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Abstract. Equations for plane and spherical waves in a Voigt medium were in-
vestigated to find methods of solution by means of Laplace transforms for transient
waves. One type of solution was found in the form of products of infinite series in both
the s-plane and the i-plane.

The plane Voigt wave equation has been previously solved for particle velocity,
stress and strain for a unit impulse forcing function. However, solutions for the dis-
placement due to a unit impulse, and for velocity, stress, strain and displacement for
a unit step and a decay exponential involve operational forms for which no transform
pairs have been published. A method of solution utilizes a series expansion of the multi-
pliers in the transform plane to give a product of two infinite series which may be in-
verted term by term. These are further resolved as single series with polynomial coef-
ficients for purposes of computation. Convolution methods may also be applied, but
series expansion methods were used because of convenient recursions involved for
machine computation.

The same method of solution was applied to Voigt spherical waves for unit impulse,
unit step and decay exponential (finite source) forcing functions for displacement,
particle velocity, strain and radial stress. Appropriate recursion formulas make them
adaptable to computer evaluation. Oscillations occur for a spherical wave whereas for
a plane wave they do not.

List of Symbols

a, = constants m = summation index
b„ = constants from Heaviside expansion n = summation index
c = elastic velocity of sound P = notation for plane wave

= (E/p)w2 for plane wave P0 = pressure
= ((X + 2/j.)/p)W2 for spherical wave P' = pressure multiplier for 5(t)

c, = constants P" = pressure multiplier for 1(«)
Z)_„ = cylinder function of negative inte- q = s,/J

gral order r = radial length
e = exponential r0 = radius of cavity
E = Young's modulus of elasticity R = w0(r — r0)/c, dimensionless distance
k = summation index s = transform variable

* Received June 15, 1966; revised manuscript received January 6, 1067. Research sponsored by the
University of Missouri at Rolla and Waterways Experiment Station.
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)S = notation for spherical wave X = Lame's constant—elastic
t = time X' = viscoelastic modulus
T = dimensionless time = w0t n = shear modulus—elastic
u = displacement p = density
v = particle velocity a = stress
x = linear distance co0 = transition frequency = (X + y)f
X = wox/c, dimensionless distance (X' + m')
t = strain 2 = summation

Introduction. The Voigt viscoelastic model is among the many physical analogs
which have been investigated in an attempt to find valid mathematical representations
of wave parameters in natural materials. Solutions for a plane Voigt wave in the litera-
ture have been given by Collins [1] and Hanin [2] in which they solved for the particle
velocity in response to a unit impulse.

Lee [3] solved the spherical Voigt equation for stress for a continuous harmonic
forcing function. However, in solving for response to transient loading he introduced a
"constant loss factor" into the transform which changed the problem from a Voigt
model to one similar to a solid friction model.

Clark and Rupert [4] and [5] obtained stress and strain by Collins' method and the
displacement by numerical integration. The method employed by Collins was to nor-
malize and shift the Laplace transform solution for the Voigt wave equation, expand the
positive part of a resulting exponential in a series, and obtain a term by term inversion
expressed as negative order parabolic cylinder functions multiplied by a factorial, an
exponential and a power term.

Operational solutions for the displacement for a unit impulse and for forcing functions
such as a unit step or a decay exponential require that the transform solution also contain
an appropriate multiplier. No transform pairs for the resulting expressions exist in
published tables.

The transformed multipliers may, however, be expressed as Heaviside expansions, or
by Taylor series expansion about s = » yielding transformed solutions in the s-plane
composed of the product of two infinite series. These may be inverted term by term into
the time plane, expressed as a product of two series in the time variable and by proper
arrangement utilized for computer evaluation. Some of the double series may be ex-
pressed as Cauchy products, which clarifies the mathematical operations and assists
in computer programming.

Plane waves. The basic wave equation for a plane Voigt wave may be derived in
different ways [6] and in terms of alternative parameters:

1 +1 i) S = ? f? (1)o>0 dtJ ox C dt

where z represents either displacement, velocity, stress or strain.

Where
w0 = viscoelastic or transition frequency factor,
c = bar velocity = E/p,
x = distance,
t = time.
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Collins [1], however, derived the operational form of the equation directly for particle
velocity utilizing the force acceleration relation to obtain:

_ P!_ exp [ xs/c(s/cop + 1)V2] fn\
PC (s/cc 0 + 1)1/2 {2)

where the bar indicates a Laplace transform.
The notation of Collins and van der Pol is used herein for the symbol connecting a

function to its transform:

v(x, t) = v(x, s). (3)

The transform expression is then "normalized" by substituting co0s for a>0 , or multi-
plying s by o)0 . This is equivalent to dividing the time and the velocity function by co0 ,
thus

1 / w \. P' exp [—xa>ns/c(s + l)l/2]
— v(x, t/uo) = — ,\w-2—— • (4)co0 pc (s + 1)

The shift theorem is then used to place the transform solution in a form which can
be separated, expanded and then inverted by use of tabulated transform pairs, i.e.,

„(*, t/«M ■=. ^ [-*■(.„- "/-'"I (5)
pC S

where X = (co0x)/c. The second half of the exponential is then expanded (a Taylor's
series expansion about s = «>):

which gives

exp( —X/sI/2) = (6)
n = 0 6

, . P'lOo AInexp(-a-(s),/!)
v(x, t/u0)e = —— 2-, "7 ^72TT72  (7)

pC n = o 711 o

By use of formula (9), p. 246 of [7], Eq. (7) may be inverted term by term to give
P' 00 yn<)n/2jn/2-l/2 / -y \

v(x, tMe' exP (-X2/8^D-\W7§) (8)

or, rearranging and substituting w0t for t and letting w0t = T,

«*•<> - (~T - X'/8T) 5 £ (9)
Similarly, <x — E( 1 + l/u0d/dt)e,

<r(x, t/w0)e' = -P'o)0 exp [-X(s - 1 )/s1/2] (10)

or
, r W . r. A X" exp ( —X(s)1/2) n

<t(x, t/uo)e = —/ co0 r ^72 "
n =-1) • $

whose solution is

.(X, t) = ± ~ (12)
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The displacement is the integral of the velocity with respect to time, which is ob-
tained by multiplying the unmodified velocity transform by 1/s. This operation is valid
only for zero displacement at t = 0. Hence

,;/r A • P' eXP [ XS/c(s/o}q + 1)'/2]
U{x' t] "• PC s(s/wo + 1)I/2 ' (ld;

Normalizing and shifting gives

1 , s, . P' ox p [ —X(s - 1 )/s1/2]
— u(x, t/o> 0)e = — _ ,W/2 -■ (14)
OJq pC COo(,S 1/^

In this case l/(s — 1) may be expanded and the final operational solution is a double
series, i.e.,

which yields

= (is)
1 6 m-0 ^

r , / w. ^' v exP (~ xs'/2)
u(x, t/w0)e = — 2^ Z, 177 0»/^m+8/2— (16)

pC m = 0 M-0 '41 o

This may be inverted term by term to give

u(x, t) = exp (-r - X2/8T) 2"/2+"+Ir/2+ra+1/2Z)_„_2„_2(Z/(27,)I/2).
pCTT in = 0 n-0

(17)
The double series is readily amenable to evaluation by computer methods for small

values of X and T. Equation (14) could also be solved by convolution or by integration
of the velocity equation with respect to time. Of these methods, the series expressions
appear to be most tractable for computation purposes.

The expression for strain is found by differentiating equation (13) with respect to
x, which gives

. P' exp [-xs/c(s/uo + 1)1/2] ms
e(s, x) = —2 j—,   (18)pc (sM) + 1)

which yields

(18)
COq \ COf)/ n=-0 • $

Equation (19) may be inverted term by term to give

e(x, t) = 27~tt72 exp ( — 7' - Z2/8T) £ ~ 2(n+l)/2T"/2D^l(X/(2TY/2). (20)
pc [71) n-o

The solutions for an exponential decay input can be obtained by multiplying the
transform for each particular parameter before normalizing and shifting by PQ/(s + /3),
which is the transform of P(t) — P0 exp ( — (it). This is illustrated by the derivation of
the velocity equation:

"(*. o ~(TTTy'xp ("c (./«. + r>m)■ <2I)
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Upon shifting and normalizing this becomes

1 ( t \ , . P„ 1 exp [ x(s - l)/sI/2]
— v\x,— e = — -
co0 \ w0/ pCO!0

Wo

Letting

(* ̂ "I\ W0/ _

«1/2 (22)

[s - (1 - (3/co„) ] = («-«) (23)

and expanding the positive exponential as previously done, and letting

~ = zi (-T (24)
the transform then becomes

1, L iY. ,Aiv M" V exp (-X(s)1/2)
v\x, Je —. • 2L, I / .2^ „i n/2+i/2 ' (25)

Wq \ COq/ PCCOq S m„o VS' n-0 ^ • $co0 \ co0/ pccoo s n" \s/ w_o n\

This may be rewritten

I, (v jY, P„ y y r . exp (~Z(s)1/2) ,
vyx, Je 2-i 2-i a n/2+m+1/2 • (^o)

Wo \ W0/ pCOJo m = 0 n = 0 S

The inverse is found term by term to be

v(x, t) = — am exp (-T- X2/8T) £^1 am2n/2+m+,r/2+m+U2D^!m^(X/(2T)1/2)
PCT m - Q n = 0 ^ *

(27)
which likewise can be evaluated by computer methods.

The other parameters are determined in a like manner each resulting in a double
series. The values for a unit step input can be readily determined by letting 0 = 0 which
makes a = 1.

Spherical wave. Collins [1] presented a Laplace transform solution for particle
velocity in terms of the s-variable for a spherical Voigt wave with a unit impulse, 8(t),
input, but did not invert it.

The spherical Voigt wave equation may be developed in more than one way [4], but
is probably in its most tractable form when expressed in terms of the displacement
potential, <f>:

, 1 a \ d2rj> 1 d2r4> ,
I + nW a 2 ~~ „2 a/2 ' vco0 all or C at

The boundary conditions are:

t < 0 P(t) = 0 <t> = 0 r = r0

t > 0 P(t) = ar{t) r = r„

(f> = 0 r = oo

and at r = r0

(X + 2 n) + (X' + 2 p.') — jV + 2(x + x'a/aa w = _ (() m
dr r dr
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No experimental values are available for the viscoelastic moduli, hence, for purposes of
computation it is assumed that X = n and X' = #i', although the following methods are
applicable without this assumption.

Equation (29) then reduces to

"G + ̂ X3 d? + r S) = ~ar(t) ■ (30)
For a Dirac delta forcing function, P(t) = P' 8(t), the operational solution of Eq.

(28) becomes

P'r0 exp [—s(r — rn)/c(s/a0 + 1)1/2] 
r<j)(r, t) = —

rfis(s/u0 + 1)
3s2 4s 4

_c(s/u0 + 1) r0c(s/u o + 1)1/2 rl.

(31)

However, interest is centered on parameters such as displacement, particle velocity,
stress and strain. The displacement is

u = d<t>/dr (32)

. P'rn exp [—s(r — r0)/c(s/co0 + 1)1/2]
l) =- m(V«o + 1 )[B]

where
3s2 , 4s

? + D"J (33>

[B] = -1-r0J+ „ „/„/ 1 + I? • (34)_c2(s/o)0 + 1) 1 r0c(s/co0 + 1)1/2 ' r2.

Let s = ojqS (normalize) and then s = (s — 1)(shift), and Eq. (33) becomes

1 / i / \ t • P'ro exp (— RsU2 + R/su2) [ 1 to„(s — 1)7.u<r-lMe  SRi L? +
where

and

"[■[-11 - Is" + sSr/""+ (sa ~ 2)s ~ sks"!+1

(35)

(36)

R = w0(r — r0)/c. (37)

The fraction involving the quadratic in s in the denominator may be expanded as
follows:

1 /[A] = \Zbm~ (38)s

where the coefficients b„ are functions of the coefficients of the quadratic. The region
of convergence is 1 < Re s < <=°.

The expansion may be accomplished either as a Taylor series about s = °° or by
long division. The latter method provides a recursion for determining the values of the
coefficients for computation purposes. The positive exponential may likewise be expanded
to yield:

exp R/s'/2 = (39)
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Substituting in (35) and separating into appropriate terms gives the operational solution
in terms of double infinite series:

,.2/ P'rgC Jl f f fi", exp (-RsW2)
u(r, t/d>0)e - 2 22 22 . bm „/2+m/2+2

V m=-0 n=»0 S

^ exp (-Rsl/2) V 7r ' exP (~RsW2S>
2—, 2_, „ t «/2 + jn/2 + 3/2 2-, 2~j „ I n/2 + m/2 + 5/2

Lm-fl n-O"! o m-0 n-0 "I o
(40)

Equation (40) may then be inverted term by term [7] to yield the solution in the time
plane.

The velocity for a unit impulse may be found by differentiating the displacement
with respect to t, or multiplying (33) by s. The strain is determined by differentiating
the displacement Eq. (34) with respect to r, and the stress by substituting into Eq. (30).
All of these lead to solutions consisting of double series similar to Eq. (40), which may
then be inverted, and evaluated by computer methods.
For example, inversion of (40) gives

tt(r, t) = exp (-T- R2/8T){\ E Z §7 K2n/2+m/2+B/2Tn/2+m/2+2D.n.mJJ^rm)
flO)o [T m = 0 7i«o W! \\Zl ) /

I V V I, (W2 + m/2 + 2/T7n/2 + m/2 + 3/2 7-v I ^ I
+ rc Lh h n\ bmI 1 V-n-m-\{2T)v2)

~ E zf 6„2"/2+m/2+3r/2+m/2+5/2Z)_n_m_6(^T75) } (41)

where

T = CUo/.

= cylinder functions of negative integral order.
The expansion of fractions has been shown to be valid for both rational [8] and

fractional exponents [9] of the denominator terms of the fraction (see below). One
limitation on the use for computing of the expansion is that the series involved converge
slowly for large values of distance, time and «0 • Other methods of obtaining a function
which could be inverted were investigated. None offered a ready means of solution and
consequently no other tractable method of solving for and evaluating the desired param-
eters was found, except convolution. The latter led to evaluation of integrals by numerical
methods and was beyond the scope of the current investigation.

In every term in the inverted equations, there are essentially five components, an
exponential, a power-factorial term, 2 to an exponential value, T to an exponential
value, and a parabolic cylinder function of negative integral order. The exponential
decreases rapidly with increasing values of T, and the cylinder functions also decrease
with an increase in order or an increase in value of the argument. The power-factorial
term increases rapidly until n = R and then it decreases. Cylinder functions are cal-
culated by means of an appropriate recursion formula [1].

Both 2 and T to exponential increase without bound as n increases. The behavior of
each of these functions must be considered in programming inasmuch as some of the
numbers may become very large, in excess of 101GO, and some very small, less than 10-100.
In some cases the order of multiplication becomes important so that two small or two
large numbers are not multiplied in succession.
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For computation of the double series, it is more convenient to find the multipliers
of each successive cylinder function. These are found to be increasing truncated series
of power-factorial terms. That is, a double series may be expressed as a Cauchy product:

CO a> pn

^ ^ ^ ^ ^ 2(.n + m + z)/2rp(n + m + z — l)/2jy

n-0 m-0

= Z(Z^Z-^l)2 ^/2Tln+-1)/2R  (42)

The infinite series all converge rapidly for relatively small values of R and T, but not
so rapidly for larger values. For purposes of computation specific values are chosen for
r, r0 , o>o , and c, which was not necessary in the case of plane waves.

A rational function of the following type may be expanded [8] in an infinite series, and
has a zero of order nat i.e.,

y(s) — —;r~; ^i~:  (43)
a0s + + • • • an

may be expanded as

/ \ 1 Oi 1 , fli a„a2 1 / a a \+ ■■■ (44)

and inverting term by term yields
jTl— 1 jfl

y{t) =Co(^1)! + Ci^! + C2^T1)!+ • (45)

However, the individual coefficients of the terms in the series rapidly become very
cumbersome to develop and to use in computation. For digital computer calculations, on
the other hand, a simple sequential loop procedure can be employed to determine the
successive coefficients.

Let Eq. (44) be written in the following infinite series form:

V(s) = ^ + • • • pk + • • • (46)

which may be inverted term by term. The same process may be carried out for irrational
fractions [9]:

y(9) = „ I „ ■ . _ (47)a0q -+- diQ ~r • • • an

where q — s1/2. This may likewise be expanded in the form

y(q) = ^ + ^i + ^+ ••• (48)

and may also be inverted term by term to give a solution in the time plane.
Thus, the inversion of the double series resolves itself into the inversion of a single

series with a polynomial coefficient, each term of the series having a valid inversion.
The inverted terms are similarly expressed and are in a convenient form for computation.
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The operational solutions for unit step and decay exponentials are obtained in a
similar manner. In these cases the operational expression is multiplied into the quadratic
in s before it is expanded.

It is notable that there is an oscillation of all parameters for the spherical wave,
while the plane Voigt wave does not exhibit oscillations [1]. The behavior is somewhat
similar to an elastic wave, but with greater damping and a difference in wave shape.
For a unit impulse and a decay exponential forcing function the oscillations are about
the zero axis. For a unit step, however, the oscillations are about a curve which is parallel
to the zero axis. In an elastic material, a wave caused by a unit step function also oscil-
lates about a line parallel to the zero axis.

For larger travel distances the wave spreads out and becomes somewhat more sym-
metrical. However, very small disturbances are indicated before the arrival of the main
wave, which disturbances are characteristic of a "diffusion model."

Solutions for unit step and exponential inputs for spherical waves are found by
utilizing the methods employed for a plane wave and those developed for the spherical
wave for a 8(t) input. Convolution solutions are also feasible, but are not given in this
paper.

Expressions for velocity, displacement, stress and strain for three different forcing
functions are given in the following tabulation for plane and spherical waves.

Values for particle velocity, displacement, stress and strain were calculated and
curves drawn for the three input functions, but only two types are included here. The
particle velocity for the decay exponential (Figs. 1-3) illustrates several of the char-

T = Dot
P -Of

Fig. 1. Normalized velocity v'(x,t) = v(x,t) * —for P0e
pc/rr

forcing function for plane Voigt wave.
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2.0 x !0

> O.ii

-0.8

~i 1 1 1 1—t—r—i 1 1 1 1 1 1 1 1 1 1 r

-I I I I I I I I 1 I I I I ' I

6

T = uiot

10

Fig. 2. Normalized velocity v'(r,t) = v(r,t) i P° r°°2 for P(t) = P0e"Bt
3uu oSy

for a spherical Voigt wave, r„ = 50 ft., u>0 = 600 and c - 20,000 ft/sec.

acteristics of the Voigt wave. The plane wave (Fig. 1) does not oscillate, whereas the
spherical wave (Figs. 2 and 3) does. A change in w0 alters only the amplitude of the plane
wave, but not its rate of decay, whereas for a spherical wave both are affected by the
value of o>0 . Acceleration and strain may be inferred from the particle velocity curves.

For spherical pulses the primary differences between a Voigt and an elastic wave is the
early arrival time and the symmetrical shape of the former. The Voigt wave velocity
depends upon the frequencies of the input function as well as the value of w0 • That is,
for very high frequencies the Voigt model behaves as a rigid element. For lower fre-
quencies and larger values of co0 it behaves more nearly as an elastic element. Upper
limits were found to exist for values of t, r and w0 which could be employed in calculations,
as well as lower limits for values of t.

Summation Symbols

Plane wave—single summation:

- y -Y" exp (—Xs,/2)
jL"' n! sn/2+v

Z",P> = Z^2(n+*)/27,c"+,-1)/lD_n_XX/(2r)1/J)-EXP.
r»-0
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Plane wave—double summation:

y-> _ V1 l X" exp (—Xs1/2)
/ -> / -<«/ Z—j ' J m I m + n/2 + y

~0 n — 0 n\
CO CO

Z = Z Z 2"l+("+',/22""+<"+'-I>/2i)-„_2m_.(X/(2r)1/2)-EXP.
m-0 n-0 ^ •m —u ji«i; • A •

Spherical wave:

y-> yv«.s> _ y* y* > exp (—j?s1/2)
/ > / -Z_/ Vm i (m + n)/2 + i/ »

Z Z^',S> = Z Z bm^j2<m+n+,)/2T(m+n+-1)/2D^m.,(R/(2Ty/2)-EXP.
m-0 n-0 ^ •

(s, P) — s variable, plane wave, (s, S) = s variable, spherical wave,

(t, P) = t variable, plane wave, (t, S) = t variable, spherical wave.

On the left side of the above equations the first letter in the superscript represents the
s-plane or the i-plane, and the second a plane or spherical wave. The subscripts y and
z are, respectively, the numerical values of the transform variable exponent other than
the summation indices, and the subscript of the Weber function other than the summation
indices. In all cases z = 2y — 1, EXP = exp (—T — X2/8T) for the plane wave, and
EXP = exp (-T — R2/ST) for the spherical wave.

k.O X 10~5

T = do t

P rFig. 3. Normalized particle velocity v'(r,t) = v(r,t) * 00 for
3ywovnT

~ 81
P(t) = PQe for spherical Voigt wave, r0 = 50 ft., w0 = 600

and c = 20,000 ft/sec.
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Summary of Solutions

Plane Wave: P(t) = P' S(<)

V(x, t) = £««■", U(z, t) = ~~i7i E E^'\
PCtt per

e(x, t) = ~J"T72 El'". »(*, 0 = -P'«o Z-V".
PC 7T

Plane Wave: P(J) = P"l(t)

»(«, 0 = ~t/2 E '"p>, w(z, /) = -^—175 E E""P).
pCTT pCC007T

«(*, 0 = -^T7i 2: »(«, 0 = -p" E Er,P)-

Plane Wave: P(t) =

«,(*, /) = A* E E^'", u(x, 0 = E Ei' P).
pCTT pCW0T

e(x, t) = E E.^", -(X, /) = E Ei"'"1-
pC IT IT

Spherical Wave: P(t) = P' S(t)

P'r0c2 _1 coo ̂  ^<l"s> — — E E"'S,Ju(r, 0 =
3/uco0?r

'<v /»2*,«-g^lZZ."'"- IS («,S)1
3 J

+ ^ [E Eo''S) - 2 E E*+ E Ei' s>]}.

*■« " "ISM? 2 S"" + % IS Z!'"" - £ Z
+ 4 IE E.",s> - 2 E E*'-3' + E EJ,,aU

Vt.5)i

.(r,:0 = -^7.{? 2 Z;'" +^IZ - Z S"»l
+ jj£ (Z Z-.sl - 2 £ Z"'" + Z Z!' "]}.

Spherical Wave: P(t) = P"l(t)

+■«- S-{? 2: s- + * iz Zi"" - z zr
2; Z!'"+^[Z zs-" - Z Zi'-'
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P"rnc~ J 2 i 2o)0<M) = & B''s>- ZZ^'J

+ ̂  [Z Z^s' - 2 E Z^S) + Z D',s>]

»(r, i) - z z;'-" + ̂  iz zi'-" - z z."-"]
+ |;MZ Z.",s' - 2 z Z"-" + Z Z!""l

Spherical Wave: P(t) = P0e~fil

Mr, I) - 3^{p Z Zi'" +^(Z Zi'" - Z Zi'"]},

»<'•') = 3^-{?'ZZi""- ZZi'"l

+ -iz z;"*' - 2 z zi''" + z z;'"irc

4,1) - -gjfalp z Zi'-" + ̂  1Z Zi'" - Z Zi-]
2

+ -2 [Z Zi1'5' - 2 Z Z*'-5' + Z Z"'S)]rc

'(r-" - -£■£{? 2 Zi'-"' +^ iZ Zr" - Z Zi""]

+ IZ Zi'-" - 2 Z Zi' " + 2 Z Zi' "
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