
Series Solutions of Unsteady Boundary-Layer Flows
over a Stretching Flat Plate

By Shijun Liao

An analytic technique, namely, the homotopy analysis method, is applied to
give series solution of the unsteady boundary-layer flows over an impermeable
stretching plate. Different from all previous perturbation solutions, our series
solutions are convergent in the whole time region 0 ≤ τ < +∞. To the best of our
knowledge, such kind of series solution has never been reported for this problem.
Besides, two kinds of new similarity transformations about dimensionless time
are proposed. Using these two different similarity transformations, we obtain
the same convergent solution valid in the whole time region 0 ≤ τ < +∞.
Furthermore, it is shown that a nonlinear initial/boundary-value problem can
be replaced by an infinite number of linear boundary-value subproblems.

1. Introduction

The investigation of the steady boundary layer flows of an incompressible viscous
fluid over a stretching surface has many important applications in engineering,
such as the aerodynamic extrusion of plastic sheets, the boundary layer along
a liquid film condensation process, the cooling process of metallic plate in a
cooling bath, and in the glass and polymer industries. The investigation was
made by many researchers, including Sakiadis [1], Crane [2], Banks [3], Banks
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and Zaturska [4], Grubka and Bobba [5], Ali [6] for the impermeable plate,
and Erickson et al. [7], Gupta and Gupta [8], Chen and Char [9], Chaudhary et
al. [10], Elbashbeshy [11], Magyari and Keller [12] for the permeable plate.
The unsteady boundary-layer flows due to an impulsively started flat plate
were investigated by some researchers [13–18]. However, the investigations of
unsteady boundary-layer flows due to an impulsively stretching surface in a
viscous fluid [18–21] is relatively little. Currently, Nazar et al. [21] solved an
unsteady boundary-layer flow due to an impulsively stretching surface in a
rotating fluid by means of a transformation found by Williams and Rhyne
[22] and the so-called Keller-box numerical method, and obtained a first-order
perturbation approximation. In general, it is hard to obtain analytic solutions
of unsteady boundary-layer flows, which are valid and accurate for all time.

Consider the unsteady boundary layer viscous flow due to an impulsively
stretching impermeable plate. Let t denote the time, ν the kinematic viscosity
coefficient of the fluid, y the distance perpendicular to the plate, x the distance
parallel to the plate from the original, (u, v) the velocity components of the
fluid in the x and y directions, respectively. When t < 0, both of the fluid and
the plate are at rest. At t = 0, the plate suddenly has the velocity U = a (x +
b)κ , where a �= 0, a(1 + κ) > 0, and b > 0. The unsteady viscous flow is
governed by the boundary-layer equations

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
, (1)

∂u

∂x
+ ∂v

∂y
= 0, (2)

subject to the boundary conditions

u = a(x + b)κ , v = 0 at y = 0, t ≥ 0, (3)

u → 0 as y → +∞, t ≥ 0, (4)

and the initial conditions

t = 0 : u = v = 0 at points (x, y) with y > 0. (5)

Let

τ = a(1 + κ)(x + b)κ−1t (6)

denote the dimensionless time, ψ the stream function for all τ , ψ i the stream
function of the initial flow as τ → 0, and ψ s the stream function of the
steady-state flow as τ → +∞, respectively. It is well known that, as τ → +∞,
the corresponding stream function ψ s for the steady-state flow is in the form

ψs = a

√
ν

a(1 + κ)
(x + b)

κ−1
2 fs(ηs), (7)
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where

ηs =
√

a(1 + κ)

ν
(x + b)

κ−1
2 y (8)

is the corresponding similarity variable for the steady-state solution, and f s(ηs)
is governed by the steady-state boundary-layer equation

f ′′′
s (ηs) + 1

2
fs(ηs) f ′′

s (ηs) − β( fs
′)2 = 0, (9)

subject to the boundary conditions

fs(0) = 0, fs
′(0) = 1, fs

′(+∞) = 0, (10)

where the prime denotes the differentiation with respect to ηs, and

β = κ

1 + κ
. (11)

As shown by Liao and Pop [23], the steady-state solution f s(ηs) has the
asymptotic property

fs(ηs) ∼ δs + A exp(−δsηs/2), ηs → +∞, (12)

where

δs = lim
ηs→+∞ fs(ηs). (13)

It is known ([13–21]) that, as τ → 0, the corresponding stream function ψ i

of the initial flow reads

ψi = a

√
ντ

a(1 + κ)
(x + b)

κ+1
2 f̂ (ζ ) = a

√
νt(x + b)κ f̂ (ζ ), (14)

where

ζ =
√

a(1 + κ)

ντ
(x + b)

κ−1
2 y = ηs√

τ
= y√

νt
(15)

is the corresponding similarity variable of the solution with small time τ , and
f̂ (ζ ) is governed by the Rayleigh-type equation

f̂ ′′′(ζ ) + ζ

2
f̂ ′′(ζ ) = 0, (16)

subject to the boundary conditions

f̂ (0) = 0, f̂ ′(0) = 1, f̂ ′(+∞) = 0, (17)

where the prime denotes the differentiation with respect to ζ . The above
Rayleigh-type equation has the exact solution

f̂ (ζ ) = ζerfc

(
ζ

2

)
+ 2√

π

[
1 − exp

(
−ζ 2

4

)]
, (18)
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where erfc(z) is the error function defined by

erfc(z) = 2√
π

∫ +∞

z
exp(−s2) ds.

Note that

lim
ζ→0

f̂ ′′(ζ ) = − 1√
π

. (19)

For details, please refer to the above-mentioned authors.
Obviously, the similarity variable ζ of the initial solution (18) (when

τ → 0) is quite different from the similarity variable ηs of the steady-state
solution (when τ → +∞). Certainly, the initial solution (18) given by the
linear Rayleigh equation (16) has completely different properties from the
steady-state solution f s(ηs) governed by the nonlinear equation (9). When τ =
0, we have the exact solution (18). When τ → +∞, the series solution for
steady-state flows was given by Liao and Pop [23]. However, it is hard to obtain
analytic solutions of unsteady boundary-layer flows, which are accurate for all
time 0 ≤ τ < +∞. Perturbation techniques are applied by many researchers to
this unsteady problem, but their perturbation results are valid only for small
time [16, 18, 21]. To the best of our knowledge, no one has reported analytic
solutions for the considered unsteady viscous flows, which are accurate and
valid for any possible values of β ∈ (−1, +∞) and all dimensionless time 0 ≤
τ < +∞. For details, please see the above-mentioned references.

Recently, a kind of analytic method, namely the homotopy analysis method
[24], was proposed in 1992 to solve highly nonlinear problems, and has been
modified step by step [25–29]. Different from perturbation techniques [30],
the homotopy analysis method does not depend upon any small or large
parameters, and thus is valid for most of nonlinear problems in science and
engineering. Besides, it logically contains other nonperturbation techniques
such as Lyapunov’s small parameter method [31], the δ-expansion method
[32], and Adomian’s decomposition method [33], as proved by Liao [28]. The
so-called “homotopy perturbation technique” [34] proposed in 1999 is only a
special case of homotopy analysis method, as pointed out by Liao [35]. Thus,
the homotopy analysis method is a kind of unification of the nonperturbation
techniques, and therefore is more general, so that it is valid for more of highly
nonlinear problems. The homotopy analysis method has been successfully
applied to many nonlinear problems [29, 36–46]. It should be emphasized
that a few new solutions have been found [47, 48] by means of this analytic
method, which were not discovered by other analytic techniques and even by
numerical techniques. Recently, using Williams and Rhyne’s transformation
[22], Liao [49] successfully applied the homotopy analysis method to solve
unsteady boundary-layer flows over a flat plate that stretches in a special way
U = a (x + b), corresponding to κ = 1. Following Liao [49], Cheng et al.
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[50] obtained series solutions of unsteady mixed convection boundary-layer
flows near the stagnation point on a vertical surface in a porous medium, and
Xu and Liao [51] gave series solutions of magnetohydrodynamic flows of
non-Newtonian fluids caused by an impulsively stretching plate. In this paper,
we first generalize Williams and Rhyne’s transformation to propose two new
transformations, and then apply the homotopy analysis method to solve the
unsteady boundary-layer flows over a flat plate that impulsively stretches in a
rather general way U = a (x + b)κ . Different from all other previous analytic
results, our series solutions are valid and accurate in the whole time region
0 ≤ τ < +∞, shown as follows.

2. Generalization of Williams and Rhyne’s transformation

Williams and Rhyne [22] introduced a similarity transformation

ξ̂ (τ ) = 1 − exp(−τ ) (20)

to solve the above-mentioned unsteady boundary layer flows, where ξ̂ is
dimensionless time. In this paper, Williams and Rhyne’s transformation is
generalized by means of the dimensionless time ξ (τ ), satisfying

0 ≤ ξ (τ ) ≤ 1, lim
τ→0

ξ (τ ) = 0, lim
τ→+∞ ξ (τ ) = 1 (21)

and

lim
τ→0

ξ ′(τ ) = σ 2, lim
τ→+∞ ξ ′(τ ) = 0 (22)

for 0 ≤ τ < +∞, where σ > 0 is a constant. Obviously, Williams and Rhyne’s
transformation (20) is a special case of the above definition.

Let ψ denote the stream function. Defining the similarity variables

ψ = a

√
νξ

a(1 + κ)
(x + b)

κ+1
2 f (η, ξ ), η =

√
a(1 + κ)

νξ
(x + b)

κ−1
2 y, (23)

we have

u = ∂ψ

∂y
= a(x + b)κ

∂ f (η, ξ )

∂η
(24)
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and

v = −∂ψ

∂x

= −1

2

√
a(1 + κ)νξ (x + b)(κ−1)/2

{[
1 + (2β − 1)τξ ′(τ )

ξ

]
f (η, ξ )

+ (2β − 1)η

[
1 − τξ ′(τ )

ξ

]
∂ f (η, ξ )

∂η
+ 2(2β − 1)τξ ′(τ )

∂ f (η, ξ )

∂ξ

}
. (25)

Substituting above expressions into Equations (1) and (2), we get

∂3 f

∂η3
+ 1

2
ηξ ′(τ )

∂2 f

∂η2
− βξ

(
∂ f

∂η

)2

+ 1

2
[ξ + (2β − 1)τξ ′(τ )] f

∂2 f

∂η2

= ξξ ′(τ )

{
∂2 f

∂η∂ξ
− (2β − 1)τ

[
∂ f

∂ξ

∂2 f

∂η2
− ∂ f

∂η

∂2 f

∂η∂ξ

]}
, (26)

subject to the boundary conditions

f (0, ξ ) = 0, f ′(0, ξ ) = 1, f ′(+∞, ξ ) = 0, (27)

where the prime in Equations (26) and (27) denotes the differentiation with
respect to τ and η, respectively.

The entrainment velocity of the fluid is given by

v(x, +∞, t) = −1

2

√
a(1 + κ)νξ (x + b)

(κ−1)
2 {[1 + (2β − 1)ξ−1τξ ′(τ )]δ(ξ )

+ 2(2β − 1)τξ ′(τ )δ′(ξ )}, (28)

where

δ(ξ ) = lim
η→+∞ f (η, ξ ), (29)

and the prime denotes the differentiation with respect to ξ or τ . The skin
friction on the stretching surface reads

fw(x, ξ ) = ρν
∂u

∂y

∣∣∣∣
y=0

= aρ

√
a(1 + κ)ν

ξ
(x + b)

3κ−1
2 f ′′(0, ξ ). (30)

The corresponding skin friction coefficient is

cx
f (x, ξ ) = fw(ξ )

ρa2(x + b)2κ
= sign(a)

√
|1 + κ|
Rexξ

f ′′(0, ξ ), (31)
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where sign(a) = a/|a|, and the local Reynolds number Rex is defined by

Rex = |a|(x + b)1+κ

ν
.

Note that there exist an infinite number of the similarity transformations
ξ (τ ) satisfying (21) and (22). Here, we consider only two special cases,

ξ = 1 − exp(−σ 2τ )

and

ξ = σ 2τ/(1 + σ 2τ ).

When σ = 1, the former becomes the so-called Williams and Rhyne’s similarity
transformation [22]. When

ξ = 1 − exp(−σ 2τ ), (32)

corresponding to

ξ ′(τ ) = σ 2(1 − ξ ), τ = −σ−2 ln(1 − ξ ), (33)

Equation (26) becomes

∂3 f

∂η3
+ σ 2

2
η(1 − ξ )

∂2 f

∂η2
− βξ

(
∂ f

∂η

)2

+ 1

2
[ξ − (2β − 1)(1 − ξ ) ln(1 − ξ )] f

∂2 f

∂η2

= ξ (1 − ξ )

{
σ 2 ∂2 f

∂η∂ξ
+ (2β − 1) ln(1 − ξ )

[
∂ f

∂ξ

∂2 f

∂η2
− ∂ f

∂η

∂2 f

∂η∂ξ

]}
. (34)

When

ξ = σ 2τ

1 + σ 2τ
, (35)

corresponding to

ξ ′(τ ) = σ 2(1 − ξ )2, τ = ξ

σ 2(1 − ξ )
, (36)

Equation (26) reads

∂3 f

∂η3
+ σ 2

2
η(1 − ξ )2 ∂2 f

∂η2
− βξ

(
∂ f

∂η

)2

+ 1

2
[ξ + (2β − 1)ξ (1 − ξ )] f

∂2 f

∂η2

= ξ (1 − ξ )

{
σ 2(1 − ξ )

∂2 f

∂η∂ξ
− (2β − 1)ξ

[
∂ f

∂ξ

∂2 f

∂η2
− ∂ f

∂η

∂2 f

∂η∂ξ

]}
. (37)
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Note that, different from Equation (34), Equation (37) does not contain the
logarithmic function ln (1 − ξ ) that tends to infinity as ξ → 1. This is the
advantage of the similarity transformation (35) over (32).

When ξ → 0, corresponding to τ → 0, both of Equations (34) and (37)
become the Rayleigh-type equation

∂3 f

∂η3
+ σ 2

2
η
∂2 f

∂η2
= 0, (38)

subject to

f (0, 0) = 0,
∂ f

∂η

∣∣∣∣
η=0,ξ=0

= 1,
∂ f

∂η

∣∣∣∣
η=+∞,ξ=0

= 0, (39)

where

η = σ−1

√
a(1 + κ)

ντ
(x + b)

κ−1
2 y → σ−1ζ (40)

is dependent upon τ . The above equation has the exact solution

f (η, 0) = η erfc
(ση

2

)
+ 2

σ
√

π

[
1 − exp

(
−σ 2η2

4

)]
, (41)

which gives

lim
η→+∞ f (η, 0) = 2

σ
√

π
, lim

η→0
f ′′(η, 0) = − σ√

π
. (42)

When ξ = 1, corresponding to τ → +∞, both of Equations (34) and (37)
become

∂3 f

∂η3
+ 1

2
f
∂2 f

∂η2
− β

(
∂ f

∂η

)2

= 0, (43)

subject to

f (0, 1) = 0,
∂ f

∂η

∣∣∣∣
η=0,ξ=1

= 1,
∂ f

∂η

∣∣∣∣
η=+∞,ξ=1

= 0, (44)

where

η =
√

a(1 + κ)

ν
(x + b)

κ−1
2 y = ηs (45)

is independent upon τ .
Thus, as ξ varies from 0 to 1, i.e., τ increases from 0 to +∞, the similarity

variable η defined by (23) varies from σ−1ζ , where ζ defined by (15) is the
similarity variable for small τ , to the similarity variable ηs defined by (8) for
the steady-state flows. Besides, the stream function ψ varies from ψ i for the
initial impulsive flow to ψ s describing the steady-state flow.
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Note that, according to a(1 + κ) > 0, it holds a > 0 when κ > −1,
corresponding to −1 < β ≤ 1; and a < 0 when κ < −1, corresponding to β >

1. In case of a > 0 and −1 < β ≤ 1, the stretching velocity of the surface is
positive. However, in case of a < 0 and β > 1, the stretching velocity is
negative, corresponding to the so-called backward boundary layer that also has
physical meanings, as suggested by Goldstein [52].

3. Series solution given by the HAM

Using the transformation

f (η, ξ ) = δ(ξ ) + λ−1 F(z, ξ ), z = λη, (46)

where δ(ξ ) is defined by (29), and λ > 0 is a constant independent upon τ , ξ

and η, the original Equation (26) becomes

λ2 ∂3 F

∂z3
+ 1

2
zξ ′(τ )

∂2 F

∂z2
− βξ

(
∂ F

∂z

)2

+ 1

2
[ξ + (2β − 1)τξ ′(τ )]F

∂2 F

∂z2

+ λ

{
1

2
[ξ + (2β − 1)τξ ′(τ )]δ(ξ ) + (2β − 1)τξξ ′(τ )δ′(ξ )

}
∂2 F

∂z2

= ξξ ′(τ )

{
∂2 F

∂z∂ξ
− (2β − 1)τ

[
∂ F

∂ξ

∂2 F

∂z2
− ∂ F

∂z

∂2 F

∂z∂ξ

]}
(47)

subject to the boundary conditions

F(0, ξ ) = −λδ(ξ ), F(+∞, ξ ) = 0,
∂ F(z, ξ )

∂z

∣∣∣∣
z=0

= 1,

∂ F(z, ξ )

∂z

∣∣∣∣
z=+∞

= 0, (48)

where the prime denotes the differentiation with respect to τ or ξ .
According to the definitions (29) and (46) and the boundary conditions

(48), it is reasonable to assume that F(z, ξ ) can be expressed by the following
set of base functions

{zm exp(−nz) | m ≥ 0, n ≥ 1} (49)

such that

F(z, ξ ) =
+∞∑
m=0

+∞∑
n=1

am,n(ξ )zm exp(−nz), (50)

where am,n(ξ ) is dependent upon ξ . It provides us with the so-called solution
expression (see Liao [28, 29]) of the considered problem. Let F0(z, ξ ) and
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δ0(ξ ) denote the guess approximations of F(z, ξ ) and δ(ξ ), respectively.
According to the boundary conditions (48) and the solution expression (50), it
is straightforward to choose the auxiliary linear operator

L[φ(z, ξ ; q)] = ∂3φ(z, ξ ; q)

∂z3
− ∂φ(z, ξ ; q)

∂z
, (51)

which has the property

L
[
C1(ξ )e−z + C2(ξ ) + C3(ξ )ez

] = 0 (52)

for any functions C1(ξ ), C2(ξ ), and C3(ξ ) of ξ . Note that the above auxiliary
linear operator is independent upon the dimensionless time ξ , although the
problem is unsteady. Besides, it has not very close relationship with the
original governing equation (47). For simplicity, we define from Equation (47)
the nonlinear operator

N [φ(z, ξ ; q), �(ξ ; q)]

= λ2 ∂3φ

∂z3
+ 1

2
zξ ′(τ )

∂2φ

∂z2
− βξ

(
∂φ

∂z

)2

+ 1

2
[ξ + (2β − 1)τξ ′(τ )]φ

∂2φ

∂z2

+ λ

{
1

2
[ξ + (2β − 1)τξ ′(τ )]�(ξ ; q) + (2β − 1)τξξ ′(τ )

∂�(ξ ; q)

∂ξ

}
∂2φ

∂z2

− ξξ ′(τ )

{
∂2φ

∂z∂ξ
− (2β − 1)τ

[
∂φ

∂ξ

∂2φ

∂z2
− ∂φ

∂z

∂2φ

∂z∂ξ

]}
, (53)

where φ(z, ξ ; q) and �(ξ ; q) are mappings of F(z, ξ ) and δ(ξ ), respectively.
Let � �= 0 denote a nonzero auxiliary parameter. Using above definitions, we

construct the so-called zeroth-order deformation equation (see Liao [28, 29])

(1 − q)L[φ(z, ξ ; q) − F0(z, ξ )] = �qN [φ(z, ξ ; q), �(ξ ; q)], (54)

subject to the boundary conditions

φ(+∞, ξ ; q) = 0,
∂φ(z, ξ ; q)

∂z

∣∣∣∣
z=0

= 1,
∂φ(z, ξ ; q)

∂z

∣∣∣∣
z=+∞

= 0 (55)

and

�(ξ ; q) + λ−1φ(0, ξ ; q) = 0, (56)

where q ∈ [0, 1] is an embedding parameter. Obviously, when q = 0 and q =
1, we have

φ(z, ξ ; 0) = F0(z, ξ ), �(ξ ; 0) = δ0(ξ ) (57)

and

φ(z, ξ ; 1) = F(z, ξ ), �(ξ ; 1) = δ(ξ ), (58)
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respectively, where δ0(ξ ) is the initial guess of δ(ξ ). Thus, as q increases from
0 to 1, φ(z, ξ ; q) varies from the guess F0(z, ξ ) to the solution F(z, ξ ) of
(47) and (48), so does �(ξ ; q) from δ0(ξ ) to δ(ξ ). Assume that the auxiliary
parameter � is so properly chosen that the Taylor series of φ(z, ξ ; q) and
�(ξ ; q) expanded with respect to q, i.e.,

φ(z, ξ ; q) = φ(z, ξ ; 0) +
+∞∑
n=1

Fn(z, ξ )qn, (59)

�(ξ ; q) = �(ξ ; 0) +
+∞∑
n=1

δn(ξ )qn, (60)

converge at q = 1, where

Fn(z, ξ ) = 1

n!

∂nφ(z, ξ ; q)

∂qn

∣∣∣∣
q=0

, δn(ξ ) = 1

n!

∂n�(ξ ; q)

∂qn

∣∣∣∣
q=0

. (61)

Then, we have from (57) and (58) that

F(z, ξ ) = F0(z, ξ ) +
+∞∑
n=1

Fn(z, ξ ) (62)

and

δ(ξ ) = δ0(ξ ) +
+∞∑
n=1

δn(ξ ). (63)

The governing equation and boundary conditions of Fn(z, ξ ) can be obtained
in the following way. Write

�Fn = {F0, F1, F2, . . . , Fn}, �δn = {δ0, δ1, δ2, . . . , δn}.

Differentiating the zeroth-order deformation equations (54)–(56) m times with
respect to q, then dividing by m!, and finally setting q = 0, we have the
mth-order deformation equations (see Liao [28, 29])

L[Fm(z, ξ ) − χm Fm−1(z, ξ )] = �Rm( �Fm−1, �δm−1, z, ξ ), (64)

subject to the boundary conditions

Fm(+∞, ξ ) = 0
∂ Fm(z, ξ )

∂z

∣∣∣∣
z=0

= 0,
∂ Fm(z, ξ )

∂z

∣∣∣∣
z=+∞

= 0 (65)

and

δm(ξ ) + λ−1 Fm(0, ξ ) = 0, (66)
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where

Rm( �Fm−1, �δm−1, z, ξ )

= λ2 ∂3 Fm−1

∂z3
+ 1

2
zξ ′(τ )

∂2 Fm−1

∂z2
− ξξ ′(τ )

∂2 Fm−1

∂z∂ξ

− βξ

m−1∑
k=0

∂ Fm−1−k

∂z

∂ Fk

∂z
+ 1

2
[ξ + (2β − 1)τξ ′(τ )]

m−1∑
k=0

Fm−1−k
∂2 Fk

∂z2

+ λ

m−1∑
k=0

{
1

2
[ξ + (2β − 1)τξ ′(τ )]δk(ξ ) + (2β − 1)τξξ ′(τ )δ′

k(ξ )

}
∂2 Fm−1−k

∂z2

+ (2β − 1)τξξ ′(τ )
m−1∑
k=0

[
∂ Fm−1−k

∂ξ

∂2 Fk

∂z2
− ∂ Fm−1−k

∂z

∂2 Fk

∂z∂ξ

]
, (67)

and

χn =
{

1, n > 1,

0, n = 1.
(68)

Let F ∗
m(z, ξ ) denote a special solution of Equation (64). According to (52), its

general solution reads

Fm(z, ξ ) = F∗
m(z, ξ ) + C1(ξ ) exp(−z) + C2(ξ ) + C3(ξ ) exp(z),

where the coefficients C1(ξ ), C2(ξ ), and C3(ξ ) are determined by the boundary
conditions (65), i.e.,

C1(ξ ) = ∂ F∗
m

∂z

∣∣∣∣
z=0

, C2(ξ ) = C3(ξ ) = 0. (69)

From (66), we have

δm(ξ ) = −λ−1 Fm(0, ξ ). (70)

In this way, we solve the linear boundary-value problem governed by (64)–(66)
one after the other in the order m = 1, 2, 3, . . . .

Using the asymptotic property (12) of the steady-state solution (see Liao
and Pop [23]), we

λ = δs/2, (71)

where δs = δ(1) is defined by (13) and is known from Liao and Pop’s work [23]
for the corresponding steady-state problem. When ξ = 0, Equation (47) reads

λ2 ∂3 F

∂z3
+

(
α2z

2

)
∂2 F

∂z2
= 0, (72)
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which becomes the standard Rayleigh-type equation in case of α = λ. So, we
choose here

α = λ = δs/2. (73)

Write

γ (ξ ) = ∂2 f (η, ξ )

∂η2

∣∣∣∣
η=0

= λ
∂2 F(z, ξ )

∂z2

∣∣∣∣
z=0

(74)

and

γs = γ (1). (75)

From Liao and Pop’s work [23] for the steady-state flows, both of γ s given
by above expression and δs defined by (13) can be regarded to be known.
Obviously, these known values of the initial solution and the steady-state
solution are useful to choose δ0 and F0(z, ξ ). Using (42), we choose

δ0(ξ ) = 2

σ
√

π
(1 − ξ ) + δsξ (76)

as the guess of δ(ξ ). From the boundary conditions (48) and according to the
solution expression (50), it is straightforward to choose the guess approximation

F0(z, ξ ) = [1 − 2λδ0(ξ )] exp(−z) + [λδ0(ξ ) − 1] exp(−2z)

+ ε exp(−z)[1 − exp(−z)]2, (77)

where ε is a constant. Let γ 0(ξ ) denote the guess approximation of γ (ξ ). From
(42) and (75), it is obvious to choose

γ0(ξ ) = − σ√
π

(1 − ξ ) + γsξ (78)

as the guess approximation of γ (ξ ). Enforcing

γ0(ξ ) = λF ′′
0 (0, ξ ),

we have

ε = 1

2

[
3 − 2λδ0(ξ ) + λ−1γ0(ξ )

]
. (79)

4. Result analysis

4.1. The convergence of the solution series

According to Liao’s proof [28], the series (62) is the solution of Equations (47)
and (48), as long as it is convergent. Note that there exists an auxiliary parameter
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� in the solution series (62), which can be used to control the convergence
of solution series, as shown many times in the previous applications of
the homotopy analysis method (see [28–29], [36–39]). Simply speaking, the
so-called �-curves of f ′′(0, ξ ) are used to find a proper value of �, as suggested
by Liao [28]. For the considered problem, we first investigate the convergence
of the solution series at ξ = 0 and ξ = 1, and find a proper value of �
which ensures that the solution series (62) converges at ξ = 0 and ξ = 1.
Then, we investigate if such a value of � is valid in the whole region 0 ≤
ξ ≤ 1. In this way, we can always find a proper value of � that ensures the
convergence of the solution series. For details, please refer to Liao [28].

4.2. Results when β = 1/2

In this special case, the exact solution for the steady-state flow is known, i.e.,

F(z, 1) = 1 − exp(−z), F ′(z, 1) = exp(−z). (80)

Two similarity transformations for τ , defined, respectively, by (32) and (35),
are used. It is found that, when � = −1, our approximations agree well with
the exact initial solution F′ = Erfc(z/2) at ξ = 0 and also the exact steady-state
solution exp(−z) at ξ = 1, as shown in Figure 1 in case of ξ = 1 −
exp(−λ2τ ) and Figure 2 in case of ξ = λ2τ /(1 + λ2τ ), respectively.
Furthermore, it is found that, when � = −1, the solution series are convergent
in the whole region ξ ∈ [0, 1], corresponding to the whole time region 0 ≤
τ < +∞, as shown in Figure 3. Note that, by means of two different similarity
transformations (32) and (35), we can obtain the same convergent results.
For different definitions of ξ , the corresponding expressions of f ′′(0, ξ ) are
different, as shown in Figure 3. However, as shown in Figure 4, the two different
similarity transformations (32) and (35) give the same skin friction Cx

f

√
Rx

e via
τ , if expressed by the dimensionless time τ . The velocity profile of our series
solutions varies smoothly from the initial solution to the steady-state one, as
shown in Figure 5. Note that, our series solution is convergent and accurate for
the whole dimensionless time 0 ≤ τ < +∞. It might be emphasized that such
kind of series solutions has never been reported, to the best of the author’s
knowledge.

Because f ′′(0, ξ ) relates with the skin friction, we give here the 8th-order
approximate result

f ′′(0, ξ )

= −0.398542 − 0.329020ξ + 2.098202 × 10−2ξ 2

− 1.832836 × 10−3ξ 3 − 6.262510 × 10−5ξ 4 + 5.965234 × 10−4ξ 5

− 8.255860 × 10−3ξ 6 + 5.423196 × 10−2ξ 7 − 0.141834ξ 8

+ 0.140349ξ 9 − 3.022535 × 10−2ξ 10 − 1.227463 × 10−2ξ 11
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β = 1/2

ξ = 1-exp(-λ2 τ)

Figure 1. Comparison of F ′(z, ξ ) with the exact solutions when β = 1/2, λ = 1/
√

2, � = −1

and ξ = 1 − exp(−λ2τ ). Solid line: exact solution F ′ = Erfc(z/2) when ξ = 0; circle:

8th-order approximation when ξ = 0; dashed line: exact solution F ′ = exp(−z) when ξ = 1;

filled circle: 8th-order approximation when ξ = 1.

− 1.164123 × 10−3ξ 12 − 5.381745 × 10−5ξ 13 − 1.430504 × 10−6ξ 14

− 2.257026 × 10−8ξ 15 − 1.989010 × 10−10ξ 16 − 7.635924 × 10−13ξ 17,

(81)

where

ξ = 1 − exp(−τ/2).

This expression is accurate and valid in the whole time region ξ ∈ [0, 1], i.e.,
0 ≤ τ < +∞.
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Figure 2. Comparison of F ′(z, ξ ) with the exact solutions when β = 1/2, λ = 1/
√

2, � = −1

and ξ = λ2τ/(1 + λ2τ ). Solid line: exact solution F ′ = Erfc(z/2) when ξ = 0; circle:

8th-order approximation when ξ = 0; dashed line: exact solution F ′ = exp(−z) when ξ = 1;

filled circle: 8th-order approximation when ξ = 1.

4.3. Results when β �= 1/2

In the similar way, we obtain the convergent series results for β �= 1/2, such as
β = 1, β = 0, β = −0.3, and so on. The evolution of the skin frictions and the
horizontal velocity profiles are as shown in Figures 6–8. In all considered cases,
the velocity profile evolves smoothly, and the skin frictions, given, respectively,
by two different similarity transformations (32) and (35), match completely.
Note that, when β ≤ 0, the solution series are divergent in case of � = −1.
However, convergent solutions are obtained by means of a proper value of
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0,
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-0.3

-0.2

β = 1/2

Figure 3. Curve of f ′′(0, ξ ) via ξ when β = 0.5, λ = 1/
√

2 and � = −1. Solid line:

5th-order approximation when ξ = 1 − exp(−λ2τ ); dashed line: 5th-order approximation

when ξ = λ2τ /(1 + λ2τ ); circle: 8th-order approximation when ξ = 1 − exp(−λ2τ ); filled

circle: 8th-order approximation when ξ = λ2τ /(1 + λ2τ ).

−1 < � < 0. This indicates once again that the auxiliary parameter � is
indeed rather important to ensure that all solution series converge. In fact, it
is the auxiliary parameter � which provides us a simple way to control and
adjust the convergence region and rate of the solution series, as pointed out by
Liao [28].

In case of ξ = λ2τ/(1 + λ2τ ), the logarithmic function ln(1 − ξ ) does not
appear in the solution expression, and thus less CPU time is used to employ
symbolic computation to get results at the same order of approximations.
So, this similarity transformation is more efficient and better than Williams
and Rhyne’s transformation [22] defined by (20) that brings the logarithmic
function ln(1 − ξ ) in the solution expression.
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Figure 4. Curve of C x
f

√
Rx

e /|1 + κ|sign(a) via τ when β = 0.5, λ = 1/
√

2 and � = −1.

Solid line: 5th-order approximation when ξ = 1 − exp(−λ2τ ); circle: 5th-order approximation

when ξ = λ2τ/(1 + λ2τ ).

5. Conclusions and discussions

In this paper, we employ the homotopy analysis method to give the series
solution of the unsteady boundary-layer flows over an impermeable stretching
plate. Different from previous perturbation solutions, our series solutions are
convergent and valid in the whole time region 0 ≤ τ < +∞. To the best of
our knowledge, such kind of series solution has never been reported for this
problem. It illustrates that the homotopy analysis method is valid for unsteady
nonlinear problems, and thus can be applied to other more complicated
unsteady nonlinear problems.
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Figure 5. Velocity profile f ′(ηs/
√

ξ, τ ) via ηs when β = 0.5, λ = 1/
√

2, � = −1, τ =
0.01, 0.1, 0.5, 1, and 5.

Besides, we first generalize Williams and Rhyne’s transformation (20) by
means of (21) and (22), and then propose two kinds of new transformations
(32) and (35). These two different similarity transformations give the same
convergent results in the whole time region 0 ≤ τ < +∞. It verifies
once again Liao’s [28] conclusion: even if a nonlinear problem has a unique
solution, its solution may have an infinite number of different expressions. The
similarity transformation defined by (21) and (22) is more general, and thus
can be applied to other more complicated unsteady nonlinear problems. For
the considered problem, the similarity transformation (35) is more efficient
and thus better than Williams and Rhyne’s transformation (20). However, it is
hard to prove that the solution series given by the similarity transformation
(35) is the best. So, further investigations are necessary.
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Figure 6. Curve of C x
f

√
Rx

e /|1 + κ|sign(a) via τ when β = 1, λ = 1.28083 and � = −1.

Solid line: 8th-order approximation when ξ = 1 − exp(−λ2τ ); circle: 8th-order approximation

when ξ = λ2τ/(1 + λ2τ ).

It should be pointed out that the high-order deformation equations (64)–(66)
are linear boundary-value problems, because the linear operator L does not
contain the time variable ξ at all. Thus, by means of the homotopy analysis
method, a nonlinear, combined initial/boundary-value problem can be replaced
by an infinite number of linear boundary-value subproblems. The same point of
view was given by Liao et al. [40]. This mathematical fact is rather interesting.
It seems that the time variable ξ is not as important as the spatial variables.
However, it is unknown whether this mathematical fact might imply some
important physical meanings or not.

The steady-state boundary layer equations (9) and (10) have multiple
solutions. There are two branches of exponentially decaying solution [47]: the
first one exists in the range of −1 < β < +∞, the second one in the range of
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Figure 7. Curve of C x
f

√
Rx

e /|1 + κ|sign(a) via τ when β = 0 and λ = 0.808. Solid

line: 8th-order approximation when ξ = 1 − exp(−λ2τ ) and � = −1/2; circle: 8th-order

approximation when ξ = λ2τ/(1 + λ2τ ) and � = −3/4.

1/2 < β < +∞. For large β, it is difficult to distinct the two branches of
solutions. For example, the difference of f ′′

s(0) of two branches of solutions is
only 0.013% for β = 5 and 0.00077% for β = 10, as pointed out by Liao
[47]. This is the reason why the second branch of solution in the range of
1 < β < +∞ has not been found even by numerical techniques. So, it is
valuable to investigate the unsteady solution corresponding to each branch of
the two exponentially decaying steady solutions. Besides, Liao and Magyari
[48] currently found that Equations (9) and (10) have an infinite number of
algebraically decaying solutions in the range of −1 < β < 0. It is valuable
and challenging to study the unsteady solutions corresponding to each of these
infinite number of steady solutions, their stability and relationships of each
other by means of the homotopy analysis method.
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Figure 8. Curve of C x
f

√
Rx

e /|1 + κ|sign(a) via τ when β = −0.3, λ = 0.904, ξ = λ2τ/(1 +
λ2τ ) and � = −1/4. Solid line: 20th-order approximation; Symbols: 18th-order approximation.
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