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Serious games for upper limb rehabilitation 
after stroke: a meta-analysis
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Abstract 

Background: Approximately two thirds of stroke survivors maintain upper limb (UL) impairments and few among 

them attain complete UL recovery 6 months after stroke. Technological progress and gamification of interventions 

aim for better outcomes and constitute opportunities in self- and tele-rehabilitation.

Objectives: Our objective was to assess the efficacy of serious games, implemented on diverse technological 

systems, targeting UL recovery after stroke. In addition, we investigated whether adherence to neurorehabilitation 

principles influenced efficacy of games specifically designed for rehabilitation, regardless of the device used.

Method: This systematic review was conducted according to PRISMA guidelines (PROSPERO registration number: 

156589). Two independent reviewers searched PubMed, EMBASE, SCOPUS and Cochrane Central Register of Con-

trolled Trials for eligible randomized controlled trials (PEDro score ≥ 5). Meta-analysis, using a random effects model, 

was performed to compare effects of interventions using serious games, to conventional treatment, for UL rehabilita-

tion in adult stroke patients. In addition, we conducted subgroup analysis, according to adherence of included studies 

to a consolidated set of 11 neurorehabilitation principles.

Results: Meta-analysis of 42 trials, including 1760 participants, showed better improvements in favor of interventions 

using serious games when compared to conventional therapies, regarding UL function (SMD = 0.47; 95% CI = 0.24 to 

0.70; P < 0.0001), activity (SMD = 0.25; 95% CI = 0.05 to 0.46; P = 0.02) and participation (SMD = 0.66; 95% CI = 0.29 to 

1.03; P = 0.0005). Additionally, long term effect retention was observed for UL function (SMD = 0.42; 95% CI = 0.05 to 

0.79; P = 0.03). Interventions using serious games that complied with at least 8 neurorehabilitation principles showed 

better overall effects. Although heterogeneity levels remained moderate, results were little affected by changes in 

methods or outliers indicating robustness.

Conclusion: This meta-analysis showed that rehabilitation through serious games, targeting UL recovery after stroke, 

leads to better improvements, compared to conventional treatment, in three ICF-WHO components. Irrespective of 

the technological device used, higher adherence to a consolidated set of neurorehabilitation principles enhances 

efficacy of serious games. Future development of stroke-specific rehabilitation interventions should further take into 

consideration the consolidated set of neurorehabilitation principles.
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Background
Each year more than 1 million Europeans suffer from 

stroke and approximately two-thirds of survivors main-

tain upper limb (UL) paresis [1]. �is number is expected 

to rise by 35% in upcoming years [2] leading to addi-

tional rehabilitation needs. To this date, few people attain 
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complete UL recovery 6  months after stroke [3]. New 

interventions targeting the UL aim for better outcomes 

in activities of daily living (ADL), functional independ-

ence and quality of life. Alongside conventional thera-

pies, recent developments offer possibilities in self- and 

tele-rehabilitation [4] which could help manage, cost-effi-

ciently [5], increasing rehabilitation demands.

Technological improvements in robot assisted therapy 

(RAT) and virtual reality (VR) systems (VRS) enhance 

patient care and facilitate therapist assistance during UL 

rehabilitation [6, 7]. First, RAT promotes the use of the 

affected limb, intensifies rehabilitation through task rep-

etition and offers task-specific practice [7]. Effectiveness 

of RAT is established for UL rehabilitation after stroke [8, 

9]. Secondly, VRS provide augmented feedback, preserve 

motivation and are becoming cost-efficient [5]. Recent 

meta-analyses suggest a superior effect of VR-based 

interventions compared to conventional treatment on UL 

function and activity after stroke, especially if developed 

for this specific purpose [10–12]. Authors attributed 

these findings to the fact that VRS specifically developed 

for rehabilitation, as opposed to commercial video-games 

(CVG), fulfil numerous neurorehabilitation principles.

Typically, a common denominator of VRS and RAT is 

playful interventions by means of serious games [13, 14]. 

A serious game is defined as a game that has education 

or rehabilitation as primary goal. �ese games combine 

entertainment, attentional engagement and problem 

solving to challenge function and performance [15, 16]. 

Moreover, they comply with several motor relearning 

principles that constitute the basis of effective interven-

tions in neurorehabilitation [11, 16]. For example, some 

devices adapt game difficulty to stimulate recovery and 

maintain motivation [15]. Others incorporate functional 

tasks mimicking ADL in virtual environments and pro-

vide performance feedback during and/or after task 

completion [17]. Characteristics of serious games differ 

depending on targeted rehabilitation purposes and tech-

nical specificities of the system they are implemented on.

Previous work on the efficacy of VR-based interven-

tions indicated that serious games may enhance UL 

recovery after stroke [11, 12, 18]. However, why such 

interventions, specifically developed for rehabilitation 

purposes and implemented on various types of devices 

(such as robots, smartphones, tablets, motion capture 

systems, etc.), may constitute effective therapies for UL 

rehabilitation after stroke needs to be further investi-

gated. Recent theoretical research proposed consolida-

tion of commonly acknowledged neurorehabilitation 

principles [16]. Usually, serious games comply with sev-

eral of these principles which creates an opportunity to 

evaluate clinical applicability of the consolidated set of 

principles. To this day, it remains unclear whether higher 

adherence to this consolidated set of neurorehabilitation 

principles enhances efficacy of interventions. In addition, 

it is not well known whether adherence to specific prin-

ciples influences efficacy. Finally, rehabilitation effects on 

participation outcomes remain relatively unexplored. In 

this context, efficacy of interventions should be addressed 

in terms of all components of the World Health Organi-

zation’s International Classification of Function, Disabil-

ity, and Health (ICF-WHO) model [19].

�e main objective of this systematic review and 

meta-analysis was to address the following question in 

PICOS form: in adults after stroke (P), do serious games, 

implemented on various technological systems (I), show 

better efficacy than conventional treatment (C), to reha-

bilitate UL function and activity, and patient’s participa-

tion (O)? A secondary objective was to assess whether 

higher adherence to a consolidated set of neurorehabili-

tation principles enhances efficacy of games specifically 

designed for rehabilitation, irrespective of the technolog-

ical device used.

Methods
Design

�is systematic review followed the Preferred Report-

ing Items for Systematic Reviews and Meta-Analysis 

(PRISMA) guidelines [20]. �e protocol was registered in 

International Prospective Register of Systematic Reviews 

(PROSPERO 2020, registration number: 156589).

Identi�cation and study selection

A search strategy looking for relevant literature was 

developed for PubMed and adapted for the other data-

bases, namely Scopus, Embase and Cochrane Library 

(Additional file 1). Authors received help from a profes-

sional librarian to set up the search strategy. Two inves-

tigators (GE and ID) independently retrieved studies. All 

references were stored in reference management software 

EndNote X9. After removal of duplicates, remaining ref-

erences were first screened based on titles and abstracts.

Study eligibility was assessed according to the following 

criteria: (a) design of randomized controlled trials (RCT) 

(b) participants were adults undergoing stroke rehabili-

tation (c) the intervention consisted of games developed 

for neurorehabilitation purposes and implemented in the 

following technological devices: robotic systems, VRS, 

tablets, smartphones and motion capture systems (d) rel-

evant outcomes were employed to assess UL function, 

UL activity and participation (e) studies were published 

in French or English before May 5th, 2020. All studies 

using additional therapeutic modalities such as brain 

stimulation, electrical stimulation or invasive treatments 

were excluded.
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Systematic reviews assessing effectiveness of VR-based 

rehabilitation and RAT in stroke recovery were also 

hand-searched looking for relevant references. Finally, a 

selection based on full-text was conducted by the same 

two reviewers. Disagreements were resolved through 

discussion.

Quality and risk of bias assessment

�e PEDro checklist was used for methodological qual-

ity assessment of trials [21]. In addition, the Cochrane 

Collaboration’s Risk of Bias (RoB) tool was employed to 

conduct a critical appraisal of each trial’s internal validity 

[22].

Data extraction

�e following data concerning patients, interventions, 

control groups and outcomes were extracted from each 

study: number of patients enrolled in each group, mean 

time since stroke, corresponding stroke stage classifica-

tion (subacute: 7 days to 6 months after stroke, chronic: 

more than 6 months after stroke) [23], dosage and dura-

tion of the intervention, technological device used, type 

and duration of treatment for the control group, presence 

of a follow-up assessment and outcomes assessed in each 

timepoint evaluation.

Studies were also assessed in terms of the number of 

neurorehabilitation principles their intervention fulfilled 

as described in the review of Maier et  al. [11]. �ese 

authors described a total of 11 principles presented in 

Table  1. �e two reviewers, independently, investigated 

whether interventions of included studies fulfilled each 

one of the neurorehabilitation principles. For each clearly 

identified principle, one point was attributed to the study. 

In case available information was vague, missing or did 

not match the neurorehabilitation principle descriptive’ 

(as mentioned in Table 1), no point was accorded. �en, 

we calculated a total score out of 11 for each included 

study.

Outcome measurements

Outcome measures were selected in accordance to the 

ICF-WHO model [19]. In each category, assessment 

scales were chosen based on recent literature recom-

mendations [24, 25]. �e Fugl-Meyer Assessment (FMA) 

[26] was used for the body function domain. �e Action 

Research Arm Test (ARAT) [27], the Box and Block Test 

(BBT) [28] and the Wolf Motor Function Test (WMFT) 

[29] were used for the activity domain. �e social partici-

pation subscale of the Stroke Impact Scale (SIS) [30] was 

used for the participation domain.

When available, mean improvements in terms of 

change-from-baseline and their standard deviation 

(SD) were extracted for each time point. If not avail-

able, authors were contacted via email. In case of non-

response, the mean improvement was calculated through 

subtraction between post-intervention mean score and 

pre-intervention mean score. �en, the SD was estimated 

by using a formula according to the Cochrane Handbook 

for Systematic Reviews of Interventions [31]. �e value 

of the correlation coefficient was imputed by using data 

from other studies [17, 32, 33] included in the meta-

analysis. Lastly, when only median and quartiles were 

Table 1 List of neurorehabilitation principles with description established by Maier et al. [11, 16]

All studies, 42 included in meta-analysis

 + , studies with SMD in favour of the experimental group for main outcomes regarding upper limb function

 = , studies with SMD in favour of the control group for main outcomes regarding upper limb function

*Statistically signi�cant di�erence (p < 0.05) in Fischer’s exact test

Neurorehabilitation principle Description Ful�lled in studies (%)

All studies  +  = 

Massed practice Tasks aiming to increase the number of repetitions performed 81 79 85

Dosage Intensive training: more than a daily session of 60 min on every weekday 52 59 38

Structured practice Training that includes periods of rest 26 31 15

Task-specific practice Functional training relevant to ADL 100 100 100

Variable practice Training that includes different types of tasks 98 97 100

Multisensory stimulation Training that provides more than two types of sensory feedback 83 90 69

Increasing difficulty Complexity of tasks changes depending on participants’ ability, performance or time 76 76 80

Explicit feedback Training that provides information about the patient’s performance at the end of the task 79 93 46*

Implicit feedback Training that delivers information about the performance in real time such as visualization 
of movement or other kinematic properties

74 83 54

Avatar representation Embodied training by representation of a human or body part 38 41 31

Use of the paretic limb Promoting the use of the paretic limb 76 76 80
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available, the mean and SD were approximated using the 

method proposed by Wan et  al. [34]. For studies using 

follow-up evaluations at least one month after the inter-

vention, mean improvements in terms of change-from-

baseline were calculated in order to assess long-term 

effect retention.

Data and statistical analysis

Articles scoring below 5/10 on the PEDro scale were 

excluded due to overall poor methodological quality 

[35]. In addition, only trials that described conventional 

therapy used in the comparison group as including occu-

pational, physical or self-therapy were considered for 

statistical analysis. Statistical analyses were performed 

using the RevMan 5.3 software [36]. Since different rating 

scales were used for studied outcomes and results were 

reported in various ways, standardized mean difference 

(SMD) and 95% confidence interval (CI) were calculated. 

�is method allowed standardization of results across 

studies. A random effects meta-analysis model was used 

for all analyses and statistical significance level was set at 

P < 0.05 [37]. Heterogeneity across trials was estimated 

using the  I2 test. Heterogeneity was not considered to be 

significative for a  I2 < 30% [30].

Subgroup analysis was conducted for RCT whose 

intervention met at least 8/11 neurorehabilitation princi-

ples compared to RCT whose intervention fulfilled less. 

Another subgroup analysis was performed according to 

stroke stage, comparing effects of interventions using 

serious games on subacute and chronic stroke patients. 

Subgroup analysis were only considered when at least 

two trials in each subgroup reported a given domain. 

Furthermore, long-term effect retention for trials that 

measured outcomes at follow-up was evaluated.

Publication bias was evaluated visually through fun-

nel plot graphic representation. Sensitivity analyses was 

conducted to verify results robustness in case of funnel 

plot asymmetry, heterogeneity or presence of outliers. 

Additional sensitivity analyses were conducted using two 

different values for correlation coefficient [30]. GRADE-

pro program was used to assess the strength of the body 

evidence [38].

Finally, a Fischer’s exact test was used to compare dif-

ferences in proportions among studies, depending on 

their results, regarding adherence to each neurorehabili-

tation principle.

Results
Study selection

A total of 8141 trials were identified through search 

across all databases and 165 additional records through 

other sources. After removal of duplicates, 5131 arti-

cles were screened based on titles and abstracts. Among 

these, 5049 were excluded and 82 full-text articles were 

assessed for eligibility. 51 RCT were included in the 

qualitative synthesis. Finally, after quality assessment 

was performed, 42 RCT were considered for quantita-

tive synthesis. Further details are illustrated in the study 

PRISMA flow chart (Fig. 1).

Study characteristics

A total of 2083 participants with a mean age ranging from 

49.3 to 76.0 years were included in the qualitative synthe-

sis. For each included study, we identified the mean age 

of the participants, the stroke stage classification and the 

type of device used for intervention (Table  2). Approxi-

mately one third (31%) of studies included stroke patients 

at subacute stage and two-thirds (69%) at chronic stage. 

Across trials, serious games were implemented on dif-

ferent types of devices: 26 (51%) used a motion capture 

system among which many low-cost systems (such as 

Microsoft Kinect for example), 10 (19%) used an end-

effector type robot, 5 (9%) used motion capture gloves, 

3 (7%) a robotic exoskeleton, 3 (6%) an immersive-VR 

system, 2 (4%) a smartphone or tablet, 1 (2%) a sur-

face EMG-controlled sensor and 1 (2%) an arm support 

system.

For each trial, total treatment duration in terms of min-

utes per session, number of sessions per week and total 

number of weeks was identified. In addition, whether 

intervention and control groups were time-matched 

regarding these characteristics was verified (Table  3). 

Total number of weeks of treatment varied from 2 to 

12  weeks with a mean of 5  weeks among trials. Daily 

duration of therapy varied widely among studies ranging 

from 30 to 225 min. In most trials (85%), total treatment 

duration was matched between the intervention and con-

trol groups (Table 3).

�e number of neurorehabilitation principles fulfilled 

by serious games were identified through content analy-

sis. �is number varied from 4 to 11 (Table 3). For a total 

of 11 neurorehabilitation principles, 32 (63%) interven-

tions met 8 or more, 17 (33%) met between 5 and 7 and 2 

(4%) interventions met less than 5. Table 1 illustrates the 

percentage of studies included in meta-analysis that com-

plied with each neurorehabilitation principle. In addition, 

Table  1 displays differences in adherence to each neu-

rorehabilitation principle between studies with overall 

positive or negative results (based on each study SMD in 

quantitative synthesis results). Statistically significant dif-

ferences were observed regarding the principle of explicit 

feedback. Indeed, the group of studies with overall posi-

tive results adheres more to this principle than the other 

group.

Regarding main outcomes, 44 trials (87%) assessed 

UL motor function, 30 (59%) assessed UL activity and 
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9 (17%) assessed participation (Table  3). Most tri-

als (60%) reported significantly superior results in at 

least one ICF-WHO component in favour of interven-

tions using serious games compared to conventional 

treatment.

Methodological quality and risk of bias assessment

PEDro scores of 51 included studies ranged from 5 to 

8 with a mean (SD) of 6.33 (1.15) indicating an over-

all moderate to high methodological quality (Table 2). 

Detailed PEDro scale scoring for each trial is illus-

trated in Additional file  1: Table  S1. In addition, the 

detailed analysis using the Cochrane Collaboration 

RoB tool is presented in Additional file 1: Fig. S1.

E�ect of rehabilitation through serious games on UL motor 

function

In total, rehabilitation using serious games led to signifi-

cantly better improvements, of moderate effect size, in 

UL motor function compared to conventional treatment 

(SMD = 0.47; 95% CI = 0.24 to 0.70; P < 0.0001) (Fig.  2). 

Subgroup analysis highlighted differences between 

results of trials using serious games fulfilling 8 or more 

neurorehabilitation principles and those that did not 

(P = 0.003). Indeed, only interventions that met 8 or 

more principles showed significant impact of moderate 

effect size on upper limb motor function (SMD = 0.62; 

95% CI = 0.33 to 0.92; P = 0.0001). Although total results 

indicated considerable heterogeneity between studies 

 (I2 = 76%), analysis using the GRADE approach led to a 

Fig. 1 Flow chart (PRISMA) of the selection process
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Table 2 Characteristics of included studies

Author Participantsa Ageb Stroke stage Type of device PEDro score

Adomaviciene [51] 42 64.6 Subacute Motion capture system, LCD monitor 5

Ang [52] 21 54.2 Chronic Haptic Knob robotic system, LCD monitor 6

Aprile [53] 224 69.5 Subacute 4 different robotic devices 6

Askin [54] 38 55.0 Chronic Motion capture system, LCD monitor 6

Brunner [40] 120 62.0 Subacute Motion capture gloves, LCD monitor 7

Cameirao [55] 19 61.0 Subacute Motion capture system, data gloves, LCD monitor 5

Cameirao [56] 44 62.0 Chronic Motion capture system, data gloves, LCD monitor 6

Cho [57] 38 60.0 Chronic End-effector robot, LCD monitor 8

Choi [58] 24 61.0 Subacute Smartphone and tablet computer 6

Crosbie [59] 18 60.0 Chronic Immersive VR motion tracking system 8

Dehem [14] 45 67.3 Subacute End-effector robot, LCD monitor 7

Duff [60] 21 68.5 Chronic Motion capture system, LCD monitor 5

Henrique [61] 31 76.0 Chronic Immersive VR motion tracking system 5

Housman [62] 28 55.0 Chronic Robotic exoskeleton, LCD monitor 5

Hung [13] 33 58.5 Chronic Motion capture system, LCD monitor 7

Jang [63] 10 57.1 Chronic Motion capture system, LCD monitor 5

Jo [64] 29 64.0 Chronic Motion capture system, LCD monitor 5

Kim [65] 23 53.5 Subacute Motion capture system, LCD monitor 8

Kiper [66] 80 64.0 Subacute Motion capture system, LCD monitor 5

Kiper [67] 44 64.3 Subacute Motion capture system, LCD monitor 5

Kiper [46] 136 63.9 Subacute Motion capture system, LCD monitor 6

Klamroth-Marganska [68] 73 56.5 Chronic Robotic exoskeleton, LCD monitor 8

Kottink [32] 18 61.5 Chronic Motion capture system, LCD monitor 6

Kwon [69] 26 57.5 Subacute Motion capture system, LCD monitor 5

Laffont [44] 51 58.0 Subacute Touchscreen interface, computer monitor 8

Lee [70] 26 67.5 Chronic Motion capture system, LCD monitor 8

Lee [71] 18 71.1 Chronic Motion capture system, LCD monitor 6

Lee [72] 30 51.0 Chronic End-effector robot, LCD monitor 6

Levin [73] 12 58.5 Chronic Motion capture system, LCD monitor 6

Liao [74] 20 54.5 Chronic End-effector robot, LCD monitor 7

Mugler [75] 32 58.0 Chronic Surface EMG-controlled sensor, computer monitor 6

Nijenhuis [76] 19 60.0 Chronic Arm support system 6

Norouzi-Gheidari [39] 18 49.9 Chronic Motion capture system, LCD monitor 7

Ogun [77] 65 60.6 Chronic Immersive VR motion tracking system 6

Oh [17] 31 55.0 Chronic 3-D manipulator, computer monitor 7

Park [33] 25 52.5 Chronic 2-D planar motion handlebar, LCD monitor 7

Piron [78] 36 65.2 Chronic Motion capture camera, computer monitor 7

Piron [47] 47 60.5 Chronic Motion capture system, LCD monitor 8

Prange [79] 68 59.1 Subacute Arm support system, computer monitor 7

Rogers [80] 21 64.4 Subacute Touchscreen mega-tablet 6

Schuster-Amft [81] 54 61.3 Chronic Motion capture gloves, LCD monitor 8

Shin [82] 16 49.3 Subacute Motion capture system, LCD monitor 5

Shin [83] 32 54.0 Chronic Motion capture system, LCD monitor 6

Shin [84] 46 58.5 Chronic Motion capture gloves, LCD monitor 7

Subramanian [85] 32 61.0 Chronic Motion capture system, LCD monitor 7

Thielbar [86] 14 56.5 Chronic Pneumatically actuated motion capture gloves 6

Thielbar [87] 20 59.7 Chronic Motion capture system, LCD monitor 5

Tomic [88] 26 57.4 Subacute End-effector robot, LCD monitor 7

Wolf [89] 99 56.9 Chronic End-effector robot, computer touch screen 7

Yin [90] 23 58.3 Subacute Motion capture system, computer monitor 6

Zondervan [91] 17 59.5 Chronic Motion capture gloves, computer monitor 6
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moderate certainty of evidence (Additional file 1: Fig. S2 

illustrates detailed summary of findings).

Additional subgroup analysis was conducted based on 

the stroke stage of included participants across studies 

(Fig.  3). Results suggest that interventions using serious 

games were effective in improving UL motor function 

in both subacute (SMD = 0.35; 95% CI = 0.10 to 0.59; 

P = 0.006) and chronic stage after stroke (SMD = 0.57; 

95% CI = 0.19 to 0.95; P = 0.003). Differences among sub-

groups did not reach statistical significance (P = 0.33).

Finally, in order to address heterogeneity, sensitivity 

analyses were performed in two ways. A first analysis was 

conducted by excluding outliers identified through fun-

nel plot graphic representation (Additional file 1: Fig. S3). 

�en, a second analysis was carried out by using a dif-

ferent correlation coefficient value. In both cases, results 

indicate no significant differences in total estimates when 

compared to initial findings (Additional file  1: Figs.  S4 

and S5).

E�ect of rehabilitation through serious games on UL 

activity

In total, rehabilitation using serious games led to sig-

nificantly better improvements, of low effect size, in 

upper limb activity compared to conventional treatment 

(SMD = 0.25; 95% CI = 0.05 to 0.46; P = 0.02) (Fig. 4). In 

a similar way to results regarding UL function, subgroup 

analysis showed significantly better improvements, of 

moderate effect size, only for interventions that fulfilled 

8 or more neurorehabilitation principles (SMD = 0.42; 

95% CI = 0.12 to 0.72; P = 0.006). Differences among 

subgroups were statistically significant (P = 0.01). Total 

results indicated moderate heterogeneity between studies 

 (I2 = 56%). Additional subgroup analysis based on stroke 

stage did not reach statistical significance for neither 

subacute or chronic stage after stroke (Additional file 1: 

Fig. S6).

E�ect of rehabilitation through serious games 

on participation

In total, rehabilitation using serious games led to signifi-

cantly better improvements, of large effect size, in partici-

pation compared to conventional treatment (SMD = 0.66; 

95% CI = 0.29 to 1.03; P = 0.0005) (Fig. 5). No significant 

heterogeneity was present  (I2 = 0%). All trials included in 

this analysis used a serious game that complied with 8 or 

more neurorehabilitation principles.

Analysis of follow-up data

Separate analyses were conducted regarding follow-up 

data for each ICF-WHO component. Only half of the 

studies included in the quantitative synthesis (50%) per-

formed follow-up evaluations. Among them, length of 

follow-up period ranged from 1 to 6 months with a mean 

(SD) of 2.3  months (1.86). An overall tendency towards 

improvement for interventions using serious games 

regarding all ICF-WHO components was observed 

(Additional file  1: Figs.  S7, S8 and S9). Total estimates 

concerning UL function indicate effect retention to fol-

low-up in favour of the experimental group of moderate 

effect size (SMD = 0.42; 95% CI = 0.05 to 0.79; P = 0.03). 

Results did not reach statistical significance regarding UL 

activity and participation.

Discussion
Main results

�is systematic review and meta-analysis showed results 

in favour of rehabilitation using, purpose-built, serious 

games on UL motor function, UL activity and participa-

tion after stroke compared to conventional treatment. 

Moreover, long term effect retention was significantly 

maintained regarding UL function. Irrespective of the 

technological device used, serious games that complied 

with more than 8 out of 11 neurorehabilitation principles 

showed better overall effects.

Previous studies on e�ectiveness of VRS/CVG for UL 

rehabilitation after stroke

Previous work on the use of VRS and CVG for UL reha-

bilitation after stroke demonstrated similar results [11, 

17]. Yet, to date, usage and efficacy of game-based inter-

ventions for UL rehabilitation after stroke remain con-

troversial [38–40]. Initially, a meta-analysis by Saposnik 

et  al., combining observational studies and RCT, sug-

gested improvements in UL strength and motor function 

after stroke [41]. However, this review focused on vari-

ous VRS, including CVG designed by the entertainment 

industry, not specifically developed for rehabilitation. 

In addition, no statistically significant differences were 

observed concerning UL activity outcomes and no anal-

ysis was conducted regarding ICF-WHO participation 

component due to limited available data.

Two other groups conducted systematic reviews on a 

similar topic [42, 43]. However, both reviews included 

studies concerning not only UL rehabilitation but also 

Table 2 (continued)

LCD monitor, liquid–crystal display monitor; 3-D, 3-Dimensional; 2-D, 2-Dimensional

a Participants: number of total participants in study

b Age: mean age in years estimated for total number of participants included in each study
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Table 3 Duration, matched groups, outcome measurements, overall findings, number of included neurorehabilitation principles

Authors and publication year Durationa Matched 
 groupsb

UL function UL activity Participation Overall 
 �ndingsc

Principlesd

Adomaviciene, 2019 [51] 2 ✓ FMA-UE BBT  + 4

Ang, 2014 [52] 6 ✓ FMA-UE  = 5

Aprile [53] 6 ✓ FMA-UEs ARAT s  = 10

Askin, 2018 [54] 4 X FMA-UEm, s BBTm, s  + 6

Brunner, 2017 [40] 4 ✓ ARAT s, BBT  = 4

Cameirao, 2011 [55] 12 ✓ FMA-UE  + 6

Cameirao, 2012 [56] 4 ✓ FMA-UE BBT  + 6

Cho, 2019 [57] 6 ✓ FMA-UE ARAT, BBT  + 6

Choi, 2016 [58] 2 ✓ FMA-UE s  + 8

Crosbie, 2012 [59] 3 ✓ ARAT s  = 6

Dehem, 2019 [14] 9 ✓ FMA-UE BBT SIS  + 9

Duff, 2013 [60] 4 ✓ FMA-UEm, s WMFTm, s SIS  = 9

Henrique, 2019 [61] 12 ✓ FMA-UE  + 9

Housman, 2009 [62] 9 ✓ FMA-UE  + 5

Hung, 2019 [13] 12 ✓ FMA-UEm, s WMFTm, s  = 8

Jang, 2005 [63] 4 ✓ FMAs BBTs  + 10

Jo, 2012 [64] 4 X WMFT  + 9

Kim, 2018 [65] 2 ✓ FMA-UEs BBTs  = 7

Kiper, 2011 [66] 4 ✓ FMA-UEs  + 9

Kiper, 2014 [67] 4 ✓ FMA-UEs  + 9

Kiper, 2018 [46] 4 ✓ FMA-UEs  + 8

Klamroth-Marganska, 2014 [68] 8 ✓ FMA-UE SIS  + 7

Kottink, 2014 [32] 6 ✓ FMA-UE ARAT  = 6

Kwon, 2012 [69] 4 X FMA-UEs  = 5

Laffont [44] 6 ✓ FMA-UE BBT, WMFT  = 8

Lee, 2016a [70] 8 ✓ FMA-UEs BBTs  + 8

Lee, 2016b [71] 6 ✓ BBT  + 9

Lee, 2018 [72] 8 ✓ FMA-UEs  + 8

Levin, 2012 [73] 3 ✓ FMA-UEs BBTs, WMFT  + 9

Liao, 2012 [74] 4 ✓ FMA-UEs  + 7

Mugler, 2019 [75] 3 X FMA-UE  = 8

Nijenhuis, 2017 [76] 6 ✓ FMA-UEm, s ARAT m, s, BBT SIS  = 5

Norouzi-Gheidari, 2019 [39] 4 X FMA-UEs BBTs SISs  + 8

Ogun, 2019 [77] 6 ✓ FMA-UEs ARAT s  + 8

Oh, 2019 [17] 6 ✓ FMA-UE BBT  + 9

Park, 2019 [33] 4 ✓ FMA-UE WMFT SIS  = 9

Piron, 2009 [78] 4 ✓ FMA-UEs  + 8

Piron (2010) [47] 4 ✓ FMA-UEs  + 10

Prange, 2015, [79] 6 ✓ BBT  + 9

Rogers2019 [80] 4 X FMA-UEs  = 5

Schuster-Amft, 2018 [81] 4 ✓ BBTm, s SIS  = 7

Shin, 2014 [82] 2 X FMA-UEs  = 8

Shin, 2015 [83] 4 ✓ FMA-UEm, s  = 9

Shin, 2016 [84] 4 ✓ FMA-UEs SISs  + 10

Subramanian, 2012 [85] 4 ✓ FMA-UE  + 8

Thielbar, 2014 [86] 6 ✓ FMA-UEs ARAT s  + 10

Thielbar, 2020 [87] 4 ✓ FMA-UE  + 8

Tomic, 2017 [88] 3 ✓ FMA-UE WMFT  + 8

Wolf, 2015 [89] 8 ✓ FMA-UEs ARAT s, WMFT  = 6
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gait and balance, making it difficult to draw conclusions 

regarding the UL. Palma et al., solely relying on qualita-

tive synthesis, supported positive findings on function 

[42]. Results were inconclusive regarding activity and 

participation components and further interpretation 

was limited due to lack of quantitative synthesis. �en, a 

meta-analysis by Lohse et  al. showed positive effects in 

favour of VR-based interventions regarding three ICF-

WHO components [43]. However, analysis was restricted 

to therapies that did not include robotic assistance. Fur-

thermore, analyses through meta-regressions did not 

point out significant differences in outcomes between 

commercially available and custom-built systems.

Two updated Cochrane reviews covered broader 

aspects of VR and robotics in UL rehabilitation after 

stroke [8, 10]. In the review by Mehrholz et al., high qual-

ity evidence supports better improvements in ADL, arm 

function and arm strength in favour of RAT [8]. None-

theless, effects of robotic training performed in form of 

a serious game were not studied. �en, a review by Laver 

et  al. on VR-based interventions, demonstrated equiva-

lent improvements in UL function and activity when 

comparing time-matched interventions [10]. Notably, UL 

function and activity outcomes were pooled in one com-

mon analysis instead of distinguishing effects in terms 

of the two ICF-WHO components. Further analyses in 

subgroups suggested better results when specific systems 

designed for rehabilitation were employed compared to 

off-the-shelf CVG, although differences did not reach 

statistical significance.

Finally, two recent reviews showed improvements on 

both UL function and activity in groups receiving VR/

gaming-based training after stroke [11, 18]. However, 

both reviews studied broader aspects of VR-based inter-

ventions and their scope was not delimited to specific 

use of serious games. Karamians et  al. suggested that 

interventions with gaming components further promote 

recovery compared to those providing visual feedback 

only [18]. �en, Maier et  al. distinguished VRS specifi-

cally built for rehabilitation purposes from others des-

tined to generic use [11]. Results illustrated that, when 

compared to conventional therapy, interventions spe-

cifically designed based on elements enhancing neural 

plasticity led to significantly better results [11]. Addition-

ally, it was suggested that custom-made interventions, in 

comparison to non-specific interventions, comply better 

with a series of neurorehabilitation principles.

Adherence to neurorehabilitation principles 

of interventions using serious games for UL rehabilitation 

after stroke

To this date, UL stroke recovery through games devel-

oped specifically for rehabilitation and implemented 

on diverse systems, has not been explicitly reviewed. 

In addition, most recent reviews delimit their scope in 

technological terms by considering interventions based 

on the devices being used [11, 12, 18]. Some authors 

characterise comparison between studies using differ-

ent devices as difficult [44]. However, a holistic over-

view of serious games, regardless of the technology 

used, is important in order to better understand their 

added value in UL rehabilitation after stroke. Com-

parison between studies using systems with different 

technical specificities, mainly in hardware, is challeng-

ing. Nonetheless, interventions through serious games 

implemented on different devices may share similari-

ties. Indeed, all studies included in our review perform 

non-invasive treatments. �en, gamification and adapt-

ability of interventions, to the patients’ impairments 

and performance, aim to maintain motivation through-

out therapy sessions [45]. Additionally, all these sys-

tems have the potential to give access to kinematic data 

allowing objective assessment, evaluating real-time 

performance and tracking UL recovery [46–48]. Finally, 

Table 3 (continued)

Authors and publication year Durationa Matched 
 groupsb

UL function UL activity Participation Overall 
 �ndingsc

Principlesd

Yin, 2014 [90] 2 ✓ FMA-UEm, s ARAT m, s  = 11

Zondervan, 2016 [91] 3 ✓ ARAT, BBT  = 7

UL upper limb, FMA-UE Fugl-Meyer Assessment Upper Extremity subscale, ARAT  action research arm test, BBT box and block test, WMFT Wolf-motor function test, 

SIS stroke impact scale, ✓, matched time between interventions; X, time between interventions not matched; + , statistically signi�cant improvement in favour of 

experimental group for main outcomes; = , no statistically signi�cant di�erences reported between experimental and control group

a Duration: total number of treatment weeks

b Matched groups: matched time in terms of daily session time, sessions per week and total number of weeks between experimental and control group

c Overall �ndings: reported �ndings concerning primary outcome measures

d Principles: total number of neuro-rehabilitation principles ful�lled by the serious game used in the intervention. A total of 11 principles were examined for each trial

m Studies that reported only median and quartiles

s Studies for which the standard deviation had to be estimated



Page 10 of 16Doumas et al. J NeuroEngineering Rehabil          (2021) 18:100 

all interventions stimulate recovery through adher-

ence to common neurorehabilitation principles. In fact, 

comparison across different types of technologies and 

treatment modalities leads to identification of common 

‘active ingredients’ in terms of effective rehabilitation 

[11]. In accordance with recent literature, this review 

contributes to identifying a rationale regarding efficacy 

of interventions in UL rehabilitation after stroke. Our 

results point out that even in a group of interventions 

specifically developed for rehabilitation purposes, dif-

ferences in outcomes may be explained depending on 

higher adherence to neurorehabilitation principles. 

Furthermore, even though most interventions seem 

to fulfil certain principles (task-specific practice, vari-

able practice, massed practice), it seems that clusters 

of principles met among serious games may lead to 

differences in efficacy. For instance, our findings sug-

gest that providing feedback during therapy appears 

to be an important characteristic that interventions 

using serious games should satisfy. Further, to what 

degree each individual principle contributes in efficacy 

is difficult to study. However, it appears that the more 

Fig. 2 Forest plot of upper limb motor function as measured by the FMA-UE: studies using a serious game fulfilling ≥ 8 Npr versus studies using a 

serious game fulfilling < 8 Npr. FMA-UE upper extremity subscale of the Fugl-Meyer Assessment, Npr neurorehabilitation principles
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an intervention adheres to principles, the better the 

expected outcomes can be regarding motor recovery.

To the best of our knowledge, this systematic review is 

the first to address, in a non-fragmented way, efficacy of 

specifically designed gaming interventions in UL reha-

bilitation after stroke. Our results confirm current trends 

favouring custom-made rehabilitation systems and gami-

fication of interventions. Positive findings concerning 

function and activity have already been reported in pre-

vious reviews [11, 18]. It is worth noting that this review 

shows encouraging results in participation outcomes 

indicating, therefore, improvements in three ICF-WHO 

components.

Strengths and limitations

In a rapidly emerging field, 40% of studies included 

in our review were published within the last 3  years. 

Quantitative synthesis was performed by only using 

RCT of moderate to high methodological quality. 

However, this was not feasible for two studies due to 

unavailable data. Additionally, even though our work 

was conducted according to PRISMA guidelines for 

Fig. 3 Forest plot of upper limb motor function as measured by the FMA-UE: studies in the subacute phase after stroke versus studies in the 

chronic phase after stroke. FMA-UE, upper extremity subscale of the Fugl-Meyer Assessment



Page 12 of 16Doumas et al. J NeuroEngineering Rehabil          (2021) 18:100 

systematic reviews, no methods were used to detect 

unpublished trials. Also, publication bias was only 

assessed through funnel plot graphic representation 

which nonetheless did not indicate asymmetry. Het-

erogeneity across studies was moderate to high regard-

ing UL function and activity outcomes. �is may be 

partially due to variation of elements such as patient 

characteristics, duration of interventions and evalua-

tion timepoints. Heterogeneity was addressed by using 

a random effects model for meta-analyses and by con-

ducting additional analyses. Even though heterogene-

ity levels remained moderate, our results were little 

affected by changes in methods or outliers, indicating 

robustness.

Fig. 4 Forest plot of upper limb activity as measured by the ARAT, BBT, WMFT: studies using a serious game fulfilling ≥ 8 Npr versus studies using 

a serious game fulfilling < 8 Npr. ARAT  action research arm test, BBT box and block test, WMFT Wolf motor function test, Npr neurorehabilitation 

principles

Fig. 5 Forest plot of participation as measured by the social participation subscale of the SIS. SIS stroke impact scale
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Perspectives

Our work offers some suggestions regarding clini-

cal practice and future research. Interventions using 

serious games may be encouraged and integrated in 

upper limb rehabilitation programs during subacute 

and chronic stage after stroke. Specifications regarding 

dosage, duration and selection of patients that could 

benefit most from these treatments need further inves-

tigation. In addition, serious games should be explored 

in terms of ways to provide self- or tele-rehabilitation.

From a research point of view, new developments 

in gaming interventions can take into consideration 

adherence to neurorehabilitation principles. In accord-

ance with our findings, future developments of inter-

ventions in UL stroke rehabilitation ought to comply 

with as many neurorehabilitation principles as possible. 

Future work should study how variations in clusters 

of these principles may influence differently specific 

aspects of motor or cognitive rehabilitation. Also, rich-

ness of kinematic data, accessible through technologi-

cal devices on which games are implemented, open 

new perspectives in assessment and follow-up of stroke 

patients. In our review, only 11% of studies used kin-

ematic data, complementary to clinical rating scales, 

for UL function evaluation. Finally, few studies (11%) 

included in our review reported cognitive outcomes. 

Since motor performance and functional recovery can 

be influenced by cognitive determinants [49, 50], com-

bined assessment of all these aspects should be further 

considered in future work.

Conclusion
In conclusion, this systematic review and meta-analysis 

showed that post-stroke UL rehabilitation through seri-

ous games, implemented on various types of techno-

logical devices, showed better improvements, compared 

to conventional treatment, on three ICF-WHO compo-

nents. Long term effect retention was maintained for UL 

function. Irrespective of the technological system used, 

serious games that complied with more than 8 out of 11 

neurorehabilitation principles led to better overall effects. 

Our findings emphasize the importance of adherence to 

neurorehabilitation principles in order to improve effi-

cacy of interventions in UL rehabilitation after stroke.
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