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Abstract

The testis is an organ in which a series of radical remodeling events occurs during development and in adult life. These events likely rely

on a sophisticated network of proteases and complementary inhibitors, including the plasminogen activation system. This review

summarizes our current knowledge on the testicular occurrence and expression pattern of members of the plasminogen activation

system. The various predicted functions for these molecules in the establishment and maintenance of the testicular architecture and in

the process of spermatogenesis are presented.
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Introduction

The testis is a highly dynamic organ not only in the
fetal stage but also during postnatal development and
in adult life. It is composed of two major compart-
ments: the interstitium with the steroidogenic Leydig
cells, and the seminiferous tubules. The seminiferous
tubules are surrounded by peritubular cells. They are
composed of Sertoli cells and germ cells at different
developmental stages. Sertoli cells play key roles in
spermatogenesis. They are target cells for follicle
stimulating hormone (FSH) and testosterone, respon-
sible for the initiation and maintenance of spermato-
genesis. They form the tubules and provide structural
and nutritional support for the developing germ cells
(Russell 1980, Griswold 1998).

The gonads emerge as an outgrowth and will
develop either as a testis or an ovary, depending on
the presence of the Sry gene located on the Y
chromosome. In response to Sry, Sertoli cells
differentiate. They synthesize the Müllerian-inhibiting
substance, and they aggregate to form the cords
together with peritubular cells originating from the
mesonephros. Subsequently, Leydig cells differentiate
in the interstitial milieu and start producing testoster-
one (Wilhelm et al. 2007). At puberty, dynamic
changes are associated with the transformation of the
cords into tubules and initiation of spermatogenesis.
In adult life, germ cells migrate from the base to the
apex of the tubule epithelium while differentiating
further. Finally, spermatids are released from the apex
of the seminiferous epithelium into the tubular
lumen, becoming spermatozoa (Russell 1980).
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Previous reports suggested that various proteinases
and their cognate inhibitors were involved in this
spatiotemporal and highly orchestrated process both
during testis development and in adult life (Fritz et al.
1993, Charron & Wright 2005). This review describes
our current knowledge on the plasminogen activation
system in the testis, and its predicted functions in
the establishment and maintenance of the testicular
architecture and in the process of spermatogenesis.
General aspects of proteases and protease inhibitors

A number of important processes that regulate the
activity and fate of many proteins are strictly dependent
on proteolytic events. For example, proteases are
involved in the ectodomain shedding of cell surface
proteins; the activation or inactivation of cytokines,
hormones, and growth factors; the exposure of cryptic
neoproteins exhibiting functional roles distinct from the
parent molecule; and degradation of multiple extra-
cellular matrix (ECM) components facilitating cell
migration and invasion. Accordingly, proteases are
fundamental in nearly all complex processes of tissue
maintenance, repair, growth and development, and
alterations in the structure and expression patterns of
proteases underlie many pathological processes includ-
ing cancer, arthritis, osteoporosis, neurodegenerative
disorders, and cardiovascular diseases. The completion
of the human genome sequence has allowed to
determine that more than 2% of all human genes are
proteases or protease inhibitors, reflecting the import-
ance of proteolysis in human biology (Puente &
Lopez-Otin 2004).
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The activity of proteases is regulated at multiple levels
including the level of production, the activation of the
protease generally synthesized in an inactive pro-form,
and the production of specific inhibitors. Proteases
catalyze the hydrolysis of peptide bonds in proteins.
The exopeptidases attack only peptide bonds localized
at/or near the amino- or carboxy-terminal portion of
peptide chains. The endopeptidases, also named the
proteinases, catalyze the hydrolysis of internal bonds in
polypeptides. They are divided into five classes, i.e.,
aspartic, metzincins, cysteine, serine, and threonine
proteases, depending on their catalytic sites. Analysis of
the full repertoire of proteases present in the human,
mouse, and rat genomes indicates that serine proteases
represent one-third of the proteolytic enzymes in rat
(221 out of 626), mouse (227 out of 641), and human
(178 out of 561; Puente & Lopez-Otin 2004).
Serine proteases and serine protease inhibitors
(SERPINs)

The serine protease family is one of the earliest
characterized and largest multigene proteolytic families.
It has well-characterized roles including blood
coagulation, platelet activation, fibrinolysis, and throm-
bosis. It can be subdivided into 16 families including the
plasminogen activators (PAs), activated protein C, and
the kallikreins.
Plasminogen activators

In mammals, two major types of PA have been identified,
urokinase type (uPA) and tissue type (tPA). Even though
both types of PA catalyze the activation of plasminogen,
the currently established functions of uPA-dependent
plasminogen activation are mainly within physiological
and pathological tissue remodeling processes, whereas
tPA is mainly involved in thrombolysis and neurobiology.
However, it has been observed in gene-deficient mice
that PAs could substitute to each other (Dano et al. 2005).
Both PAs are released from cells as single chains with no
(uPA) or low (tPA) activity, with cleavage of a polypeptide
bond leading to the fully active two-chain forms. The most
important feature of this system is the amplification loop
achieved by the reciprocal activation of pro-PAs and
plasminogen on the cell surface. In addition, although tPA
and uPA are secreted proteases, both can bind to the cell
surface via specific cell surface receptors, being thus
protected from the inhibitory actions of the abundant
plasma inhibitors (Dano et al. 2005).

At least eight distinct plasmin/plasminogen-binding
proteins have been proposed, including a-enolase,
amphoterin, and annexin II. Annexin II is a 36 kDa,
calcium-dependent, phospholipid-binding protein that
exhibits specific saturable binding for both plasminogen
and tPA. It independently binds tPA (but not uPA) and
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plasminogen, anchoring them with high affinity in close
proximity to each other on the cell surface, thus
providing an environment in which plasmin production
is greatly increased (Kim & Hajjar 2002).

The receptor for uPA (uPAR) is a cysteine-rich, highly
glycosylated protein, attached to the cell surface by a
COOH-terminal glycosylphosphatidylinositol anchor.
Both the inactive single chain and the active two-chain
uPA can bind to uPAR with high affinity. The receptor
uPAR can also bind the serum and extracellular matrix
protein vitronectin, an interaction that requires uPA. In
contrast, plasminogen does not bind to uPAR. Although
lacking a cytosolic domain, uPAR activates multiple
intracellular signaling molecules through a connection
with integrins (for example, vitronectin is a ligand
of avb3 integrin), G-protein-coupled receptors, and
caveolin. These include cytosolic kinase pathways with
the activation of intracellular tyrosine kinases, the focal
adhesion kinase pathway leading to cytoskeletal
reorganization, and intracellular calcium mobilization.
In addition, both uPA and uPAR exhibit growth activities
independent of their proteolytic activities (Blasi &
Carmeliet 2002).
SERPINs

The SERPINs are a superfamily of proteins that fold into a
conserved tertiary structural domain, with full-length
coding sequences known or predicted for about half of a
total of 500. The name SERPIN derives from the fact that
most of the first identified SERPINs were inhibitors of
serine proteinases. SERPINs are classified into clades
based on phylogenetic relationships. PA inhibitors (PAIs)
belong to clades A, B, and E. SERPINA5 also known as
protein C inhibitor (PCI) or PAI-3 binds retinoic acid and
targets activated Protein C and the two PAs. SERPINB2 or
PAI-2 inhibits uPA and weakly inhibits tPA. SERPINE1 is
PAI-1 and SERPINE2 is proteinase nexin-1. They both
inhibit the two PAs (Law et al. 2006).

SERPINs targeting serine proteinases have a unique
suicide-substrate mechanism through an interaction with
proteinases to form covalent complexes that are not
dissociable when boiling in SDS but are sensitive to
nucleophiles. Such a mechanism is based on a dramatic
conformational change in the SERPIN. Thus, the trapped
complex is irreversible in nature. In addition, several
SERPINs including the SERPINs A5, E1, and E2 are
activated by binding to negatively charged glycosamino-
glycans. The resulting enhancement in the rates of
proteinase inhibition can be up to several 1000-fold
suggesting that glycosaminoglycans are rate-limiting
factors at sites of SERPIN action. In the case of the
three aforementioned SERPINs, the mechanism involves
bridging in which glycosaminoglycans bind both
SERPIN and proteinase to bring them into an appropriate
interaction (Pike et al. 2005).
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An overview of the repertoire of the plasminogen/
plasmin system in the testis

PAs were the first serine proteases identified within the
testis. Plasminogen is also synthesized within the testis.
Originally, it was described that Sertoli cells were the site
of synthesis of the two PAs, and FSH stimulates tPA while
reducing uPA levels in the rat testis. In addition to a
hormonal level of regulation, PAs are highly regulated by
a complex network of locally produced cytokines
including at least fibroblast growth factor 2 (FGF2),
interleukin 1a (IL1a), and tumour necrosis factor-a
(TNFa; Fig. 1). PAs are also positively regulated by
germ cells both in coculture or through the addition of
germ cell-conditioned media. However, the simul-
taneous addition of anti-FGF2 or anti-TNFa antibodies
together with the germ cell-conditioned media does not
abolish the effects, indicating that the factors active in
stimulating PAs are neither FGF2 nor TNFa (Fig. 1 and
unpublished data).

Interestingly, pachytene and diakinetic spermatocytes
exhibit immunoreactivity for tPA, indicating that a tPA
proteolytic event may occur at the spermatocyte surface
level. It would be interesting to determine whether the
immunoreactivity corresponded to a tPA-binding protein
or a tPA receptor present on the germ cells. Annexin II is a
good candidate, because it acts as a receptor for tPA and its
mRNA is represented in a testis cDNA library (Ref. in Fritz
et al. 1993, Charron & Wright 2005). By contrast, the
receptor for urokinase has been identified on both Leydig
cells and at Sertoli cell–germ cell contacts and/or germ
cells (Odet et al. 2004), indicating that proteolysis
involving plasminogen may occur in the vicinity of Sertoli
and germ cells and at the Leydig cell membrane.

The binding of uPA to its receptor promotes cell
adhesion by increasing the affinity of uPAR for vitronectin
(Dellas & Loskutoff 2005, Lijnen 2005). It is thus of interest
that vitronectin has been identified in early spermatids
(Fig. 2) and that PAI-1 is a Sertoli and a peritubular cell
Figure 1 Regulation of tPA and uPA in cultured rat Sertoli cells. Sertoli cells w
prior to stimulation for 48 h (A) with FSH phorbol 12-myristate 13-acetate (P
Culture media were collected and assayed for plasminogen zymography. (B) S
2.106 per well) or early spermatids (SPT; 8.106 per well). Control, control cel
SM) by pachytene spermatocytes (SMSPC) or early spermatids (SMSPT). Con
centrifugal elutriation (enrichment O80%), and coculture experiments and
(1988a, 1988b). Plasminogen zymography was performed as described in L
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product (Fritz et al. 1993, Le Magueresse-Battistoni et al.
1998). Indeed, Sertoli cell PAI-1 might regulate spermatid
adhesion through competing with uPAR in binding to
vitronectin. As for the PAs, PAI-1 is highly regulated by FSH
(negatively) and locally produced cytokines (positively by
transforming growth factor-b1 (TGFb1), FGF2, and TNFa;
Fritz et al. 1993, Le Magueresse-Battistoni et al. 1997,
1998, Charron & Wright 2005). In contrast, PAI-3
(SERPINA5) is up-regulated by FSH and testosterone
(Anway et al. 2005, Meachem et al. 2005, Denolet et al.
2006). It is noteworthy that the serine proteinases eppin
and the SERPINs A3n and A12n are also up-regulated by
androgens (Denolet et al. 2006).

Germ cells are a source of various serine proteases and
inhibitors, including the activated protein C and its
inhibitor (SERPINA5; Odet et al. 2004) and the
hepatocyte growth factor activator and its two specific
inhibitors, the HAIs (Odet et al. 2006). However, it is not
known whether these proteases act within the seminifer-
ous epithelium or later in gamete recognition as shown
with most A disintegrin and metalloproteases (ADAMs),
and anticipated as well for the uPA receptor and
vitronectin (Bronson et al. 2000, Blasi & Carmeliet
2002, Rubinstein et al. 2006).

Few studies have explored the contribution of Leydig
cells to the testicular protease repertoire. It has been
reported that Leydig cells express various serine
proteases and complementary inhibitors. For some of
them, Leydig cells are the unique site of expression in the
testis, i.e., the neurotrypsin and kallikreins 21, 24, and
27 (Matsui & Takahashi 2001, Puente & Lopez-Otin
2004). Interestingly, luteinizing hormone (LH)–hCG
regulates several serine proteases and inhibitors ident-
ified in Leydig cells (including urokinase, matriptase-2,
kallikrein-21, HAI-2, and PCI; Odet et al. 2006),
indicating that common transcriptional signals may
drive the expression of these molecules. Furthermore,
kallikreins are regulated by testosterone and estradiol
(Matsui & Takahashi 2001, Eacker et al. 2007).
ere isolated from 20-day-old rat testes and maintained in culture for 48 h
MA) or various cytokines (FGF2, TNFa, IL1a). Control, control cells.
ertoli cells were cocultured for 48 h with pachytene spermatocytes (SPC;

ls. (C) Sertoli cells were stimulated with media conditioned (spent media,
trol, control cells. SPC and SPT were recovered from adult rats by
preparation of SM were as described in Le Magueresse & Jégou
e Magueresse-Battistoni et al. (1998) and Sigillo et al. (1998).
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Figure 2 Testicular localization of vitronectin. (A) Northern blot analysis of
vitronectin (upper signal at 1700 kb) and GAPDH (lower signal) in adult
testis (Te), crude germ cells (CGC), pachytene spermatocytes (SPC), early
spermatids (SPT) (all from adult rat testis), peritubular cells (PT), and Sertoli
cells (SC) (both from 20-day-old rat testes). These cells were prepared as
described in Le Magueresse-Battistoni et al. (1998). Northern blot analysis
was performed as described in Le Magueresse-Battistoni et al. (1994).
The probe used for hybridization was a 600 bp Pst1 fragment of mouse
vitronectin cDNA kindly provided by D J Loskutoff (The Scripps Research
Institute, La Jolla, CA, USA). (B) Immunohistochemical localization of
vitronectin in adult rat testis. Immunohistochemistry was performed as
described in Longin et al. (2001), using a rabbit anti-human vitronectin
polyclonal antibody (Chemicon International, Temecula, CA, USA) at a
1:200 dilution. Immunostaining (arrows) is concentrated in early spermatids
within the acrosomial region. No immunostaining is evident in the tubules
in control testicular sections (omission of the primary antibody); bar, 50 mm.
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What potential functions in testicular physiology?

The plasminogen activation system is largely present in
testis where it is regulated both by the tropic hormones
and various locally produced cytokines, suggesting that
it may exert multiple roles of physiological importance in
testis development and in adult life.
Reproduction (2007) 134 721–729
Growth factor or receptor activation, receptor
shedding, and proteinase activation

Testicular proteases and antiproteases probably display a
unique function in delivering growth factors trapped in
the ECM, activating growth factors or growth factor
receptors, or (and this remains to be demonstrated) in the
shedding of transmembrane receptors, generating
soluble forms that would act as dominant negatives
and impede the normal transducing pathway following
ligand binding to its receptor. For example, FGF2, which
is deeply involved in testicular physiology (see Ref. in El
Ramy et al. 2005), does not contain a sequence signal for
secretion, and it has been proposed that following
environmental stimuli, FGF2 is released from the ECM
through the action of proteases, allowing it to bind to
specific transmembrane FGF receptors and transduce a
signal (Powers et al. 2000). It is also shown that uPA
activates (at least in tubo) pro-TGF-b and pro-HGF,
two decisive growth factors in testicular physiology
(Catizone et al. 2001, Itman et al. 2006). Additionally, an
extensive network of proteases and inhibitors are
influenced by the PA system, the largest group being
the matrix metalloproteinases (MMPs) and their respect-
ive inhibitors the tissue inhibitors of MMPs (TIMPs;
Page-McCaw et al. 2007). Several of them are produced
in the testis, including the gelatinases MMP2 and MMP9.
Interestingly, MMPs 2 and 9 are regulated strongly by
cytokines and weakly (MMP2) or not regulated (MMP9)
by hormones (Fritz et al. 1993, Longin et al. 2001,
Charron & Wright 2005, Wong & Cheng 2005),
indicating that their activity may be secondary to PA
activation.
ECM matrix synthesis and remodeling

In the testis, the importance of ECM was evidenced with
the finding that male infertility is associated with
abnormal thickening of the basement membrane
surrounding the seminiferous tubules (also found in
aged testes and in Klinefelter patients; de Kretser et al.
1975). Indeed, the basement membrane is the structural
basis of testis cord organization in the developing gonad;
and in adult life it is essential for the maintenance of the
differentiated functions of Sertoli cells (Dym 1994,
Griswold 1998). Conversely, much less is known of the
ECM matrix surrounding Leydig cells (Kuopio &
Pelliniemi 1989).

Testis cord formation

Originally, the genital ridge is composed of primordial
germ cells and a thickened layer of coelomic epithelium.
When the indifferent gonad has an XY genotype, SRY
induces a cascade of gene expression which results
initially in the migration of mesenchymal cells as well as
endothelial cells from the adjacent mesonephros, and
the formation of a basement membrane between the
www.reproduction-online.org
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epithelializing Sertoli cells and the mesenchymal
peritubular cells. No migration occurs in case of an XX
gonad (Brennan & Capel 2004). Such a migration is
accompanied by extensive restructuring. Accordingly,
major sex-related differences in the distribution of ECM
components and the expression of proteases and
inhibitors have been reported, including the SERPINs
E2 and A5 (Nef et al. 2005, Wilhelm et al. 2007), and
TIMP-1 (Guyot et al. 2003).

Testis growth and lumen formation

The prepubertal period is characterized by a rapid
growth of the testis, the transformation of the
seminiferous cords into tubules, and the initiation of
spermatogenesis. Specifically, tight junctions are
formed between neighboring Sertoli cells, thus creating
the blood–testis barrier, and cords develop a lumen,
becoming tubules. Accordingly, Sertoli cells accom-
modate their cytoskeleton to support additional
spermatogenic cell types as spermatogenesis is
initiated, and tubules increase in diameter as well as
in length. Strong arguments have been given that not
only tPA (Fritz et al. 1993) and the growth factors HGF
and FGF2, but also basement membrane components
(specifically laminin; Skinner 2005), are critically
involved in these substantial prepubertal changes. In
addition, recent data illustrated that ECM components
regulate the expression of tight junction proteins and
the formation of a lumen in concert with MMP9 and its
inhibitor TIMP-1 (Wong & Cheng 2005). Inasmuch as
both HGF and FGF2 must be activated (see above),
that PAs activate pro-MMPs including MMPs 2 and 9,
and that both MMPs and PAs degrade laminin,
fibronectin, and collagen IV – i.e., the major basement
membrane components – the plasminogen activation
system occupies a central position in assisting
remodeling necessary to support the rapid and
extensive growth of the prepubertal testis.
Spermatogenesis and the apical migration of germ cells
towards the lumen

Different authors have been interested in the under-
standing of the dynamics of spermatogenesis, which
relies on the passage of the blood–testis barrier
(translocation) and the release of the elongated spermatids
at the apex (spermiation). The description of the testis
barrier is beyond the scope of this review and has been
treated recently (Wong & Cheng 2005). However, it is
noteworthy that the testis barrier is unique when
compared with other blood–tissue barriers (e.g., blood–
brain and blood–retina barriers), as it is composed of gap
junctions, desmosomes, tight junctions, and ectoplasmic
specializations, precluding that the passage of germ cells
requires a finely tuned process not disturbing the
integrity of the testis barrier, which would provoke a
www.reproduction-online.org
pathological arrest of spermatogenesis. Since this
situation is reminiscent of cell migration across the
ECM, different authors have concentrated their efforts in
determining the composition of the junctions, most
specifically those that are restricted to testis, i.e., the
ectoplasmic specializations, and the way junctional
proteins are transcriptionally and post-transcriptionally
regulated. It was also reasonable to think that proteases
which act like scissors would help germ cells in
migrating along Sertoli cell membranes, and that specific
inhibitors would restrict the activity of the proteases in a
finely tuned regulatory fashion to preserve homeostasis.
Therefore, a list of the cytokines, proteases, and
inhibitors present at the right time and in the right
place has been tentatively established (Charron & Wright
2005, Xia et al. 2005).

First evidence came from the demonstration that the
PAs were expressed as a function of the stages of the
seminiferous epithelium, and an increased PA activity
was found at the time of translocation and spermiation at
stages VII and VIII (Fritz et al. 1993). Interestingly,
immunostaining of a2-macroglobulin (a protease
inhibitor with a large spectrum of inhibitory activities
against proteinases) concentrated at stages I–VI, thus
prior spermiation indicating that a2-macroglobulin may
protect the integrity of the seminiferous epithelium
against excessive proteolysis (Wong & Cheng 2005). In
addition, the enhancement of Sertoli PA activity (and of
the cysteine protease cathepsin L; Charron & Wright
2005) was evidenced in cocultures of Sertoli cells and
germ cells (Fig. 1B and C), and this correlated in time
with the dynamics of assembly/disassembly of the
de novo adherent junctions forming between the
cultured Sertoli cells. Furthermore, the expression of
not only a2-macroglobulin but also cystatin (a cathepsin
L inhibitor) in the coculture model was consistent with
the idea that proteases and their corresponding inhibitors
were working synergistically, supporting the evidence
that they may be involved in the adherence of germ cells
to Sertoli cells and the subsequent formation of
intercellular junctions (Charron & Wright 2005, Wong
& Cheng 2005). These data are also in line with previous
findings reporting that protease-sensitive elements of
unknown nature hold spermatids and Sertoli cells
together (Russell 1980).

Spermiation, i.e., extrusion of elongated spermatids in
the lumen, is the alternate major event that occurs during
stages VII and VIII. It is followed by the phagocytosis of the
cytoplasts shed from the elongated spermatids, which are
called the residual bodies (Russell 1980). An in vitromodel
has been established in the past where residual bodies
(recovered by elutriation of a mixed germ cell preparation)
are phagocytosed by Sertoli cells with kinetics comparable
to the in vivo situation. Using such an in vitromodel, it was
demonstrated that phagocytosis of residual bodies resulted
in an interleukin 1a-dependent enhancement of Sertoli
cell PA expression and activity (Sigillo et al. 1998).
Reproduction (2007) 134 721–729
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Interestingly, interleukin 1a production is enhanced upon
phagocytosis of residual bodies (Jégou et al. 1995), and
interleukin 1a is known to stimulate DNA synthesis in
spermatogonia and spermatocytes. Thus, residual bodies
upon phagocytosis could trigger the induction of Sertoli
interleukin 1a, which would lead to the enhancement of
the PA activity facilitating germ cell migration in the
adluminal compartment and their entry into meiosis, and
in the stimulation of germ cell proliferation preceding the
initiation of a new wave of spermatogenesis. Therefore, the
synchronization process of the spermatogenesis cycle may
depend on a proteolytic message (as summarized in Fig. 3),
revisiting the pioneering hypothesis of Regaud and
Roosen-Runge (referenced in Jégou et al. 1995, Sigillo
et al. 1998). Two other cytokines have proven to be
essential at least in the passage of the testis barrier by
preleptotene spermatocytes. These are TGFb3 and TNFa,
and TNFa enhances uPA dramatically (Fig. 1A). Recent
reviews have focused on these cytokines in the testis
(Wong & Cheng 2005, Xia et al. 2005).

Interestingly, stages VII and VIII are highly testosterone
dependent as demonstrated in models with testosterone
deficiency in which a premature detachment of germ
cells in the lumens of the tubules is described (Denolet
et al. 2006, Tsai et al. 2006, Eacker et al. 2007). To date,
no MMPs have been shown to be under androgen
dependency. Conversely, androgens inhibit Sertoli cell
PA activity in vitro (Fritz et al. 1993), and PA expression
is altered in a model of Sertoli cell androgen receptor
deficiency (Denolet et al. 2006). Thus, SERPINA5 is of
tremendous interest because it is up-regulated by
testosterone (Anway et al. 2005, Denolet et al. 2006),
it opposes PA activity, and deficient mice develop male
sterility (Uhrin et al. 2000). Specifically, lumens are filled
with immature germ cells because of an unopposed
proteolytic activity of the urokinase type (Uhrin et al.
2000). Such a testicular phenotype is reminiscent of the
testicular phenotype described in mice deficient for
claudin 11 (Gow et al. 1999). Claudin 11 and claudins 1
and 3 are essential components of the testis barrier, and
they are under testosterone control (Gow et al. 1999,
Florin et al. 2005, Meng et al. 2005). In addition,
claudins contribute – together with MMP-14 and TIMP-2
– to activating MMP-2 secreted as a pro-form (Miyamori
et al. 2001). MMPs may also be activated by uPA. Thus,
the germ cell enhancement of MMP-2 activity (Longin
et al. 2001) may, in part, result from the increase in the
activity of the PAs observed in Sertoli cell–germ cell
cocultures (Wong & Cheng 2005; Fig. 1B and C). It
remains to be determined whether claudins are sub-
strates for either PAs or MMPs, and what is their
expression level in the SERPINA5-deficient testes.

Therefore and collectively, it appears that germ
cells that do not bear classic characteristics of migrating
cells regulate their own progression within the semi-
niferous epithelium, through a modulation of the
expression pattern of the proteases and inhibitors
Reproduction (2007) 134 721–729
produced by Sertoli cells as exposed in Fig. 3, supporting
the hypothesis that Sertoli cells act as facilitators of
migration adding a new testosterone-dependent function
to these nurse cells.
Proteolysis and steroidogenesis

Different arguments emphasize a role of ECM in the
capacity of Leydig cells to respond to LH–hCG in vitro,
and thus indirectly of a role of proteases and inhibitors.
For instance, it was shown that fibronectin and collagen
IV induce down-regulation of the steroidogenic response
to gonadotropins (Diaz et al. 2005). Furthermore, TGFb,
known to cause augmented fibronectin deposition and to
elicit cytoskeletal changes in Leydig cells similar to those
evidenced when these cells are cultured on plates pre-
coated with fibronectin, antagonizes gonadotropin
steroidogenic action in Leydig cells (Dickson et al.
2002). Finally, we recently demonstrated that Leydig
cells exhibit two immediate responses upon LH
stimulation: an increased expression of StAR and an
increased expression of uPA followed by an increased
expression of SERPINB2 and tPA (Odet et al. 2006).
Thus, two hypotheses (Fig. 3) may be raised. Either the
uPA peak signals the immediate matrix environment
altering Leydig cell responsiveness to LH or uPA is part of
the dialog between the interstitial compartment and the
seminiferous epithelium.
Conclusions and future directions

A series of evidence has been provided, highlighting that
proteases may be active partners in establishing and
maintaining testicular architecture, and in facilitating
germ cell migration throughout the spermatogenic
developmental process. However, very few knockout
mouse models have, to date, contributed to our under-
standing of their roles in testicular function. One of the
reasons may be because proteases and inhibitors are
extremely abundant and redundant in their spectrum of
actions. For example, male mice deficient in uPA, tPA,
both PAs, or PAI-1 still reproduce (Carmeliet & Collen
1995), although mice deficient for both PAs suffered
reduced weight, shortened lifespan, and increased fibrin
deposition (Carmeliet et al. 1994). Nonetheless, it should
be stated that most of the time no systematic analysis of
the testes of the deficient mice had been undertaken
unless the authors experienced reproductive difficulties
as seen with male sterility in mice deficient for
SERPINA5 (Uhrin et al. 2000). For instance, the
morphological analysis of the seminiferous epithelium
of cathepsin L-deficient mice has demonstrated that,
although a lack of this proteinase may not cause
infertility, it is required for quantitatively normal
spermatogenesis (Wright et al. 2003). Therefore, it may
be worthwhile to revisit the phenotypes of transgenic
male mice deficient for a proteinase or an inhibitor that
www.reproduction-online.org
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Figure 3 Schematic drawing illustra-
ting that coordination of the semini-
ferous epithelial cycle may be
dependent on a proteolytic signal. We
predict that proteases – specifically
the enzymes of the plasminogen
activation system – are involved in
concert with androgens. Indeed, on
the one hand, androgens of Leydig
origin act on both peritubular cells
and Sertoli cells, regulate the integrity
of the BHT, and facilitate spermio-
genesis. On the other hand, proteases
and specifically the enzymes of the
plasminogen activation system of
both Sertoli and Leydig origin are
under hormonal regulation, and they
may assist germ cells in migrating
along Sertoli cell membranes. In turn,
germ cells (and among them, sper-
matocytes, SPC) and residual bodies
(RB) would contribute to the
regulation of the proteolytic balance.
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has been proven to be expressed at the time of
translocation and/or spermiation.

The use of in vitro models coupled with the SiRNA
strategy to specifically knock down a protease or its
inhibitor should also constitute an elegant means to link
morphogen cytokines, ECM components, restructuring
events, and proteases. Furthermore, inasmuch as various
proteases, inhibitors, and junctional components (e.g.,
claudins) are under a complex hormonal control via
gonadotropins and/or testosterone, and local regulatory
control involving cytokines and growth factors, models
with reduced testosterone bioavailability or with limited
FSH or LH action coupled with microarray studies, such
as those recently published (Meachem et al. 2005,
Denolet et al. 2006, Tsai et al. 2006, Eacker et al.
2007), should be of tremendous benefit to fully under-
stand the mechanisms that underpin the role of proteases
and inhibitors in testis development and function.
A challenge for the future will be to identify the full
complement of proteases and their regulatory
mechanisms. This will enable the design of additional
studies to define precisely the role and relative
www.reproduction-online.org
importance of each in the complex steps of testis
development and spermatogenesis. Then, the phenotypic
effects in gene knockout experiments can be interpreted
with the knowledge of their integrated roles and potential
for compensatory action.
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