer. But for the same values of K , the velocity profiles are higher for
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0.6

0.7

0.8
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1

K = 0, 1, 3, 5, 10

f h(h
,0

) 

h

Fig. 2. The comparison of fgðg; 0Þ of the numerical results with the HAM approximations for different
values of K when n ¼ 0. Symbol: Numerical results; solid line: 25th-order approximations

Table 1. The values of parameters used in our calculation

k �hf �hg K n

– – – 0 0

3 �1=40 �1=30 1 0

3 �1=50 �1=25 3 0

5=2 �1=70 �1=30 5 0

2 �1=60 �1=40 10 0

4 �1=60 � 0 0:5

3 �1=40 � 1 0:5

3 �1=50 � 3 0:5

5=2 �1=40 � 5 0:5

2 �1=40 � 10 0:5
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approximations; Symbols: 25th-order approximations
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approximations; Symbols: 25th-order approximations

Series solutions of unsteady boundary layer flow 97



0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t = 0.01, 0.05, 0.1, 0.2, 0.5, 2, • (steadyflow)

n= 1;
n=1/2;

hx

f h
(h

,x
)
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n ¼ 1=2 than for n ¼ 0, as shown in Fig. 7. We also notice from Fig. 8 that the microrotation

profile gðg; nÞ reaches a minimum at a finite distance from the wall. It is also clear from this

figure that as the local minimum moves away from the wall the corresponding boundary layer

thickness increases. Since the present problem of the micropolar boundary-layer flow has

steady solutions with positive skin friction, separation will not occur and unsteady flows will

approach the steady-state flow as a limit of s!1. Although not shown here, it was found, as

expected, that the effect of K is such that the velocity boundary layer thickness decreases

slightly with an increase in K .

The local skin friction coefficient Cf versus s for some values of the parameter K when n ¼ 0

(strong concentration of microelements) is shown in Fig. 9, when n ¼ 1=2 (weak concentration

of microelements) is shown in Fig. 10. It is seen that the coefficient of skin friction decreases

continuously for each value of the parameter K considered as time s elapses and is asymptotic

to that of steady-state flow as a limit of s!1. Therefore the transition from the initial

unsteady flow to the final steady-state flow is smooth, i.e., without any singularity. Micropolar

fluid flow (K > 0) generates, largely because of the vortex viscosity (cf. K ¼ j=l), higher skin
friction coefficients, as can be seen from Figs. 9 and 10. A similar trend was also found by Lok

et al. [11].

5 Conclusions

In this paper, we apply the homotopy analysis method to study the unsteady boundary-layer

flow of a micropolar fluid near the forward stagnation point of an infinite plane wall and obtain
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Fig. 9. The variation of the skin friction coefficient as a function of s for different parameters K when

n ¼ 0
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the uniformly valid series solutions of this problem. Different from previous series solutions, our

solutions are valid for all time 0 � s <1 and in the whole region 0 � g <1. The effects of the

material parameter K on the velocity and microrotation for n ¼ 0 and n ¼ 0:5 are also dis-

cussed. To the best of our knowledge, such kinds of series solutions have never been reported.

The proposed analytic approach has general meaning and thus may be applied in a similar way

to other unsteady boundary-layer flows to get accurate series solutions valid for all time.
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