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Serine/arginine-rich splicing factor 3 (SRSF3)
regulates homologous recombination-mediated
DNA repair
Xiaolong He1,2* and Pei Zhang1

Abstract

Background: Our previous work found that serine/arginine-rich splicing factor 3 (SRSF3) was overexpressed in

human ovarian cancer and the overexpression of SRSF3 was required for ovarian cancer cell growth and survival.

The mechanism underlying the role of SRSF3 in ovarian cancer remains to be addressed.

Methods: We conducted microarray analysis to profile the gene expression and splicing in SRSF3-knockdown

cells and employed quantitative PCR and western blotting to validate the profiling results. We used chromatin

immunoprecipitation to study transcription and the direct repeat green fluorescent protein reporter assay to study

homologous recombination-mediated DNA repair (HRR).

Results: We identified 687 genes with altered expression and 807 genes with altered splicing in SRSF3-knockdown

cells. Among expression-altered genes, those involved in HRR, including BRCA1, BRIP1 and RAD51, were enriched

and were all downregulated. We demonstrated that the downregulation of BRCA1, BRIP1 and RAD51 expression

was caused by decreased transcription and not due to increased nonsense-mediated mRNA decay. Further, we

found that SRSF3 knockdown impaired HRR activity in the cell and increased the level of γ-H2AX, a biomarker for

double-strand DNA breaks. Finally, we observed that SRSF3 knockdown changed splicing pattern of KMT2C, a

H3K4-specific histone methyltransferase, and reduced the levels of mono- and trimethylated H3K4.

Conclusion: These results suggest that SRSF3 is a new regulator of HRR process, which possibly regulates the

expression of HRR-related genes indirectly through an epigenetic pathway. This new function of SRSF3 not only

explains why overexpression of SRSF3 is required for ovarian cancer cell growth and survival but also offers a new

insight into the mechanism of the neoplastic transformation.

Background

Serine/arginine-rich splicing factor 3 (SRSF3), previously

named as SRp20 and SFRS3, is the smallest member of

serine/arginine-rich (SR) protein family, well known for

its regulatory roles in RNA metabolism and functions,

such as pre-mRNA splicing [1–4], mRNA 3′ end pro-

cessing [5, 6], mRNA export from nucleus [7–9] and

cap-independent translation [10, 11]. SRSF3 was also

implicated in the regulation of chromatin structure and

function because of its association with interphase

chromatin but not with hyperphosphorylated mitotic

chromosomes [12].

Physiologically, SRSF3 is essential for embryo develop-

ment since Srsf3-null mouse embryos failed to form blasto-

cysts and died at the morula stage [13]. Mice with

hepatocyte-specific knockout of Srsf3 exhibited altered hep-

atic architecture, prolonged expression of fetal liver

markers, impaired glucose homeostasis and reduced chol-

esterol synthesis, suggesting that Srsf3 is indispensable for

hepatocyte maturation and metabolic function in mice [14].

Pathologically, there is increasing evidence indicating

that SRSF3 plays an important role in tumorigenesis. In

a mouse model of mammary tumorigenesis, it was ob-

served that SRSF3 was remarkably increased during the

development of mammary cancer [15]. In human ovar-

ian tumors, we found that SRSF3 was overexpressed in
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invasive ovarian cancer at all stages and its overexpres-

sion was critical for tumor cell growth and maintenance

of transformation properties [16, 17]. Knockdown of

SRSF3 expression causes growth inhibition or apoptosis

of ovarian cancer cells, depending on the extent of

SRSF3 knockdown [16]. SRSF3 was also found upregu-

lated in a variety of other tumors, such as cervical cancer

and rhabdomyosarcoma [18]. It was showed that ectop-

ically expressed SRSF3 promoted cell growth and trans-

formation of human and mouse fibroblasts [18]. In

addition, knockdown of SRSF3 resulted in G1 arrest

and downregulation of several G1/S transition-related

genes in colon cancer cells [19] and led to p53-

dependent cellular senescence in fibroblasts [20]. Be-

sides the tumor promoting role, a recent study found

that SRSF3 might function as a suppressor of hepatic

carcinogenesis, because mice with hepatocyte-specific

knockout of Srsf3 invariably developed hepatocellular

carcinoma at late ages [21].

Our previous studies mentioned above raise questions

why SRSF3 is required for ovarian cancer cell growth

and how it contributes to the neoplastic transformation.

In the present study, we show that knockdown of SRSF3

suppresses expression of breast cancer 1, early onset

(BRCA1), BRCA1 interacting protein C-terminal helicase

1 (BRIP1), and RAD51 recombinase (RAD51). These

genes all play important roles in the homologous recom-

bination (HR)-mediated DNA damage repair pathway

[22, 23]. Correspondingly, we observed impaired HR-

mediated DNA damage repair (HRR) activity and accu-

mulation of DNA double-strand breaks (DSBs) after

SRSF3 knockdown. We also provide evidence suggesting

that SRSF3 possibly regulates the expression of above

genes through an epigenetic pathway.

Results

Profiling of gene expression and splicing in SRSF3-

knockdown cells

In our previous study, we established three A2780

sublines, A2780/SRSF3si1, A2780/SRSF3si2 and A2780/

LUCsi, which express doxycycline (Doxy)-induced SRSF3

siRNA1 (SRSF3si1), SRSF3 siRNA2 (SRSF3si2) and lucif-

erase siRNA (LUCsi), respectively. SRSF3si1 and SRSF3si2

suppress SRSF3 expression by about 50 and 90 %,

respectively, while LUCsi has little effect on SRSF3 expres-

sion [16]. We confirmed these results in the present study

by regular reverse transcription PCR (RT-PCR), quantita-

tive RT-PCR (qPCR) as well as western blotting, as shown

in the Fig. 2a, b and c. Induction of SRSF3si1 caused cell

growth inhibition whereas induction of SRSF3si2 led to

apoptosis [16] (Fig. 2f). In order to determine the mecha-

nisms underlying the role of SRSF3 in ovarian cancer, we

conducted human exon microarray analysis to examine

the genome-wide profiles of gene expression and splicing

in A2780/SRSF3si2 cells with or without SRSF3 knock-

down. Using p < 0.05 and absolute fold changes greater

than 2 as the cutoff values, we found 687 genes altered in

their expression in SRSF3-knockdown cells, among which

424 genes were upregulated while 263 genes were down-

regulated (Additional file 1: Table S1). Using false discov-

ery rate (FDR) less than 0.05 as the criterion, we identified

807 genes altered in their splicing in the SRSF3si2 cells

(Additional file 2: Table S2). Shown in Fig. 1a is the Venn

diagram of expression-altered genes and splicing-altered

genes in SRSF3-knockdown cells. Gene ontology ana-

lysis revealed that genes involved in double-strand

break repair, especially those involved in HRR, were

enriched among the expression-altered genes, as

shown in Fig. 1b. Figure 1c lists the changed HRR-

related genes, which are all downregulated in SRSF3-

knockdown cells. In addition, genes involved in sterol

biosynthesis are also enriched in the expression-

altered genes and they are all upregulated in SRSF3-

knockdown cells (Additional file 3: Figure S1). Among

the splicing-altered genes, those involved in cellular

protein modification, especially those related to polyu-

biquitilation, are the most highly enriched (Additional

file 3: Figure S2).

Knockdown of SRSF3 suppresses the expression of

BRCA1, BRIP1 and RAD51

We have confirmed the downregulation of BRCA1,

BRIP1 and RAD51 expression induced by SRSF3 knock-

down at both mRNA and protein levels, as shown in

Fig. 2. We confirmed the downregulation of other three

genes, XRCC2, RAD54B and BLM, only at mRNA levels

(Additional file 3: Figure S3) but not at protein levels

due to problems with the antibodies we tested. Figure 2a

and b show the results of RT-PCR and qPCR, respect-

ively. Figure 2c shows the results of western blotting. As

can be seen, the downregulation of BRCA1, BRIP1 and

RAD51 is more substantial in Doxy-treated A2780/

SRSF3si2 cells than in Doxy-treated A2780/SRSF3si1

cells, indicating that the effects correlate with the extent

of SRSF3 knockdown. As the primer pairs used for PCR

are located on the exons common to all or most known

splice variants of these genes, the results shown in Fig. 2

reflect the downregulation of overall expression rather

than specific splice variants. Similar results were ob-

tained with sublines of another ovarian cancer cell line,

SKOV3, as shown in the Additional file 3: Figure S4, in-

dicating that the phenomenon is not cell line specific. It

is worth pointing out that our microarray analysis did

not find any significant alterations in the splicing of

BRCA1, BRIP1 and RAD51 in SRSF3-knockdown cells.

We also measured the time course of the expression

of BRCA1, BRIP1 and RAD51 at mRNA and protein

levels after the A2780/SRSF3si2 cells were treated with
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Doxy. As can be seen in Fig. 2d and e, the expression

of these genes started to decrease from day one after

Doxy treatment and the downregulation was gradually

intensified in the later days. These results suggest that

downregulation of these genes is likely a primary effect

of SRSF3 knockdown rather than secondary to the

growth inhibition or apoptosis caused by SRSF3 knock-

down, which was not observed until day 4 after Doxy

treatment, as shown in Fig. 2f.

SRSF3 knockdown-induced downregulation of BRCA1,

BRIP1 and RAD51 is not due to nonsense-mediated mRNA

decay (NMD)

NMD is an important quality-control mechanism but

also plays a role in the regulation of gene expression. It

recognizes and degrades mRNAs harboring premature

termination codons (PTCs) [24]. SRSF3 is a well-known

splicing factor and its knockdown may cause aberrant

splicing and thus trigger NMD to downregulate gene ex-

pression. To determine whether the downregulation of

BRCA1, BRIP1 and RAD51 is mediated by this mechan-

ism, we examined the effects of inhibition of NMD path-

way on the expression of these three genes. NMD is

primarily carried out by up-frameshift (UPF) proteins,

which consist of UPF1, UPF2 and UPF3 with UPF1 as

the key effector of NMD [25]. Previous studies showed

that depletion of UPF1 by shRNAs substantially inhib-

ited NMD activity, leading to the upregulation of hun-

dreds of mRNAs [26, 27]. We introduced one of the

reported UPF1 siRNA (UPFsi) sequences [28] or LUCsi

sequence [29] into A2780/SRSF3si2 cells using lentiviruses

and achieved Doxy-induced simultaneous knockdown of

SRSF3 and UPF1, as shown in Fig. 3a. Then we measured

the expression of BRCA1, BRIP1 and RAD51 in these cells

A

B C

Fig. 1 Knockdown of SRSF3 alters expression and splicing of hundreds of genes. a Venn diagram of expression-altered genes and splicing-altered

genes. b Bar chart of enrichment scores under the term of DNA repair generated by gene ontology analysis. c List of expression-altered

HRR-related genes

He and Zhang Molecular Cancer  (2015) 14:158 Page 3 of 13



A

B

C

D

E F

Fig. 2 (See legend on next page.)

He and Zhang Molecular Cancer  (2015) 14:158 Page 4 of 13



treated with or without Doxy for 3 days by qPCR. As can

be seen in Fig. 3b, these genes were similarly downregu-

lated in A2780 cells simultaneously expressing SRSF3si2

and UPF1si or SRSF3si2 and LUCsi, indicating that the

downregulation of these genes could not be reversed by

inhibition of NMD and thus was not mediated by NMD.

Knockdown of SRSF3 suppresses the transcription of

BRCA1, BRIP1 and RAD51

To determine whether the downregulation of BRCA1,

BRIP1 and RAD51 is caused by reduced transcription,

we examined RNA polymerase II (RNApII) occupancy

on these genes in A2780/SRSF3si2 cells treated with or

without Doxy using chromatin immunoprecipitation

(ChIP) technology. RNApII occupancy on chromatin

DNA has been shown to be reliable surrogate readout

for transcription rates [30, 31]. We analyzed RNApII oc-

cupancy in two regions for each gene: one is about 1 kb

downstream of transcription start site (TSS) and the

other is 10 kb to 14 kb downstream of TSS. Chromatin

DNAs precipitated by RNApII antibody or negative control

IgG (Neg IgG) were analyzed by regular PCR and qPCR.

As shown in Fig. 4 (results of ChIP in the region of 1 kb

downstream of TSS) and Additional file 3: Figure S5

(results of ChIP in the region of 10 to 14 kb downstream of

TSS), RNApII occupancy was decreased in BRCA1, BRIP1

and RAD51 genes, but not in the control gene, GAPDH,

after SRSF3 knockdown. Figure 4a shows the results of

regular PCR and the Fig. 4b shows the results of qPCR.

Knockdown of SRSF3 impairs HRR and increases DSBs

Given the role of BRCA1, BRIP1 and RAD51 in HR-

mediated repair of DSBs, the downregulation of their ex-

pression is very likely to impair this process and cause

accumulation of DSBs in the cells. To test this hypothesis,

we first examined the levels of γ-H2AX, a biomarker of

(See figure on previous page.)

Fig. 2 Knockdown of SRSF3 suppresses the expression of BRCA1, BRIP1 and RAD51. a Regular PCR amplification of cDNA fragments of BRCA1,

BRIP1, RAD51, SRSF3 and GAPDH. b Relative quantitation of BRCA1, BRIP1, RAD51 and SRSF3 expression determined by qPCR analysis. Shown are

the results of three independent experiments (mean ± s.d.). * indicates p < 0.01 for comparisons between samples treated with and without Doxy.

c Left: Western blotting results of whole cell lysates of A2780 subline cells treated with or without Doxy. Right: Quantitation of the western

blotting results. Results in (a), (b) and (c) were obtained from cells treated with or without Doxy for 3 days. d Time course of BRCA1, BRIP1,

RAD51 and SRSF3 expression at mRNA levels determined by qPCR. Day 0 represents cells that were not treated with Doxy. Two independent

experiments were performed and produced similar results. Shown are the results of one experiment (mean ± s.d. of triplicate PCR reactions).

e Time course of BRCA1, BRIP1, RAD51 and SRSF3 expression at protein levels. Left: Western blotting results; Right: Quantitation. f Time

course of apoptotic cells

B

A

Fig. 3 SRSF3 knockdown-induced downregulation of BRCA1, BRIP1 and RAD51 is not due to NMD. a Western blotting results showing Doxy-induced

simultaneous knockdown of UPF1 and SRSF3. b Expression of BRCA1, BRIP1 and RAD51 after simultaneous knockdown of UPF1 and SRSF3. Shown are

the results of three independent experiments (mean ± s.d)
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DSBs, in A2780 subline cells treated with or without Doxy

by western blotting. As shown in Fig. 5a, γ-H2AX was

substantially increased in A2780/SRSF3si2 cells treated

with Doxy but not in other Doxy-treated subline cells, in-

dicating that robust suppression of SRSF3, which resulted

in deeper downregulation of BRCA1, BRIP1 and RAD51

(Fig. 2), indeed caused accumulation of DSBs. Immuno-

fluorescent staining of A2780/SRSF3si2 cells treated with

or without Doxy confirmed above finding, as shown in

Fig. 5b. The time course of γ-H2AX levels after SRSF3

knockdown is shown in Additional file 3: Figure S6.

Next we examined whether knockdown of SRSF3 im-

paired cellular capability to repair DSBs via HR-mediated

pathway. We employed DR-GFP reporter [32] to analyze

HRR activity in the cell. The reporter consists of two tan-

dem mutated GFP genes with one being a full-length GFP

mutated to contain an I-SceI site and the other being a 5′

and 3′-truncated GFP in the downstream. A single DSB is

generated in the upstream GFP gene by ectopically

expressed I-Scel and can be repaired by HR with the

downstream truncated GFP as the template, which results

in the formation of functional GFP gene and thus GFP-

positive cells. Therefore, the percentage of GFP-positive

cells reflects the cellular capability to carry out HRR. We

performed this assay in 293 T cells because of the high

efficiency at which they can be transfected. As shown in

Fig. 5c, the percentage of GFP-positive cells is lowest in

293 T cells expressing SRSF3si2, indicating impaired HRR

in these cells. Although 293 T cells expressing SRSF3si1

also had lower percentage of GFP-positive cells than con-

trol cells, the difference between two was not statistically

significant. These results correspond well to the changes

of γ-H2AX shown in Fig. 5a and b.

Expression of siRNA-resistant SRSF3 offsets the effects of

knockdown of endogenous SRSF3

To further establish the role of SRSF3 in the regulation

of HRR gene expression, we conducted rescue study to

determine whether siRNA-resistant SRSF3 could offset

the effects of knockdown of endogenous SRSF3 in the

A2780/SRSF3si2 cells. We made three silent mutations

in the coding region of SRSF3 that was targeted by

SRSF3 siRNA2, as shown in Fig. 6a. The mutated entire

coding sequence with HA tag fused to the N-terminus

(HA-mutSRSF3) was then cloned into the lentiviral vector

pLVTHM [33] under the direction of EF-1α promoter, as

shown in Fig. 6b. pLVTHM was also the vector we used to

express the SRSF3 siRNAs and the luciferase siRNA in the

cell [16]. The expression of HA-mutSRSF3, like the ex-

pression of siRNAs, was Doxy-inducible in the cells ex-

pressing regulatory fusion protein tTR/KRAB, which is a

hybrid of the tetracycline repressor (tTR) and KRAB

A

B

Fig. 4 Knockdown of SRSF3 reduces RNApII occupancy on BRCA1, BRIP1 and RAD51 genes. a Regular PCR amplification of immunoprecipitated

chromatin DNAs. b qPCR analysis of immunoprecipitated chromatin DNAs. Shown are immunoprecipitated DNAs expressed as percentages of

corresponding input DNAs (mean ± s.d, n = 3). * and ** indicate p < 0.05 and p < 0.01, respectively, for comparisons of RNApII occupancy between

samples treated with and without Doxy

He and Zhang Molecular Cancer  (2015) 14:158 Page 6 of 13



domain of human Knox1 protein [33]. We infected A2780/

SRSF3si2 cells using the lentiviruses carrying HA-

mutSRSF3 expression cassette and obtained a new cell cul-

ture (A2780/SRSF3si2/mutSRSF3), which demonstrated

Doxy-induced expression of HA-mutSRSF3 and simultan-

eous suppression of endogenous SRSF3, as shown in Fig. 6c.

With these cells we observed that Doxy treatment caused

little changes in the expression of HRR-related genes

BRCA1, BRIP1 and RAD51, indicating that the expression

of HA-mutSRSF3 offset the effects of knockdown of en-

dogenous SRSF3 (Fig. 6c). In accordance with unchanged

expression of HRR-related genes, the expression of γ-

H2AX was not increased after Doxy treatment in these

cells (Fig. 6c), indicating that HA-mutSRSF3 rescued

DNA damages caused by knockdown of endogenous

SRSF3. Further, we found that HA-mutSRSF3 also pre-

vented SRSF3 knockdown-induced apoptosis, as shown

in Fig. 6d. Taken together, these rescue experiments

provide additional evidence to support a role of SRSF3

in the regulation of HRR and cell survival.

Knockdown of SRSF3 changes splicing pattern of lysine-

specific methyltransferase 2C (KMT2C, also known as MLL3)

and decreases methylated histone H3 lysine 4 (H3K4)

KMT2C is a H3K4-specific histone methyltransferase,

catalyzing H3K4 monomethylation [34, 35]. Our exon

microarray analysis found that KMT2C expression was

upregulated in SRSF3-knockdown cells (Additional file 1:

Table S1). According to Ensembl database, two large pro-

tein variants could be generated from this gene with one

being 4911 amino acids long and the other 4968 amino

acids long, depending on whether exon 45 is included. In

an attempt to validate the microarray finding, we ampli-

fied the region of KMT2C cDNA spanning exon 44 to

exon 46 from the samples of A2780 subline cells treated

with or without Doxy. As shown in Fig. 7a, the amplifica-

tion generated more DNA fragments than expected 2

DNA bands. More interestingly, SRSF3 knockdown chan-

ged the expression pattern of these fragments. Amplicon

sequencing of the PCR products from A2780/SRSF3si2

cells revealed that the extra fragments were derived from

A

B C

Fig. 5 Knockdown of SRSF3 increases accumulation of DSBs and impairs HRR activity. a Western blotting result of γ-H2AX. Cell lysates were

prepared from cell cultures treated with or without Doxy for 3 days. b Immunofluorescent staining of γ-H2AX in A2780/SRSF3si2 cells treated

with or without Doxy for 3 days. c Results of HRR assays. Shown are the percentage of GFP-positive cells determined by flow cytometry

(mean ± s.d., n = 4)
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the use of an alternative 3′ splice site (alt 3′ SS) within

exon 46, which is located 72 nucleotides downstream of 3′

SS of exon 46. Knockdown of SRSF3 increased the use of

the alt 3′ SS, resulting in substantial upregulation of splice

variants (represented by bands 2 and 4 in the image of

Fig. 7a) which had the 5′ portion of exon 46 (i.e. 46a in

the Fig. 7a) skipped and downregulation of splice variants

(represented by bands 1 and 3 in the image of Fig. 7a)

containing the whole exon 46. Given the molecular

function of KMT2C in H3K4 methylation, we won-

dered whether altered splicing of KMT2C was accom-

panied by any changes in H3K4 methylation. Therefore,

we examined monomethylated H3K4 (H3K4me1) and

trimethylated H3K4 (H3K4me3) in A2780/SRSF3si2

and the control A2780/LUCsi cells. As shown in Fig. 7b

and c, H3K4me1 and H3K4me3, especially the latter,

were decreased in Doxy-treated A2780/SRSF3si2 cells

but not in Doxy-treated control cells. In contrast, tri-

methylated H3K9 and H3K27 were basically unchanged

in Doxy-treated cells. H3K4me1 and H3K4me3 have

been associated with active transcription [34] while

H3K9me3 and H3K27me3 have been linked to gene re-

pression [36]. Whether the downregulation of BRCA1,

BRIP1 and RAD51after SRSF3 knockdown can be as-

cribed to the reduction of methylated H3K4 requires

more investigation to determine.

Discussion
In this report, we present data showing that knockdown

of SRSF3 results in downregulation of BRCA1, BRIP1

and RAD51 expression and causes impaired HRR activity.

These results suggest a novel role for SRSF3 in the

regulation of HRR pathway.

HRR is a major mechanism to repair DSBs, which are

the most deleterious form of DNA damage and can be

generated by exogenous insults as well as endogenous

factors [37]. In dividing cells like cancer cells, DSBs are

mainly caused by endogenous factors (endogenous

DSBs, EDSBs), such as reactive oxygen species (ROS)

and replication stress [37], and can be induced by acti-

vated oncogenes [38–41]. It was estimated that EDSBs

were produced at the rate of ~50 per cell per cell cycle

A

C D

B

Fig. 6 Expression of siRNA-resistant SRSF3 offsets the effects of knockdown of endogenous SRSF3. a Mutated coding sequence of SRSF3 that is

targeted by SRSF3 siRNA2. Three silent mutations are in red. The sequencing chromatogram confirmed these mutations (indicated by the

underlined nucleotides). b A diagram of the lentiviral vector expressing Doxy-induced HA-mutSRSF3. c Western blotting results. d Percentage

of apoptotic cells
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A

B C

Fig. 7 Knockdown of SRSF3 changes splicing pattern of KMT2C and decreases methylated H3K4. a RT-PCR of KMT2C transctipts between exon 44

and exon 46. The numbers in the middle of the image indicate the DNA bands. The diagram of the alternative splicing events is shown on the

right. The right and left arrows over exons 44 and 46 represent the primer pair used for PCR. b Detection of monomethylated H3K4 and trimethylated

H3K4, H3K9 and H3K27 by western blotting. Unmodified histone H3 was a loading control. c Quantitation of western blotting results in (b). The levels

of modified H3 were first normalized to the levels of unmodified H3 and then the relative levels of modified H3 were calculated using the samples

without Doxy treatment as the references

Fig. 8 Current model and the new one suggested by the results of this study to explain neoplastic transformation. TS: Tumor suppressor
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in the normal human cells [42]. In cancer cells, this rate

could be higher because of the effects of increased onco-

gene activity. DSBs are repaired primarily by two mecha-

nisms: non-homologous end-joining (NHEJ) and HRR

[43, 23]. NHEJ repairs DSBs by promoting direct ligation

of DNA ends, which frequently introduces insertions,

deletions, substitutions and even chromosome rear-

rangements. In contrast, HRR repairs DSBs faithfully by

using homologous sister chromatids as the template to

guide the repairing process and thus playing a pivotal

role in the maintenance of genomic stability [43, 23].

HRR involves following steps: DSB recognition, damage

signal transduction and break repair by HR [23]. The six

downregulated genes shown in Fig. 1c all have a role or

roles in this repair pathway [22, 23, 44]. For example,

BRCA1 helps to direct the cell to choose HRR over

NHEJ to repair DSBs during S and G2 phase [44].

BRCA1 is also required for the recruitment of RAD51to

the damage sites [45], which is necessary for homology

search and subsequent strand exchange with intact sister

chromatid duplex DNA [23].

If DSBs are left unrepaired or aberrantly repaired, the

outcome would be cell death or genomic instability. Al-

though genomic instability is a characteristic of most

cancers and is believed to facilitate the development of

permanent oncogenic changes in the genome [46], there

is no evidence suggesting that cancer cells could tolerate

continuous DNA damage generation after generation.

On the contrary, a relatively stable genome is essential

for any cell, normal or tumor, to grow and survive [47],

and it is cancer cell’s reliance on a stable genome that

makes DNA-damaging agents to be effective in cancer

treatment.

Given the more frequent occurrence of spontaneous

DSBs in cancer cells and the importance of a relatively

stable genome for cell growth and survival, it is logical

that cancer cells need upregulated HRR activity to keep

their genomes from continuous alterations. Otherwise,

accumulated DSBs or genomic alterations would eventu-

ally lead to cell death. The new role of SRSF3 in the

regulation of HRR pathway provides a mechanism for

cancer cells to meet this need. Therefore, it is no wonder

that almost all invasive ovarian tumors that we examined

overexpressed SRSF3 and knockdown of SRSF3 induced

growth inhibition and cell death [16]. Analysis of the

serous ovarian cancer microarray dataset from The Can-

cer Genome Atlas project shows that SRSF3, BRCA1,

RAD51, XRCC2 and BLM are upregulated in tumors

compared to normal ovaries, as shown in Additional file 3:

Figure S7, supporting the notion that tumor cells need

enhanced HRR activity.

The new role of SRSF3 discovered in this study also

suggests a new paradigm to understand the tumorigenic

process. It is widely accepted that activated oncogenes

are a driving force of tumorigenesis [48, 49]. However,

they alone cannot cause cancer. Instead, activated onco-

genes induce senescence or cell death in normal and par-

tially transformed cells due to their induction of DNA

damage and DNA damage response (DDR) [49, 40]. Ac-

cording to current tumorigenic model, after oncogene

activation, further genetic or epigenetic changes in

tumor suppressor genes are needed to overcome repli-

cative stress and make tumorigenesis proceed (Fig. 8,

left panel) [48, 49]. Our observation suggests that there

exist another mechanism to promote tumorigenesis.

That is, during neoplastic transformation, which could

be initiated by oncogene activation, SRSF3 is upregu-

lated by presently unknown factor(s) and confers cells

enhanced capability to carry out HRR and thus allows

cells to bypass replicative stress and complete trans-

formation process (Fig. 8, right panel). This new mech-

anism may explain not only the development of tumors

that lack mutations or alterations in tumor suppressors

involved in DNA damage repair and response but also

the overexpression of RAD51 found in a wide variety of

human tumors, including BRCA1-deficient ones [50, 51].

Overexpression of RAD51 can rescue the defects caused

by depletion of BRCA1 and thus may contribute to the

genesis of BRCA1-deficient tumors [51].

Finally, the results shown in Fig. 7 provide a clue to

understand the molecular mechanisms behind the new

role of SRSF3. Based on those results, we hypothesize

that SRSF3 regulates the expression of HRR-related

genes indirectly through an epigenetic pathway. That is,

SRSF3 controls alternative splicing of KMT2C, whose

splice variants determine the methylation status of

H3K4, by which the transcriptional activities of HRR-

related genes are set. To test the hypothesis, more work

will be needed to establish causal relationships between

the changed alternative splicing of KMT2C and reduced

methylated H3K4 and between reduced H3K4me3 and

suppressed expression of HRR-related genes.

Conclusions
Our results indicate that SRSF3 is a regulator of HRR

process, which possibly regulates the expression of HRR-

related genes indirectly through an epigenetic pathway.

This novel function explains why overexpression of

SRSF3 is required for ovarian cancer cell growth and

survival but also offers a new insight into the mechanism

of the neoplastic transformation.

Methods
Cell cultures

Ovarian cancer cell line A2780 sublines, A2780/SRSF3si1,

A2780/SRSF3si2 and A2780/LUCsi, were established in

our previous study [16]. These sublines were grown in

DMEM supplemented with 10 % FBS and 2 mM L-
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glutamine at 37 °C, 5 % CO2. 293 T cells were purchased

from the American Type Culture Collection (ATCC) and

grown in the same media as A2780 sublines.

Microarray analysis

Total RNAs were extracted from A2780/SRSF3si2 cells

grown in the presence or absence of Doxy (0.1μg/ml) for

3 days using TRIzol reagent (Life Technologies, Grand

Island, NY) and treated with TURBO DNA-free kit

(Life Technologies). The prepared total RNA samples

were submitted to Asuragen (Austin, TX) for expres-

sion profiling by Affymetrix Human Exon 1.0 ST Array

(Affymetrix, Santa Clara, CA). The microarray data

were analyzed using Partek Genomics Suite Version 6.6

(Partek, St. Louis, MO) to determine the differentially

expressed or spliced genes. Gene ontology analysis was

performed also using Partek Genomics Suite Version 6.6.

RT-PCR and qPCR

Total RNAs were extracted with TRIzol reagent from

cultured cells and treated with TURBO DNA-free kit.

cDNAs were synthesized from 2 μg of total RNAs with

High Capacity cDNA Reverse Transcription Kit (Life

Technologies). Non-quantitative RT-PCR reactions were

set up with Phusion Green Hot Start II High-Fidelity

DNA Polymerase (Thermo Fisher Scientific, Waltham,

MA). qPCRs were set up with Fast SYBR Green Master

Mix (Life Technologies) and run in StepOne Plus Real-

Time PCR System (Life Technologies). The primer pairs

for RT-PCR and qPCR were the same for each gene and

they are BRCA1 prime pair 5′-ACTCTGAGGACAAAG

CAGCG-3′ and 5′- CATCCCTGGTTCCTTGAGGG-3′,

BRIP1 primer pair 5′- CGCTTTAGGAATAACCCAAGT-3′

and 5′- CTCATTGTCCTGTATATTGGTT-3′, RAD51 pri-

mer pair 5′- TTTGGCCCACAACCCATT TC-3′ and 5′-

TTAGCTCCTTCTTTGGCGCA-3′, SRSF3 primer pair

5'-AATTGGAACGGGCTTTTGGC-3' and 5'-CCATCTAG

CTCTCGGACTGC-3', and GAPDH primer pair 5′-

GGGGCTGGCATTGCCCTCAA-3′ and 5′-GGCTGGTG

GTCCAGGGGTCT-3′. The expression level of each gene

was determined by the comparative CT (ΔΔCT) method

[52] with GAPDH as the endogenous control and the sub-

line A2780/LUCsi cells grown in the absence of Doxy as the

reference. The primer pair for amplification of KMT2C

cDNA between exon 44 and exon 46 was 5′-AGCACTGA

CACGTTTACCCA-3′ and 5′- AAGCCGGAGTGTTAG

TGAGC-3′.

Western blotting

Whole cell lysates were prepared with 1x sample buffer

(50 mM Tris pH 6.8, 2 % SDS, 10 % glycerol, 5 %

β-mecaptoethanol and 0.002 % bromphenol blue) and

sonicated with Sonifier Cell Disrupters (Branson Ultra-

sonics, Buffalo Grove, IL). Western blotting was performed

as described previously [53]. The antibodies for BRCA1,

RAD51, SRSF3 and γ-H2AX were purchased from Santa

Cruz Biotechnology (Dallas, TX, cat# sc-642, sc-8349, sc-

13510 and sc-101696, respectively) and the antibodies

for BRIP1 and UPF1 were from Cell Signaling Technol-

ogy (Danvers, MA; cat# 4578S, 12040S, respectively).

Quantitation of western blotting results was performed

with Volume Tools program contained in Image Lab

software (Bio-Rad Laboratories, Hercules, CA).

Apoptosis assay

Cells were fixed in 4 % paraformaldehyde for 10 min and

then stained in a solution of Hoechst 33342 (Life Tech-

nologies) for 15 min. Apoptotic cells and non-apoptotic

cells were counted under fluorescent microscope manually

with computer assistance.

ChIP

Chromatin DNAs were isolated from A2780/SRSF3si2

cells treated with or without Doxy for 3 days and immu-

noprecipitated with ChIP-IT Express Enzymatic kit (Ac-

tive Motif, Carlsbad, CA) and RNA polymerase II

antibody (mAb) (Active Motif, Cat # 39097) or Negative

control mouse IgG (Santa Cruz Biotechnology, cat# sc-

2762) by following the manufacturer’s instruction. The

primer pairs for non-quantitative PCR and qPCR were

the same for each gene and they are following: BRCA1

primer pair, 5′-GGACGTTGTCATTAGTTCTTTGGT-3′

and 5′-TCTTCAACGCGAAGAGCAGA-3′; BRIP1 primer

pair, 5′-GGGCTCCGCTTTATTTGCTC-3′ and 5′-CAGT

TGAGATCCCCGAGACC-3′; RAD51 primer pair, 5′-GC

TGGGGCGAAAACACAAG-3′ and 5′-GACTTCTCGCTC

GAACCCAT-3′; and GAPDH primer pair, 5′- TACTAGCG

GTTTTACGGGCG-3′ and 5′- AGGCTGCGGGCTCAAT

TTAT-3′. Non-quantitative PCRs and qPCRs were set up

as described in 2.2. The immunoprecipitated DNAs were

quantitated by standard curve method. The standard curve

was generated with input chromatin DNA samples at

concentrations of 50 ng, 5 ng, 0.5 ng and 0.05 ng per ul.

Immunofluorescent staining

A2780/SRSF3si2 cells were grown on poly-L-lysine-

coated glass coverslip in the presence or absence of

Doxy for 3 days before subjected for staining. The cells

were fixed in ice-cold methanol for 10 min followed by

air-dry. Afterwards, the cells were blocked in 5 % normal

donkey serum (Jackson ImmunoResearch, West Grove,

PA) for 1 h before they were incubated with γ-H2AX

antibody (Cell signaling Technology, Cat # 9718S, 1:400

dilution) for 1 h and then with Dylight 488-conjugated

donkey anti-rabbit IgG (Jackson ImmunoResearch, Cat #

711-485-152, 1:200 dilution) for 45 min. The cells were

rinsed in 1xPBS for three times after each incubation

step. Finally, the coverslips were mounted on glass slides
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with VECTASHIELD Mounting Medium containing

4′, 6-Diamidino-2-phenylindole dihydrochloride (DAPI)

(Vector Laboratories, Burlingame, CA).

HR assay

The direct repeat green fluorescent protein (DR-GFP) re-

porter was used to measure HR activity in 293 T cells with

or without SRSF3 knockdown. Briefly, 293 T cells grown in

12-well plate were infected at multiplicity of infection 5

with lentiviruses expressing SRSF3si1, SRSF3si2 or LUCsi

for 12 h. Two days after infection, these cells were co-

transfected with plasmids pDRGFP, pCBASceI (Addgene,

Cambridge, MA) and pmCherry-N1 (Clontech Labora-

tories, Mountain View, CA) by calcium phosphate

precipitation method [54]. The transfected cells were

subjected to flow cytometric analysis for GFP-positive and

mCherry-positive cells two days after transfection. The

percentages of GFP-positive cells were normalized to the

percentages of mCherry-positive cells before comparison.

Statistical analysis

Unless otherwise stated, Student’s t-test was used in

comparisons between samples. All tests were two-sided

and p-values < 0.05 were considered significant.

Accession numbers

The microarray data reported in this paper were depos-

ited in Gene Expression Omnibus (GEO) database. The

accession number is GSE71745.
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