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Abstract——Cocaine exhibits prominent abuse liabil-
ity, and chronic abuse can result in cocaine use
disorder with significant morbidity. Major advances
have been made in delineating neurobiological mecha-
nisms of cocaine abuse; however, effective medications
to treat cocaine use disorder remain to be discovered.
The present review will focus on the role of serotonin
(5-HT; 5-hydroxytryptamine) neurotransmission in the
neuropharmacology of cocaine and related abused stim-
ulants. Extensive research suggests that the primary
contribution of 5-HT to cocaine addiction is a conse-
quence of interactions with dopamine (DA) neurotrans-
mission. The literature on the neurobiological and
behavioral effects of cocaine is well developed, so the

focus of the review will be on cocaine with inferences
made about other monoamine uptake inhibitors and
releasers based on mechanistic considerations. 5-HT
receptors are widely expressed throughout the brain,
and several different 5-HT receptor subtypes have been
implicated in mediating the effects of endogenous 5-HT
on DA. However, the 5-HT2A and 5-HT2C receptors in
particular have been implicated as likely candidates
for mediating the influence of 5-HT in cocaine abuse as
well as to traits (e.g., impulsivity) that contribute to the
development of cocaine use disorder and relapse in
humans. Lastly, new approaches are proposed to guide
targeted development of serotonergic ligands for the
treatment of cocaine use disorder.
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I. Introduction

Central nervous system (CNS) stimulants are a di-
verse group of pharmacological agents that evoke
behavioral and psychologic stimulation and alertness,
energy, euphoria, and mood elevation. These com-
pounds include naturally occurring stimulant alkaloids
derived from plants (e.g., cocaine, nicotine) and syn-
thetic molecules (e.g., amphetamine, methamphetamine,
3,4-methylenedioxymethamphetamine). Psychostimu-
lants have important therapeutic utility in a large
population for which they are essential. For example,
amphetamine congeners and mixtures are employed to
normalize attention deficit disorders and treat narco-
lepsy (Koob and Volkow, 2010), while cocaine is used
for nasal and eye surgeries when indicated (Foley,
2005). Although these compounds differ in potency,
duration of action, and preferred routes of administra-
tion, this broad range of psychostimulant molecules
exhibits prominent abuse liability, and chronic abuse
can result in substance use disorders with significant
morbidity, potential mortality, and reductions in the
quality of life for users and their families. Substantial
advances have been made in delineating overlapping
and distinct mechanisms of action of psychostimulants
and uncovering neurobiological mechanisms of abuse
liability (Kalivas and Volkow, 2005; Ducci and Goldman,
2012); however, effective and accessible medications to
enhance recovery and to promote long-term abstinence
from stimulant use disorders remain to be discovered.
Although previous reviews have considered how seroto-
nin (5-hydroxytrytamine; 5-HT) neurotransmission con-
tributes to the abuse-related effects of cocaine, we will
review relevant research that suggests that the 5-HT
contribution to cocaine addiction is a consequence of
5-HT2A and 5-HT2C receptor interactions with dopamine
(DA) neurotransmission that is known to be critical in
the rewarding properties of abused drugs (Ritz et al.,
1987; Woolverton and Kleven, 1988). Moreover, cortical
dysregulation of 5-HT2A and 5-HT2C receptor function
will be shown to be critical in the development of cocaine
use disorder, providing a unique target for cocaine
medications. The literature on the biologic and behav-
ioral effects of cocaine is the best developed, so the focus
of the data review component will necessarily use
observations made for cocaine and make inferences
about other monoamine uptake inhibitors and releas-
ers based on mechanistic considerations. Lastly, new

approaches to the development of targeted serotoner-
gic ligands for treatment of cocaine use disorder are
proposed.

II. Neuroscience of Cocaine Use Disorder

The morbidity and mortality associated with the illicit
use of cocaine remains an alarming global problem. The
World Drug Report 2013 published by the United
Nations Office of Drugs and Crime estimates that
cocaine use affects about 17 million people (0.4% of the
global population aged 15–64 years), whereas amphetamine-
type stimulants are used by an estimated 38 million
people (0.7% of the global population aged 15–64 years)
(http://www.unodc.org/documents/data-and-analysis/
WDR2012/WDR_2012_web_small.pdf). Approximately
50% of the four million drug-related emergency de-
partment visits in the US in 2010 involved illicit drug
use, and cocaine was cited as the abused drug most
commonly involved. A recent investigation by the US
Department of Health and Human Services identified
663,000 admitted users seeking medical treatment,
which is still a minority of cocaine abusers (National
Survey of Substance Abuse Treatment Services (N-SSATS):
2011 Data on Substance Abuse Treatment Facilities,
http://www.samhsa.gov/data/substance-abuse-facilities-
data-nssats/reports). Detoxification facilities reported
that 60% of their patients were treated for cocaine abuse
disorders in 2011, whereas cocaine was the primary
substance of abuse reported by 8% of all treatment
admissions (http://www.samhsa.gov/data/substance-
abuse-facilities-data-nssats/reports). However, although
treatment decreases morbidity and mortality asso-
ciated with this disorder, only ;11% of those who
needed treatment received care in 2009 (http://www.
casacolumbia.org/addiction-research/reports/addiction-
medicine). Therapeutic approaches to relapse preven-
tion emphasize enhancing cognitive-behavioral skills
and coping responses (Hendershot et al., 2011), and
antirelapse medications have proven useful adjuncts
to cognitive-behavioral therapy for opioid (heroin, mor-
phine) and alcohol addiction. However, although nicotine
replacement, buproprion, and varenicline are effective
therapeutics for smoking cessation, sustained medica-
tion development efforts are necessary to yield effica-
cious pharmacotherapies for cocaine and other abused
stimulants.

ABBREVIATIONS: CNS, central nervous system; CSRT, choice serial reaction time; DA, dopamine; DOI, 1-(2,5-dimethoxy-4-iodophenyl)-
2-aminopropane; DRN, dorsal raphe nucleus; FDA, Food and Drug Administration; GPCR, G protein–coupled receptor; 5-HT, 5-hydroxytryptamine
(serotonin); M100907, (R)-(+)-a-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenyl)ethyl]-4-pipidinemethanol; MK 212, 2-chloro-6-(1-piperazinyl)-pyrazine
hydrochloride; mPFC, medial prefrontal cortex; NAc, nucleus accumbens; PET, positron emission tomography; PFC, prefrontal cortex; Ro 60-0175,
(2S)-1-(6-chloro-5-fluoroindol-1-yl)propan-2-amine; SB 242084, 6-chloro-2,3-dihydro-5-methyl-N-[6-[(2-methyl-3-pyridinyl)oxy]-3-pyridinyl]-1H-indole-1-
carboxyamide dihydrochloride hydrate; SB 243213, 2,3-dihydro-5-methyl-N-[6-[(2-methyl-3-pyridinyl)oxy]-3-pyridinyl]-6-(trifluoromethyl)-1H-indole-1-
carboxamide; SERT, serotonin reuptake transporter; SNP, single nucleotide polymorphism; SNpc, substantia nigra pars compacta; SR 46349B,
4-((3Z)-3-(2-dimethylaminoethyl)oxyimino-3-(2-fluorophenyl)propen-1-yl)phenol hemifumarate salt; VTA, ventral tegmental area; WAY 161503,
8,9-dichloro-2,3,4,4a-tetrahydro-1H-pyrazino[1,2-a]quinoxalin-5(6H)-one hydrochloride; WAY 163909, (7bR,10aR)-1,2,3,4,8,9,10,10a-octahydro-
7bH-cyclopenta-[b][1,4]diazepino[6,7,1hi]indole.
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A. Components of Addiction Cycle

The pleasant subjective effects that characterize
cocaine “intoxication” include euphoria, mood elevation,
enhanced feelings of well-being, and mental stimulation
(Cunningham, 2010). With escalating doses and pat-
terns of repeated use, the nature of the stimulant
experience changes with these effects transitioning to
negative or aversive effects for some users. The Di-
agnostic and Statistical Manual of Mental Disorders-5
(American Psychiatric Association, 2013) now defines
stimulant use disorders based upon 11 symptoms (e.g.,
craving, unsuccessful efforts to control use, etc.) on
a continuum from mild (2–3 symptoms) to moderate
(4–5 symptoms) to severe (6 or more) (Hasin et al., 2013).
The diagnosis of cocaine use disorder is typically
confirmed with urinalysis positive for the metabolite of
cocaine benzoylecgonine, but there are no biomarkers
that specifically identify the stage of progression of the
use disorder nor predict the success of a given thera-
peutic modality (Bough et al., 2014). Cocaine use disorder
can be regarded to transition from initial use to active
abuse with escalating and sustained dependence emer-
gent in vulnerable individuals. The hallmarks are com-
pulsive drug taking and drug seeking to the exclusion of
other important life activities (American Psychiatric
Association, 2013). Although patients cite many behav-
ioral reasons for using cocaine, the alternating drive to
experience the euphoria and to respond to the feeling
state of craving are primary determinants of continued
abuse to form a cycle of addiction that becomes in-
creasingly entrenched and uncontrollable. In particu-
lar, rapid progression is particularly common with the
smoked, freebase forms of cocaine, such as “crack,”
probably because the intrapulmonary route results in
virtually immediate delivery of a bolus of the drug to
the brain (Gorelick, 1998). Because cocaine can dramat-
ically influence the function of brain reward and cognitive
centers, cocaine use disorder can take on the strength and
characteristics of a primary survival drive. The inability
of patients to control cocaine use illustrates the shifted
power of drug reward and conditioned drug stimuli over
behavior, overriding cognitive inhibitory control mech-
anisms, and partially explaining the relapsing nature of
dependence on cocaine (Kalivas and Volkow, 2005; Koob
and Volkow, 2010; Ducci and Goldman, 2012).
The last decades have witnessed increasingly sophis-

ticated perspectives on addiction as a chronic, relapsing
brain disorder that engages reward function and an
"expanding cycle of dysfunction" in cognition, learning,
and emotion (Koob and Volkow, 2010). This trajectory
from drug use to addiction begins against a background
of vulnerability based upon genetic and environmental
factors and progresses as neuronal plasticity in key
brain circuits promotes addictive behaviors. Much
progress has been made in delineating the individual
role of these factors in addictive processes based upon

preclinical and clinical studies; the clear mandate now is
to integrate successfully findings and chart new direc-
tions for research and treatment. The escalation from
drug use to drug addiction is also linked to pathophys-
iology that develops during chronic drug exposure
composed of a myriad of neuroadaptations that alter
normal homeostasis. Some of these neuroadaptations
underlie the evolution of strong associations between
environmental cues and the drug-taking experience as
well as emerging psychiatric complications. During
abstinence from drug use, another phase of addiction is
manifest as withdrawal; poor impulse control and re-
activity to drug-associated environmental cues (“cue
reactivity”) challenge the best intentions of the addict to
remain abstinent. Major advances in understanding the
neurobiology of addiction have been generated over the
last 25 years, revealing the complex biologic processes
that trigger and sustain addictive behavior and the
physiologic ramifications of chronic exposure to abused
drugs. However, this research has yet to be brought to
fruition in terms of generating effective and accessible
new diagnostic and pharmacotherapeutic approaches
for the treatment of cocaine addiction.

The demand for treatment of stimulant use disorders
is high (http://www.samhsa.gov/data/substance-abuse-
facilities-data-nssats/reports). Treatment can be costly
or inaccessible in some regions, and the growing impact
of stimulant dependence requires new approaches. The
use of medications in addiction therapy is a concept that
is gaining acceptance, but one which is counter to the
normative belief in the treatment field that it is in-
appropriate to treat drug addiction with a medication
(i.e., another drug). However, personalized treatment
strategies for addiction might include a medication and/or
a combination of medications at important stages in
detoxification and recovery to reduce craving and assist
in establishing a drug-free state and a window to allow
cognitive restructuring and enhanced inhibitory control of
drug seeking. These medications would not serve as
a stand-alone “alternative”mode of therapy but rather as
an “adjunctive” mode of therapy in combination with
behavioral or cognitive approaches to achieving the goals
of therapy. To date, pharmacological sciences have pro-
vided a limited number of Food and Drug Administration
(FDA)–approved medications for the maintenance of
abstinence and reduction of craving. This medication
armamentarium includes medications for the treatment
of alcohol (disulfiram, naltrexone, acamprosate), opiate
(methadone, buprenorphine, naltrexone), and nicotine
(buproprion, varenicline) addiction but not for treatment
of cocaine use disorder. Efficacy of such medications would
be evidenced by decreased drug use and use-related risks,
improved physiologic and psychologic indices, and en-
hanced patient acceptance of and compliance in treatment
protocols that included behavioral therapies.

The development of effective approaches to treatment
of cocaine addiction relies on well designed clinical
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research in drug-using subjects as well as preclinical
research in which rigorous experimental control and
specific behavioral and pharmacological manipulations
can be undertaken to model and control the progression
of drug exposure across time. Animal models have
greatly enhanced our understanding of the neurobiology
of the rewarding, reinforcing, and conditioned effects
of stimulants best described for cocaine (Weiss and
Koob, 2001; Kalivas and McFarland, 2003; Bubar and
Cunningham, 2006). These preclinical advances originally
focused the field on the DA neurotransmitter system as
a relevant target for medications development for cocaine
abuse. Clinical trials have not yet identified DA-based
medications that lack abuse liability yet exhibit efficacy
to enhance abstinence, reduce craving, and prevent
relapse. Investigations have now broadened the search
to explore other neural systems that play equally important
roles in addictive processes, and the results have gen-
erated interesting new prospects for pharmacotherapy
(Kalivas and Volkow, 2011; Skolnick and Volkow, 2012;
Cunningham and Anastasio, 2014; Howell and Negus,
2014). We propose that an opportunity exists to advance
toward the goal of accessible, effective pharmacothera-
pies for cocaine addiction by targeting 5-HT neurotrans-
mission that may result in beneficial downstream
outcomes via DA function.

B. Preclinical Models of Cocaine Use Disorder

Drugs of abuse produce their neurobiological effects
often through several mechanisms of action, only some
of which are likely to promote abuse disorders. For
example, cocaine acts as both a local anesthetic and
a nonselective monoamine uptake inhibitor and evokes
cardiovascular and neurobiological effects, but only
a subset of neurobiological effects is thought to contrib-
ute to cocaine use disorder (Johanson and Fischman,
1989; Fleming et al., 1990; Catterall and Mackie, 2005;
O’Brien, 2006). A primary challenge for preclinical
medications development is to identify those abuse-
related effects that may serve as reasonable targets
for intervention with medications to enhance recovery
and maintain abstinence. Two behavioral assays that
exhibit validity for this purpose are drug discrimina-
tion and drug self-administration, which are profiled
briefly here.
1. Drug Discrimination. In drug discrimination pro-

cedures, the drug serves as the discriminative stimulus
(“interoceptive cue”) (Colpaert, 1999; Glennon and
Young, 2011). The stimulus effects of psychoactive
drugs in animals have proven to be useful to model the
subjective effects of cocaine and other drugs of abuse as
described in humans. Typically, subjects have access
to two response levers, and responding on the levers
produces food (or water) reinforcement contingent on
the presence or absence of a training drug. Specifically,
responding on only one lever (the drug-appropriate
lever) results in the delivery of the reinforcer after drug

pretreatment, and responding only on the other lever
(the vehicle-appropriate lever) results in reinforcer
delivery after vehicle pretreatment. A drug is consid-
ered to function as a discriminative stimulus if subjects
can be trained to respond differentially to the presence
or absence of the drug. All drugs of abuse can function
as discriminative stimuli, and abuse liability of a test
drug is indicated if it shares discriminative stimulus
effects with a known drug of abuse (Overton, 1987; Ator
and Griffiths, 2003). In addition, the discriminative
stimulus effects of drugs in animals are homologous
to the subjective drug effects in humans in whom
discrimination is evidenced by different patterns
of verbal behavior rather than by differential lever-
pressing behavior (Schuster and Johanson, 1988; Carter
and Griffiths, 2009). In view of these considerations,
discriminative stimulus effects can be considered as
a category of abuse-related drug effects. Drug discrim-
ination can be performed in many species and provides
a whole organism level of analysis that has been
effectively applied to classify CNS drugs, to disentangle
molecular mechanisms of psychoactive drug action, to
explore the abuse liability of emerging street drugs, and
to serve as an effective tool in drug discovery (Glennon
and Young, 2011). Although the discriminative stimulus
properties of a psychoactive drug are intimately linked
with its reinforcing effects (Appel and Cunningham,
1986; Bergman et al., 2000; Huskinson et al., 2014;
Teuns et al., 2014), drug discrimination does not provide
a direct measure of whether a compound will act as
a reinforcer to support drug self-administration. On the
other hand, given the extraordinary pharmacological
specificity of the stimulus properties of a drug, this
assay provides a useful tool in drug discovery research
focused on characterizing novel compounds in relation
to those with known pharmacology (Glennon and Young,
2011).

2. Drug Self-Administration. The animal model
with the clearest validity for human drug taking is drug
self-administration, because high concordance exists
between drugs that are self-administered by nonhuman
subjects and those abused by humans (Gardner, 2000).
In drug self-administration procedures, drug delivery
serves as the reinforcing event consequent to an operant
response. In the presence of a discriminative stimulus
(e.g., a stimulus light), a response (e.g., pressing a re-
sponse lever) produces delivery of a drug dose. Typically,
the drug dose is delivered intravenously through
a chronic indwelling catheter, although methods to
self-deliver drug via oral and inhalation routes are also
employed. A drug is considered to function as a reinforcer
if some dose of the drug maintains higher response rates
than vehicle. Many drugs of abuse, including cocaine,
function as reinforcers in drug self-administration proce-
dures. The high concordance between preclinical mea-
sures of drug reinforcement and clinical measures of abuse
liability has resulted in the use of drug self-administration
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protocols for abuse liability assessment of emerging
abused drugs by regulatory agencies such as the US
Drug Enforcement Agency (Ator and Griffiths, 2003;
Carter and Griffiths, 2009). The support of operant
responding in drug self-administration assays is often
viewed as the most significant abuse-related effect
amenable to preclinical study. Importantly, candidate
medications can be evaluated for the degree to which
they reduce self-administration of a target drug of
abuse, such as cocaine (Mello and Negus, 1996; Comer
et al., 2008; Haney and Spealman, 2008). That said, as
with all relevant animal preclinical models, the outcomes
are affected by the species, strain, and experimental
history of the subjects employed in self-administration
studies, and thus, interpretations must be made in the
context of available knowledge from multiple in vivo
assays.
The employment of the drug self-administration assay

has been central for the successful development of
therapeutics for substance use disorders. For example,
the preclinical efficacy of varenicline and buprenorphine
in self-administration studies supported its development
for smoking cessation and opiate use disorders (Rollema
et al., 2007; Pierce et al., 2012), respectively. For cocaine
and other stimulant use disorders, however, the quest to
identify pharmacotherapeutics is challenged because we
lack effective medications to serve as reference compounds.
As a general rule, the strength of preclinical evidence for
medication efficacy depends in part on the breadth of
conditions across which a medication reduces drug self-
administration. Medication effects on self-administration
may vary as a function of multiple contributing variables,
including the drug dose, the schedule of reinforcement,
and the duration of daily sessions employed to establish
stable self-administration.
The most common variant in medications develop-

ment studies is the evaluation of active drug self-
administration under experimental manipulations that
allow deductions about the impact of a novel medication
on the reinforcing effects of the self-administered drug.
The dose-response curve for cocaine typically is an
inverted-U with an ascending and descending limb
(Mello and Negus, 1996; LeSage et al., 1999). Any
interpretation of reduced drug intake in the absence
of a whole dose-response curve could be misleading,
because the rate of responding at a given dose provides
only a partial evaluation (typically of the descending
limb) of the dose-effect curve and hence can be an
ambiguous measure of the reinforcing effects of a drug.
A drug pretreatment can shift the dose-effect curve to
the left, right, or downward; in the case of a left- or
rightward shift, it is important to realize that the
potency of cocaine may be altered, but some dose of
cocaine may still maintain self-administration (Mello
and Negus, 1996). A potential medication that shifts the
dose-effect curve for cocaine downward may have the
greatest clinical utility, whereas a drug that increases

self-administration is unlikely to have a desirable clinical
outcome. An important consideration in the employment
of self-administration for medications development is the
"specificity" of effects seen with a candidate medication.
Medications should reduce consumption of the abused
drug without producing undesirable effects. Toxicology
screens play a key role in safety assessment with additional
important safety information derived from comparing
medication effects on drug self-administration with
effects on responding maintained by a nondrug reinforce,
such as food. Thus, an additional level of safety is implied
by a profile of medication effects that includes a prefer-
ential reduction in drug self-administration with lesser
effects on motility and responding maintained by another
reinforcer. To achieve the highest positive predictive
value, medication development studies attempt to adhere
to dose ranges of medication candidates that are noted to
impact operant responding for a drug but minimize the
likelihood of altering general behavior (e.g., motor
activity, food self-administration).

3. Cue Reactivity and Reinstatement. Suppression of
drug self-administration is an obvious target for anti-
addiction medications. A complimentary target for
medications development is suppression of reactivity to
cues associated with drug use (“cue reactivity”) (Weiss,
2010). With a history of drug use, environmental contexts
and internal/external stimuli become reliably associated
with drug use, leading to durable conditioned responses.
In humans, exposure to drug-conditioned cues produces
attentional orienting toward the drug cue, physiologic
arousal, and subjective craving (Carter and Tiffany,
1999; Field and Cox, 2008; Koob and Volkow, 2010),
effects that are implicated in maintenance of drug use
and drug-seeking during abstinence. Recently, drug cue-
evoked brain activation was reported to be predictive of
treatment outcome in subjects with cocaine use disorder
(Marhe et al., 2013) and has been related to treatment
outcome in a voucher-incentive program (Carpenter et al.,
2012). These and other emergent findings (Moeller et al.,
2012; Goudriaan et al., 2013) suggest that cue-evoked
activation patterns seen on functional magnetic reso-
nance imaging may be useful pharmacodynamic and/or
predictive biomarkers in medications development stud-
ies (Bough et al., 2014).

The term “cue reactivity” generally designates the
sensitivity to drug-associated stimuli conditioned to the
drug-taking experience, which can be analyzed as a
behavioral construct in humans or animals. There is
no consensus as to the operational definition of cue
reactivity in experimental studies nor as to the protocols
that provide the most translational applicability to the
human situation. In humans, the attentional bias or
orientation toward drug-associated cues (“cue reactiv-
ity”) is measurable as appetitive approach behaviors via
a wide range of paradigms, such as the drug-word
Stroop task (Cox et al., 2006). In such tasks, cue
reactivity is measured as attentional bias (attentional
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orienting response) in this widely used implicit task in
which words printed in color are presented and subjects
are asked to discriminate the color of each stimulus; the
subject is instructed to ignore the meaning of the words
and concentrate only on responding to the color in which
the word is written. The stimuli presented include
neutral words and words that are related to the concerns
or pathology under study, and slowness in responding to
a color suggests distraction from color discrimination due
to attention being biased by the meaning of the stimulus
word (i.e., “cocaine” or “dealer”) (Cox et al., 2006). This
task measures interference for addiction-related stimuli
that is calculated as the difference between performance
in the presence of substance-related distractors and
performance in the presence of neutral distractors.
Cue reactivity is assessed in animals as attentional

bias (attentional orienting response) by measuring the
learned behavioral output (“drug-seeking”) within the
drug-taking context and/or in the presence of discrete
drug-associated cues in animals trained on drug self-
administration. Acquisition and maintenance of cocaine
self-administration are typically accompanied by a period
of repeated extinction training followed by the opportu-
nity to emit a learned response (e.g., lever press) that is
no longer reinforced by drug or drug-associated cues;
such assays are termed “extinction/reinstatement mod-
els.” Reinstatement procedures comprise a subtype of
drug self-administration that adds a focus on noncontin-
gent delivery of stimuli (Shaham et al., 2003). In a typical
example, nondrug stimuli (e.g., stimulus lights or in-
fusion pump sounds) are paired with drug delivery such
that they come to function as conditioned reinforcers.
Once drug self-administration is established, modified
sessions are conducted during which the operant
manipulandum is present but drug reinforcement, and
often nondrug stimuli, is omitted. An alternative is to
employ a self-administration assay followed by assess-
ment of cue reactivity during an imposed withdrawal
period (forced abstinence) (Fuchs et al., 1998; Grimm
et al., 2001; Panlilio and Goldberg, 2007; Anastasio et al.,
2014a,b). This produces a decline in rates of the operant
behavior that produced drug, either because drug and
nondrug stimuli have been omitted and operant behavior
extinguishes or because whole sessions are omitted and
the operant behavior is not possible. At the conclusion of
the extinction or abstinence period, test stimuli are
introduced and rates of operant responding are re-
evaluated, usually with continued omission of drug
reinforcement. In general, three types of test stimuli
are used: 1) noncontingent treatments with the self-
administered drug, 2) reintroduction of drug-associated
stimuli (often referred to as “cues”), and 3) stimuli such
as foot shock intended to induce “stress.” Each of these
stimuli can increase (reinstate) rates of operant respond-
ing after extinction. The primary goal in the use of
reinstatement procedures is to model the phenomenon of
relapse in drug addiction, and by extension, medication

effects on reinstatement are often interpreted as pre-
dictive of their utility to treat relapse (Epstein et al.,
2006; Martin-Fardon and Weiss, 2013; but see Katz and
Higgins, 2003).

III. Serotonin Neurotransmission

A. 5-HT2 Family of Receptors

Serotonin plays a critical role in processes that occur
throughout the life span, including motor function,
cognition, mood, adaptation to stressors, growth and
repair, neurogenesis, and learning and memory (Lucki,
1998). The influence of 5-HT begins during develop-
ment at a time when the brain is particularly sensitive
to early life events known to trigger plasticity of 5-HT
systems (Mitchell et al., 1990; Smythe et al., 1994;
Garoflos et al., 2005; Cunningham and Anastasio,
2014). Furthermore, serotonergic stimulation is one
of the first steps in encoding of short- and long-term
memory at the level of the synapse (Pittenger and
Kandel, 1998; Kandel, 2005). Dysfunction of the 5-HT
system has major implications; malfunction of central
5-HT function is thought to contribute to a myriad of
disorders, including addiction, autism, depression, obe-
sity, and schizophrenia, with selective 5-HT reuptake
inhibitors having made a significant impact in psychiat-
ric medicine. Selective serotonin reuptake inhibitors bind
to the serotonin transporter (SERT) and control pre-
synaptic uptake of synaptic 5-HT that is released from
terminals originating in the dorsal (DRN) and medial
raphe nuclei, regions that provide afferent input to the
limbic cortical-ventral striatopallidal circuit (Kosofsky
and Molliver, 1987; Vertes, 2008). Two serotonergic
pathways innervate cortical and subcortical structures
with fine fibers originating from DRN 5-HT neurons and
beaded fibers from medial raphe nuclei 5-HT neurons
(Mamounas et al., 1991). A new phase in understanding
the role of 5-HT in the brain was prompted with the
discovery that the synthetic enzyme for 5-HT in brain
(tryptophan hydroxylase-2) is structurally distinct from
that in peripheral tissues (tryptophan hydroxylase-1)
(Walther and Bader, 2003). Thus, 5-HT exhibits distinctive
properties that are mirrored in the structure and function
of its receptor proteins.

The actions of 5-HT are mediated by 14 genetically
encoded subtypes of 5-HT receptors (5-HTXR), which are
grouped into seven families (5-HT1R to 5-HT7R) accord-
ing to their structural and functional characteristics (for
reviews, see Bockaert et al., 2006, and Hannon and Hoyer,
2008). Note the binding affinity of 5-HT can differ
markedly depending on the 5-HT receptor subtype
(Table 1). The 5-HT receptor family is composed of 13
G protein–coupled receptors (GPCRs) encoded by distinct
genes and one ligand gated ion channel (5-HT3R)
encoded by three genes (HTR3A, HTR3B, HTR3C). Each
family of 5-HT GPCRs is distinguished by its principal
G protein partner. The 5-HT1R (5-HT1AR, 5-HT1BR,
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5-HT1DR, 5-HT1ER, 5-HT1FR) couples to Gai/o, the 5-HT2R
(5-HT2AR, 5-HT2BR, 5-HT2CR) to Gaq/11, the 5-HT4R,
5-HT6R, and 5-HT7R couple to Gas, whereas 5-HT5AR
couples to Gai/o; the specific G protein isoform(s) that
couples to 5-HT5BR is unknown. One of these GPCRs, the
5-HT2CR, is the only G protein–coupled receptor known
to undergo pre-RNA editing such that the 5-HT2CR can
exist in 32 predicted mRNA isoforms that could encode
up to 24 different receptor protein isoforms in human
brain (Gurevich et al., 2002). Coupled with the constitu-
tive activity for some 5-HT receptors (e.g., 5-HT1R and
5-HT2R families) (Berg et al., 2008; Carrel et al., 2011)
and their desensitization/resensitization processes, a
complex regulatory landscape exists for the 5-HT system
(Bockaert et al., 2006; Hannon and Hoyer, 2008). As
these processes are better understood, the mechanistic
basis of serotonergic function and its tonic and phasic
control over the limbic-corticostriatal circuit will become
more evident.

B. Cellular Actions of 5-HT2A/C Receptors

The focus of the present review is two members of the
5-HT2R family, 5-HT2AR and 5-HT2CR, given the exten-
sive body of literature that demonstrates involvement of
neurotransmission through these GPCRs in the abuse-
related effects of cocaine. The third member of the
5-HT2R family, the 5-HT2BR, is expressed primarily in
the periphery with a limited localization to the CNS
(Kursar et al., 1994). The 5-HT2BR is believed to play a
negligible role in the central effects of abused stimulants
(Bankson and Cunningham, 2002; Fletcher et al., 2002;
Filip et al., 2004, 2006) and will not be discussed here;
however, we do note that there is recent evidence to
suggest that the 5-HT2BR may exert modulatory control
over the behavioral and neurochemical effects of amphet-
amine (Auclair et al., 2010). In addition, it should be
noted that because of the peripheral actions of the

5-HT2BR, an important consideration for minimizing
potential side effects when developing novel therapeutic
medications for addiction is the selectivity of a ligand
versus the 5-HT2BR given that chronic agonist activation
at the 5-HT2BR was identified as detrimental to cardiac
valves (Rothman et al., 2000).

The 5-HT2AR and 5-HT2CR are structurally composed
of an extracellular N-terminal domain, a hydrophobic
core of seven-transmembrane a-helices that form the
orthosteric binding pocket within the plasma mem-
brane, and a cytosolic C-terminal domain (Katritch et al.,
2012, 2013). Although the extracellular loops and seven-
transmembrane core are involved in ligand binding, the
three intracellular loops and C terminus are critical for
signal transmission, trafficking, and desensitization/
resensitization processes. Stimulation of either of these
GPCRs results in conformational changes that trigger
recruitment of heterotrimeric G proteins or other in-
tracellular molecules (e.g., b-arrestins) that transduce
signaling. Encoded by different genes, the 5-HT2AR and
5-HT2CR share a high degree of homology, overlapping
pharmacological profiles, and similar second messenger
signaling systems. However, the binding affinity of 5-HT
at 5-HT2AR is about 100-fold lower compared with the
binding affinity at 5-HT2CR (Tables 1 and 2). Upon the
initial event of receptor activation by agonist, both
5-HT2AR and 5-HT2CR interact with the heterotrimeric
G protein Gaq/11 to activate the enzyme phospholipase
Cb that generates intracellular second messengers
inositol-1,4,5-trisphosphate and diacylglycerol, leading
to increased calcium release from intracellular stores
(Hannon and Hoyer, 2008; Millan et al., 2008). Both
receptors also activate phospholipase A2 and generate
arachidonic acid through a pertussis toxin–sensitive
G protein (Felder et al., 1990) as well as phospholipase D
(McGrew et al., 2002; Moya et al., 2007). The activation
of phospholipase D can occur through the canonical

TABLE 1
In vitro binding profiles of ligands for 5-HT2AR, 5-HT2BR, and 5-HT2CR

Ligand 5-HT2 Receptor Family

h5-HT2AR h5-HT2BR h5-HT2CR

Agonistsa Affinity Ki Potency EC50 Affinity Ki Potency EC50 Affinity Ki Potency EC50

nM

5-HT 16 31 13 2 4.8 6
DOI 0.78 0.9 39 1.4 6.7 7.9
Lorcaserin 112 168 174 943 15 9
MK 212 1023 N.E. 617 295 98 214
Ro 60-0175 36.3 447 5.4 0.9 6.0 32
WAY 163909 212 N.E. 2101 185 10.5 8

N.E., no effect.
aPublished studies employed radioligand binding assays to establish the affinity (Ki) of 5-HT (Knight et al., 2004), DOI

(Knight et al., 2004), lorcaserin (Thomsen et al., 2008), MK 212 (Porter et al., 1999; Cussac et al., 2002; Knight et al.,
2004), and Ro 60-0175 for the 5-HT2R subtypes in h5-HT2AR– or h5-HT2CR–expressing HEK-293 (Knight et al., 2004;
Thomsen et al., 2008) or h5-HT2AR–, h5-HT2BR–,or h5-HT2CR–expressing CHO-K1 clonal cell lines (Porter et al., 1999;
Cussac et al., 2002), whereas the affinity of WAY 163909 for each h5-HT2R subtype was established in stably transfected
CHO-K1 cells (Dunlop et al., 2005). The potencies of 5-HT, MK 212, WAY 163909 were established using agonist-
stimulated intracellular calcium release with a fluorometric imaging plate reader (Porter et al., 1999; Dunlop et al., 2005)
in the cell types as described above. The potencies of DOI, lorcaserin, and Ro 60-0175 were established using [3H]inositol
phosphate turnover (Cussac et al., 2002; Thomsen et al., 2008); the EC50 was determined relative to 10 mM of 5-HT.
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receptor/G protein/effector signal transduction cascade
via Ga12/13 (McGrew et al., 2002, 2004) but also through
noncanonical signaling via direct association of ADP-
ribosylation factor with the C terminus of the 5-HT2AR
(Robertson et al., 2003; Barclay et al., 2011). Lastly, the
5-HT2AR and 5-HT2CR directly associate with b-arrestin2
to activate downstream signaling (Werry et al., 2006;
Abbas and Roth, 2008; Labasque et al., 2008) via
a G protein–independent process (Schmid et al., 2008;
Schmid and Bohn, 2010). The degree to which these
downstream signaling pathways are recruited varies
between the receptors, both at the level of agonist-
dependent (“ligand-directed signaling,” “biased agonism,”
“functional selectivity”) and agonist-independent activa-
tion (“constitutive activity”) of each pathway (Berg et al.,
2008). Such features are likely to distinguish the effects
of the 5-HT2R subtypes and their roles in behaviors key
in addictive processes. For example, constitutive activity
of both 5-HT2AR and 5-HT2CR has been demonstrated in
vivo and implicated in control of associative learning and
DA function (Navailles et al., 2006; Berg et al., 2008;
Aloyo et al., 2009; Leggio et al., 2009a,b).

IV. 5-HT2 Receptor Regulation of
Dopamine Neurotransmission

The 5-HT system can influence the abuse-related
effects of cocaine through its direct and indirect inter-
actions with the DA system. The raphe nuclei, which
contain serotonergic cell bodies, project to key brain areas
involved in drug abuse, including the ventral tegmental
area (VTA), nucleus accumbens (NAc), dorsal striatum,
and prefrontal cortex (PFC) (Parent et al., 1981; Halliday
and Tork, 1989; Di Matteo et al., 2008). Furthermore,
5-HT neurons synapse directly onto both DA and non-DA
neurons in the VTA (Herve et al., 1987), positioning them
to influence the output of the VTA in a variety of ways.

A. Basal Dopamine Neurochemistry

5-HT modulates DA in a complex manner that
depends on the 5-HT receptor subtypes involved (Hayes

and Greenshaw, 2011). Selective SERT inhibitors bind
and block the SERT and are currently approved to treat
depression and mood disorders. When given acutely,
SERT inhibitors cause an increase in 5-HT (Kreiss and
Lucki, 1995; Wong et al., 1995; Clark et al., 1996; Marek
et al., 2005; Qu et al., 2009) and can affect DA trans-
mission, although the effects vary depending on brain
region and particular SERT inhibitor used. For example,
acute and chronic systemic administration of the SERT
inhibitor fluoxetine decreased DA in the striatum (Perry
and Fuller, 1992; Ichikawa and Meltzer, 1995) and NAc
(Ichikawa and Meltzer, 1995) but increased DA in the
PFC (Bymaster et al., 2002), whereas systemic adminis-
tration of various other SERT inhibitors had no effect on
DA in the PFC (Bymaster et al., 2002). In addition, both
acute (Di Mascio et al., 1998) and sustained (Dremencov
et al., 2009) administration of SERT inhibitors can reduce
the firing and burst rate of DA cells in the VTA, which
would predict reductions in DA in brain areas innervated
by VTA DA neurons.

5-HT receptors are widely expressed throughout the
brain, and several different 5-HT receptor types have
been implicated in mediating the effects of endogenous
5-HT on DA (Bubar and Cunningham, 2006, 2008; Alex
and Pehek, 2007; Di Matteo et al., 2008; Navailles and
De Deurwaerdere, 2011). However, the 5-HT2AR and
5-HT2CR in particular have been implicated as likely
candidates for mediating the influence of 5-HT in drug
abuse (Bubar and Cunningham, 2006, 2008; Cunningham
and Anastasio, 2014). The 5-HT2AR and 5-HT2CR are
expressed throughout the brain with distinct but
overlapping expression patterns (Pompeiano et al., 1994)
and can functionally oppose each other in regulation of the
DA system (Bubar and Cunningham, 2008; Cunningham
and Anastasio, 2014). The regional distribution of 5-HT2AR
and 5-HT2CR within the mesolimbic DA system is
illustrated in Fig. 1. There is general consensus that
5-HT2AR activation stimulates and 5-HT2CR activation
inhibits DA release based on pharmacological studies
with selective 5-HT2AR and 5-HT2CR agonists and
antagonists (Tables 1 and 2).

The regional distribution of the 5-HT2AR has been
described using both in situ hybridization techniques
and radioligand binding assays. Across species, the
5-HT2AR is most densely localized to cortical regions,
including frontal and cingulate areas that receive DA
innervation from the VTA in the mesolimbic system
(Pompeiano et al., 1994; Cornea-Hebert et al., 1999;
Hall et al., 2000; López-Gimenez et al., 2001b; Varnas
et al., 2004). Most studies indicate that these cortical
5-HT2AR are predominantly postsynaptic in nature.
The 5-HT2AR appears to be localized to either the
apical dendrites or somata of glutamatergic pyramidal
neurons throughout the cortex and medium-spiny
projection neurons within the striatum, although some
evidence of localization to GABAergic interneurons
exists (Santana et al., 2004). Given that glutamatergic

TABLE 2
In vitro binding profiles of ligands for 5-HT2AR, 5-HT2BR, and 5-HT2CR

Ligand 5-HT2 Receptor Family

Affinity Ki

Antagonistsa h5-HT2AR h5-HT2BR h5-HT2CR

nM

Ketanserin 8.1 741 62
M100907 1.9 1000 30
Pimavanserin 0.05 N.D. 1.6
SB 242084 851 145 7.1
SB 243213 160 100 1.0

N.D., not determined.
aPublished studies employed radioligand binding assays to establish the affinity

(Ki) of ketanserin, M100907 (MDL100907), SB 242084, and SB 243213 for the
5-HT2R subtypes in h5-HT2AR–, h5-HT2BR–, or h5-HT2CR–transfected HEK-293 and
h5-HT2BR–transfected CHO-K1 clonal cell lines (Bromidge et al., 2000; Knight et al.,
2004). Pimavanserin binding affinity for the 5-HT2R subtypes was determined in
NIH-3T3 cells (Vanover et al., 2006).
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pyramidal neurons within the PFC send efferent projec-
tions to NAc and VTA, signaling through PFC-localized
postsynaptic 5-HT2AR can indirectly enhance mesolimbic
DA neurotransmission. Furthermore, 5-HT2AR has been
detected within the VTA, substantia nigra pars compacta
(SNpc), amygdala, and striatum of rats (Cornea-Hebert
et al., 1999; Nocjar et al., 2002). However, studies have
elucidated considerable species differences with respect
to localization in these brain regions. For example,
5-HT2AR is detected in dense “patchy” distributions
throughout the rodent caudate putamen but is found at
dramatically lower levels in the striatum of nonhuman
primates and humans (López-Gimenez et al., 1999,
2001b; Hall et al., 2000; Varnas et al., 2004). A number
of studies in rodents have investigated the subcellular
localization of the 5-HT2AR within the VTA (Fig. 1). The
majority of 5-HT2AR immunolabeling colocalized with
tyrosine hydroxlyase, suggesting that the receptors are
expressed by DA-releasing neurons, although there was
some evidence for colocalization with enzymatic markers
of GABA (Doherty and Pickel, 2000; Nocjar et al., 2002).
Within the NAc, the 5-HT2AR protein was predominantly
detected on GABAergic medium-spiny neurons (Cornea-
Hebert et al., 1999).
In the mesolimbic system, 5-HT2AR activation

facilitates DA cell activity and DA release. In vitro
work demonstrated that 5-HT increased the firing rate

of VTA DA neurons and that this effect was blocked by
ketanserin, a preferential 5-HT2AR antagonist (Pessia
et al., 1994). Additionally, DOI [1-(2,5-dimethoxy-4-
iodophenyl)-2-aminopropane], a 5-HT2A/2CR agonist,
increased both VTA cell firing and DA release in vivo,
which is reversed by pretreatment with M100907 [(R)-
(+)-a-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenyl)ethyl]-4-
pipidinemethanol], a highly selective 5-HT2AR antagonist
(Bortolozzi et al., 2005). Together, these data demon-
strate that the 5-HT2AR acts to facilitate VTA neuronal
activity and DA release.

Similarly, local perfusion of DOI into the NAc results
in increases in DA that can be blocked by nonselective 5-
HT2R antagonists (Bowers et al., 2000; Yan, 2000),
although neither of these studies used compounds se-
lective enough to distinguish between 5-HT2AR and
5-HT2CR. However, 5-HT2AR antagonists can reduce the
increase in DA in the NAc resulting from stimulation of
the DRN (De Deurwaerdere and Spampinato, 1999) as
well as the increase in DA resulting from D2 antagonism
(Liegeois et al., 2002). Additionally, systemic adminis-
tration of DOI potentiated amphetamine-induced DA
release in the NAc, an effect that was blocked by
M100907 (Kuroki et al., 2003). Together, these data
support the idea that 5-HT2AR in the NAc modulates
stimulated DA release, although the precise mechanism
is unclear because the subcellular localization of these
receptors has not been fully elucidated.

5-HT2AR may also indirectly influence DA release
through modulation of excitatory inputs from the PFC.
Systemic or direct infusion of DOI into the PFC results
in increases in local DA that can be blocked by selective
5-HT2AR antagonists (Pehek et al., 2001, 2006; Bortolozzi
et al., 2005). Although 5-HT2AR has been identified on
monoaminergic axons (Jakab and Goldman-Rakic, 1998;
Miner et al., 2003), the most probable explanation for
this is that activating 5-HT2AR on pyramidal neurons
has downstream polysynaptic effects. 5-HT2AR mediates
excitatory postsynaptic currents in pyramidal cells
(Aghajanian and Marek, 1997) and thus may increase
glutamate release. Furthermore, 5-HT2AR is present
on approximately 55% of pyramidal neurons that project
to the VTA (Vazquez-Borsetti et al., 2009).

Both systemic and direct administration of DOI into
the PFC resulted in increased firing rates and DA release
in the VTA, which were blocked by M100907 (Bortolozzi
et al., 2005). Furthermore, systemic DOI increased
glutamate release in the VTA, which was blocked by
intracortical administration of M100907 (Pehek et al.,
2006). Together, these data suggest that 5-HT2AR
increases pyramidal cell glutamate activity, thus in-
creasing the stimulatory drive on the VTA and explain-
ing the observed 5-HT2AR–stimulated increase in DA
release in the PFC (Bortolozzi et al., 2005; Pehek et al.,
2006). However, this polysynaptic model may have
additional elements, because approximately 50% of the
5-HT2AR–expressing pyramidal neurons that synapse in

Fig. 1. Cellular distribution of the 5-HT2AR and 5-HT2CR within a
simplified schematic representation of the mesolimbic DA system derived
primarily from rodent studies. The VTA consists of dopaminergic neurons
(green) that project to both NAcc and PFC and locally projecting
GABAergic interneurons (gray). The PFC consists of pyramidal gluta-
matergic neurons (blue) that project to NAcc and VTA and locally
projecting GABAergic interneurons (gray). The NAcc is comprised of
medium-spiny GABAergic neurons (gray) that project to VTA and other
limbic structures not shown. Detailed descriptions of subcellular receptor
localization are provided in the text. Intracellular predominance of
expression is visually depicted by the presence of two receptor symbols.
Briefly, VTA DA cells and PFC glutamatergic neurons predominantly
express 5-HT2AR, whereas VTA and PFC GABAergic interneurons
predominantly express 5-HT2CR. Both receptors are expressed at similar
levels within NAcc medium spiny neurons.

184 Howell and Cunningham



the VTA also synapse in the DRN (Vazquez-Borsetti
et al., 2011), which could then modify the serotonergic
inputs to a broad spectrum of brain areas, including the
PFC, NAc, and VTA. Although 5-HT2AR stimulation
clearly facilitates DA release in the mesocorticolimbic
system in areas key for addiction, 5-HT2AR antagonists
have no effect on basal DA release in the PFC (Pehek
et al., 2001; Bortolozzi et al., 2005), VTA (Bortolozzi et al.,
2005), or NAc (Liegeois et al., 2002), suggesting that the
5-HT2AR is involved primarily in control of phasic, not
tonic, DA release.
In situ hybridization and radioligand binding tech-

niques have been used to localize the 5-HT2CR mRNA
and protein, respectively, within mesocorticolimbic and
nigrostriatal systems. In rats, 5-HT2CR mRNA is detected
at high levels in caudate putamen, nucleus accumbens,
amygdala, frontal and cingulate cortices, SNpc, and
VTA (Pompeiano et al., 1994). A more recent study
confirmed the presence of 5-HT2CR protein in similar
brain regions, suggesting a predominantly somatoden-
dritic localization for these receptors (Clemett et al.,
2000). In macaques, 5-HT2CR mRNA was detected in
cortex, amygdala, VTA, and ventral aspects of the
striatum including nucleus accumbens (López-Gimenez
et al., 2001a). The cellular distribution of 5-HT2CR
within DA systems has been investigated extensively in
the rat brain (Fig. 1). The 5-HT2CR mRNA was detected
in both dopaminergic and GABAergic neurons in the
VTA and SNpc (Eberle-Wang et al., 1997), whereas
5-HT2CR protein was localized to both dopaminergic
and GABAergic neurons in the VTA (Bubar and
Cunningham, 2007) and in VTA dopaminergic neurons
that project to the NAc (Bubar et al., 2011). In the
human SNpc, 5-HT2CR mRNA did not colocalize with
immunoreactivity for tyrosine hydroxylase, suggesting
that 5-HT2CR–positive cells were not dopaminergic but
likely GABAergic in nature (Pasqualetti et al., 1999).
It remains unclear whether these GABAergic cells
project locally or extranigrally, although evidence has
suggested the existence of locally projecting GABAergic
interneurons within the human SNpc (Hebb and
Robertson, 2000). 5-HT2CR protein has also been pre-
dominantly detected on GABAergic interneurons within
the PFC of rodents (Liu et al., 2007).
Taken together, it is evident that the 5-HT2CR is

situated to modulate DA signaling through diverse
mechanisms, within both DA-producing mesencephalic
regions as well as their terminal fields. Because patterns
of mRNA expression and immunoreactivity are generally
detected within the same regions, it has been suggested
that these receptors are predominantly postsynaptic and
somatodendritic, although there is some evidence for
localization on axon terminals in a few areas. Particu-
larly within the VTA and PFC (and possibly SNpc), the
localization of 5-HT2CR to GABAergic interneurons
suggests that activation of these receptors would serve
to inhibit mesolimbic DA neurotransmission (Fig. 1).

Indeed, in vivo neurochemical and behavioral studies
have helped to elucidate the modulatory role of 5-HT2CR
activity upon DA neurotransmission.

As described above, the 5-HT2CR is localized within
mesocorticolimbic and nigrostriatal structures, sug-
gesting that the 5-HT2CR may directly modulate DA
neurotransmission. In agreement with this hypothesis,
electrophysiological and microdialysis studies have
revealed that systemic administration of selective
5-HT2CR agonists decreased, whereas antagonists and
inverse agonists increased basal firing rates of VTA DA
neurons and subsequent DA release within the NAc (for
review, see Bubar and Cunningham, 2006, 2008). The
impact of the 5-HT2CR on nigrostriatal activity is less
clear. For example, some studies demonstrated only
a modest modulatory effect of 5-HT2CR agonists or
antagonist on SNpc neuronal firing and DA release
within the dorsal striatum (Di Matteo et al., 1999; Di
Giovanni et al., 2000), whereas others demonstrated
more pronounced effects (Di Giovanni et al., 1999; Gobert
et al., 2000; De Deurwaerdere et al., 2004; Alex et al.,
2005). A later study found that 5-HT2CR knockout mice
had increased basal DA levels in the NAc and dorsal
striatum and correlated increased tonic activity in SNpc
neurons (Abdallah et al., 2009). Moreover, a recent
positron emission tomography (PET) imaging study of
[11C]raclopride binding in humans demonstrated that
a common missense single-nucleotide change in the
5-HT2CR gene was associated with enhanced DA release
in the NAc, caudate nucleus, and putamen in response to
a standardized stress challenge (Mickey et al., 2012).
Therefore, there is evidence that 5-HT2CR can modulate
both mesolimbic and nigrostriatal DA activity.

B. Cocaine Effects on Dopamine Neurochemistry

Pharmacological manipulation of 5-HT2AR function can
reliably modulate stimulant-induced increases in extra-
cellular DA. Systemic administration of the nonselective
5-HT2AR antagonist ketanserin attenuated cocaine-
induced increases in DA in rats (Broderick et al.,
2004). Similarly, a more selective 5-HT2AR antago-
nist, SR 46349B [4-((3Z)-3-(2-dimethylaminoethyl)
oxyimino-3-(2-fluorophenyl)propen-1-yl)phenol hemifumarate
salt], attenuated amphetamine-induced DA release in
both the NAc and striatum (Porras et al., 2002; Auclair
et al., 2004) as well as amphetamine-induced reductions
of [11C]raclopride binding within the dorsal striatum
(Egerton et al., 2008), suggesting that 5-HT2AR antag-
onists attenuate stimulated DA release within both the
mesolimbic and nigrostriatal DA pathways.

This is an area of research that has received
attention recently in nonhuman primate models. For
example, Murnane et al. (2013a) directly compared the
role of 5-HT2AR in cocaine-induced DA overflow in the
caudate nucleus and NAc in conscious rhesus monkeys.
The selective 5-HT2AR antagonist, M100907, attenuated
cocaine-induced DA overflow in the caudate nucleus.

Cocaine, 5-HT2 Receptors, and Dopamine 185



However, it was ineffective in attenuating cocaine-
induced DA overflow in the NAc. These data suggest
that important abuse-related effects of cocaine are
mediated by distinct DA projection pathways that are
differentially influenced by 5-HT2AR. In a separate study,
Murnane et al. (2013b) found that amphetamine induced
significant and dose-dependent wake-promoting effects
in rhesus monkeys at doses that induced significant
increases in extracellular DA in the caudate nucleus.
Importantly, M100907 attenuated the effects of amphet-
amine on both wakefulness and DA overflow. Hence,
M100907 attenuated the dopaminergic effects induced by
a DA uptake inhibitor and DA releaser in the caudate
nucleus at behaviorally relevant doses.
Much more attention has been directed at understand-

ing the role of 5-HT2CR function in modulating the
neurochemical effects of abused stimulants. Evidence
derived from rodent studies suggests that 5-HT2CR
exerts a modulatory influence over cocaine-induced
increases in DA within the ventral striatum. An early
investigation of 5-HT2CR knockout mice found an
enhancement of cocaine-induced increases in DA in the
NAc but not dorsal striatum (Rocha et al., 2002).
Moreover, administration of 5-HT2CR agonists inhibited,
whereas 5-HT2CR antagonists enhanced cocaine-induced
elevations of DA in the NAc of rats (Navailles et al., 2004,
2008). It is reasonable to speculate that 5-HT2CR
activation within the VTA functionally inhibits DA
release within the mesolimbic terminal regions by
stimulating local GABA release onto DA releasing
neurons. One would therefore postulate that the DA-
increasing effects of an impulse-dependent DA trans-
porter inhibitor such as cocaine would be attenuated by
pretreatment with a 5-HT2CR agonist, because the site of
action for the latter (i.e., VTA) is upstream of the primary
site of action for cocaine (i.e., mesolimbic terminal
regions). Consistent with this hypothesis, Navailles
et al. (2008) demonstrated that intra-VTA administration
of the 5-HT2CR agonist Ro 60-0175 [(2S)-1-(6-chloro-5-
fluoroindol-1-yl)propan-2-amine] attenuated the DA-
increasing effects of systemically administered cocaine in
anesthetized rats.
Additional studies employing site-directed drug injec-

tions in rats indicate that the overall inhibitory effect of
the 5-HT2CR on cocaine-induced DA overflow reflects
a functional balance between inhibitory and excitatory
effects of separate populations of 5-HT2CR localized in the
VTA, NAc, and medial PFC (mPFC) (Filip et al., 2012).
For example, intra-accumbens infusion of the selective
5-HT2CR antagonist, SB 242084 [6-chloro-2,3-dihydro-5-
methyl-N-[6-[(2-methyl-3-pyridinyl)oxy]-3-pyridinyl]-
1H-indole-1-carboxyamide dihydrochloride hydrate],
attenuated the effects of systemically administered
cocaine on NAc DA (Zayara et al., 2011). In addition,
intra-PFC administration of the 5-HT2CR agonist,
Ro 60-0175, increased and the 5-HT2CR antagonists,
SB 242084 and SB 243213 (2,3-dihydro-5-methyl-N-[6-

[(2-methyl-3-pyridinyl)oxy]-3-pyridinyl]-6-(trifluoromethyl)-
1H-indole-1-carboxamide), decreased cocaine-induced
elevations in NAc DA (Leggio et al., 2009a,b). These
results raise the intriguing possibility that 5-HT2CR
can modulate the behavioral effects of cocaine via
actions downstream of NAc DA release.

A recent series of experiments was the first to evaluate
the role of 5-HT2CR in the neurochemical effects of
cocaine in nonhuman primates. Systemic administration
of the 5-HT2CR agonist, Ro 60-0175, significantly at-
tenuated cocaine-induced increases in extracellular DA
in the NAc of conscious squirrel monkeys at a dose that
attenuated cocaine self-administration and cocaine-
induced reinstatement of previously-extinguished cocaine
self-administration (Manvich et al., 2012a). Conversely,
systemic administration of the selective 5-HT2CR antag-
onist, SB 242084, enhanced cocaine-induced increases
in NAc DA at a dose that enhanced cocaine-induced re-
instatement and maintained self-administration when
substituted for cocaine (Manvich et al., 2012b). The latter
finding is consistent with a previous study demonstrating
that systemic administration of SB 242084 enhanced
cocaine-induced increases in DA in the NAc in rats
(Navailles et al., 2004).

Interestingly, Ro 60-0175 and SB 242084 had no
effect on cocaine-induced increases in extracellular DA
in the caudate nucleus (Manvich et al., 2012a,b). The
latter result is in accordance with several previous
reports indicating that neither 5-HT2CR agonists nor
antagonists are effective at modulating DA signaling
within dorsal aspects of the striatum in rodents (Di
Matteo et al., 1999; Di Giovanni et al., 2000; Marquis
et al., 2007), although some studies have provided
opposing results (Di Giovanni et al., 1999; Gobert et al.,
2000; De Deurwaerdere et al., 2004; Navailles et al.,
2004; Alex et al., 2005). Accordingly, in contrast to the
mesolimbic DA system, the nigrostriatal pathway
seems to be relatively unaffected by signaling through
the 5-HT2CR in nonhuman primates, a result that is
consistent with a previous receptor localization study
in which 5-HT2CR mRNA was found within the VTA
and NAc but not the SNpc or dorsolateral aspects of the
striatum in nonhuman primates (López-Gimenez et al.,
2001a).

C. Abuse-Related Behavioral Effects of Cocaine

Pharmacological enhancement of 5-HT levels can be
achieved in vivo via systemic administration of selective
SERT inhibitors (e.g., fluoxetine) or 5-HT releasers (e.g.,
fenfluramine). Studies utilizing such compounds have
revealed an important modulatory role for 5-HT on the
behavioral effects of cocaine. For example, indirect 5-HT
agonists such as SERT inhibitors or 5-HT releasers have
been found to attenuate the behavioral-stimulant effects
(Spealman, 1993; Howell and Byrd, 1995), reinforcing
effects (Kleven and Woolverton, 1993; Glowa et al., 1997;
Czoty et al., 2002; Negus et al., 2007), and reinstatement
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effects (Ruedi-Bettschen et al., 2010; Howell and Negus,
2014) of cocaine in nonhuman primates. Interestingly,
some SERT inhibitors (e.g., fluoxetine, citalopram),
which evoked saline-responding when administered
alone, enhanced the discriminative stimulus effects of
cocaine in both monkeys (Spealman, 1993; Schama et al.,
1997) and rats (Cunningham and Callahan, 1991;
Callahan and Cunningham, 1997). Although the differ-
ential mechanisms underlying these observations remain
to be fully explored, further studies employing in vivo
microdialysis techniques in awake squirrel monkeys
revealed that the altered behavioral effects of cocaine
after serotonergic pretreatments correlated with reduc-
tions in cocaine-induced DA increases within the
striatum (Czoty et al., 2002). In humans, pretreatment
with a selective SERT inhibitor decreases ratings of
cocaine’s positive effects (Walsh et al., 1994). In contrast,
lowered 5-HT activity via tryptophan depletion increases
cocaine craving and cocaine-induced DA release as
measured by reductions of [11C]raclopride binding with
PET imaging (Cox et al., 2011). Together, these studies
suggest that 5-HT can negatively modulate the abuse-
related effects of cocaine.
Similarly, increasing the relative potency of mono-

amine transporter inhibitors at the SERT compared
with the DA transporter decreases their abuse-related
effects in rats (Baumann et al., 2011) and nonhuman
primates (Wee et al., 2005; Kimmel et al., 2009). In
a series of studies conducted by different laboratories,
the stimulant-like and reinforcing effects of several
compounds with varying selectivity for releasing DA
versus 5-HT were assessed in nonhuman primates.
Compounds with high selectivity for releasing DA
versus 5-HT induced behavioral-stimulant effects in
squirrel monkeys (Kimmel et al., 2009) and were self-
administered by rhesus monkeys (Wee et al., 2005).
However, compounds with a lower ratio of DA/5-HT
release maintained lower rates of self-administration
(Wee et al., 2005), and a compound that showed
relatively nonselective release of DA versus 5-HT did
not maintain self-administration at any dose tested
(Rothman et al., 2005). Additionally, decreased selec-
tivity of DA versus 5-HT release by these compounds
was associated with a reduced capacity to increase
DA within the striatum (Kimmel et al., 2009), again
correlating increased 5-HT signaling with reductions
in their dopaminergic, stimulant-like, and reinforcing
effects. These findings lend further support to the
hypothesis that pharmacologically induced increases in
5-HT neurotransmission via systemic administration
of 5-HT indirect agonists attenuates the behavioral
effects of monoamine uptake inhibitors and releasers,
including their reinforcing effectiveness, and that these
effects are associated with a diminished capacity to
increase DA levels in striatal regions.
The 5-HT2AR has clearly been implicated in some of

the abuse-related behavioral effects of cocaine (Table 3).

Systemic administration of 5-HT2AR antagonists block
(McMahon et al., 2001; Fletcher et al., 2002; Filip et al.,
2004), whereas the 5-HT2AR agonist DOI potentiates
(Filip et al., 2004) the locomotor-stimulant effects of
cocaine in rats. Moreover, virally mediated overexpres-
sion of 5-HT2AR in the VTA enhances the locomotor-
stimulant effects of cocaine (Herin et al., 2013). 5-HT2AR
antagonists also attenuate the discriminative stimulus
effects of cocaine, shifting the dose-response curve to the
right (Filip et al., 2006) and blocking both cocaine-
associated cue-induced and cocaine-primed reinstate-
ment in rats (Fletcher et al., 2002; Filip, 2005; Nic
Dhonnchadha et al., 2009; Pockros et al., 2011) without
attenuating reinstatement induced by cues associated
with food reinforcement (Nic Dhonnchadha et al., 2009).
Reinstatement may be, in part, mediated through
5-HT2AR activation in the PFC, as local microinjec-
tions of M100907 attenuated cocaine cue-induced
reinstatement (Pockros et al., 2011). These findings
are in accordance with predicted outcomes based upon
5-HT2AR cellular localization in VTA and PFC.

It is important to note that administration of
M100907 was ineffective in altering the ongoing self-
administration of cocaine in rats (Fletcher et al., 2002;
Nic Dhonnchadha et al., 2009; Pockros et al., 2011),
suggesting that 5-HT2AR antagonists are ineffective in
modulating the direct reinforcing effects of cocaine.
Furthermore, neither 5-HT2AR agonists nor antago-
nists had any effect on the reward-facilitating effects of
cocaine in intracranial stimulation studies (Katsidoni
et al., 2011). The lack of effect of M100907 pre-
treatment on cocaine self-administration has been
replicated in rhesus monkeys at doses that suppressed
the self-administration of 3,4-methylenedioxymetham-
phetamine (Fantegrossi et al., 2002). A more recent
study evaluated the effects of M100907 on cocaine self-
administration and drug + cue-primed reinstatement
in rhesus monkeys (Murnane et al., 2013b). Consistent
with previous studies, M100907 significantly attenu-
ated drug + cue-induced reinstatement but had no
significant effects on the maintenance of cocaine self-
administration across a range of cocaine doses.

Numerous studies documented that pharmacological
activation of the 5-HT2CR mimics the effects of 5-HT
indirect agonists in rodent models of cocaine use and
relapse (Bubar and Cunningham, 2006, 2008; Cunningham
and Anastasio, 2014). Studies in rodents have reliably
found that 5-HT2CR agonists attenuate, whereas an-
tagonists enhance the behavioral effects of cocaine
(Table 3). Specifically, systemic administration of
5-HT2CR agonists in rodents attenuated cocaine-
induced hyperlocomotion (Grottick et al., 2000; Filip
et al., 2004), the discriminative stimulus effects of
cocaine (Callahan and Cunningham, 1995; Frankel
and Cunningham, 2004), as well as the direct reinforcing
effects of cocaine as measured by self-administration
procedures (Grottick et al., 2000; Fletcher et al., 2008;
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Cunningham et al., 2011). Additionally, 5-HT2CR agonists
reduced reinstatement induced by cocaine and cocaine-
associated cues (Grottick et al., 2000; Neisewander and
Acosta, 2007; Burbassi and Cervo, 2008; Fletcher et al.,
2008; Cunningham et al., 2011). Intracranial micro-
injections of the 5-HT2CR agonist MK 212 [2-chloro-6-
(1-piperazinyl)-pyrazine hydrochloride] into the prelimbic
and infralimbic regions of the mPFC attenuated both
cocaine- and cue-induced reinstatement (Pentkowski
et al., 2010). Moreover, intracranial microinjections
of the 5-HT2CR agonist WAY 161503 [8,9-dichloro-
2,3,4,4a-tetrahydro-1H-pyrazino[1,2-a]quinoxalin-5(6H)-
one hydrochloride] into the mPFC or NAc increased
the threshold for intracranial self-stimulation and
attenuated the reward-facilitating effects of cocaine in
rats (Katsidoni et al., 2011). Conversely, systemic
administration of 5-HT2CR antagonists exerts effects
opposite to those after agonist administration, thus
enhancing cocaine-induced hyperlocomotion (Fletcher
et al., 2002, 2006), the discriminative stimulus effects
of cocaine (Fletcher et al., 2002; Filip et al., 2006),
cocaine self-administration (Fletcher et al., 2002), and
cocaine-induced reinstatement (Fletcher et al., 2002).
Taken together, these findings suggest that signaling
through the 5-HT2CR exerts inhibitory control over
cocaine-mediated behavioral effects in rodents.
A study by Manvich et al. (2012a) extended these

findings to nonhuman primates for the first time by
demonstrating in squirrel monkeys that pretreatment
with the selective 5-HT2CR agonist Ro 60-0175 in-
surmountably attenuated the behavioral-stimulant,
reinforcing, and reinstatement effects of cocaine, each
of which was reversed by pretreatment with the

selective 5-HT2CR antagonist SB 242084. Furthermore,
by comparing the effects of a preferential agonist,
m-chlorophenylpiperazine, with those of Ro 60-0175
on nondrug-maintained operant responding, the results
indicated that increased pharmacological selectivity
for the 5-HT2CR confers a higher index of behavioral
specificity, because Ro 60-0175 more potently altered
cocaine-maintained versus nondrug-maintained be-
havior. In complete opposition to the behavioral
effects of 5-HT2CR agonist administration, pretreat-
ment with the selective 5-HT2CR antagonist SB
242084 induced modest behavioral-stimulant effects
when administered alone, potentiated the behavioral-
stimulant effects of cocaine in an additive manner,
and enhanced the reinstatement effects of cocaine
in squirrel monkeys (Manvich et al., 2012b). The
study also evaluated whether intravenous infu-
sions of SB 242084 would maintain responding in
squirrel monkeys when substituted for cocaine in
self-administration sessions. To our knowledge,
these studies were the first to assess the direct
reinforcing effects of a 5-HT2CR–selective antagonist
in any species. Consistent with its behavioral profile
as a stimulant, SB 242084 fully substituted for
cocaine in all subjects tested, maintaining maximal
stable rates of responding across three consecutive
test sessions that were nearly identical to those
maintained by the maximally effective dose of co-
caine. One obvious implication from these results is
that 5-HT2CR antagonists may display some degree
of abuse liability in humans. However, additional
studies are needed to better understand the reinforcing
effects of 5-HT2CR antagonists under a variety of

TABLE 3
Effects of 5-HT2AR and 5-HT2CR ligands on the abuse-related behavioral effects of cocaine

The results of studies in which a 5-HT2AR or 5-HT2CR ligand was administered before evaluation of cocaine abuse-related behavioral effects of cocaine assessed in rats or
monkeys. “Psychomotor stimulant” effects were evaluated typically in photobeam activity monitors. The “stimulus effects of cocaine” were evaluated in a cocaine versus saline,
two-lever discrimination task. In this task, “partial” refers to partial substitution of DOI in a cocaine versus saline discrimination. “Impulsive Action” refers to studies that
assayed “action restraint” measures of impulsive action (see text and references). “Reward” refers to studies that evaluated effects of manipulations on intake of cocaine
(reinforcing effects) and/or breakpoints (motivational effects) in a cocaine self-administration task. “Cocaine-Seeking” refers to behavioral output reinforced by contextual and/
or discrete drug-associated cues during withdrawal or following repeated extinction training that occurred in the absence (“Cue”) or presence of investigator-delivered cocaine
(“Cocaine”). The up and down arrows indicate an increase (↑) or decrease (↓), respectively, in the abuse-related behavioral effects of cocaine.

Action Ligand Psychomotor
Stimulant

Stimulus Effects
of Cocaine

Impulsive
Action

Cocaine Self-Administration

Reward
Cocaine-Seeking

Cue Cocaine

5-HT2AR agonist DOIa ↑/NE Partial ↑ NP NP NP
5-HT2AR antagonist MDL 100907,b SR 463491Bc ↓ ↓ ↓ ↓NE ↓ ↓
5-HT2CR agonist MK 212,d Ro 60-0175,e WAY

163909,f WAY 161503g
↓ ↓ ↓ ↓ ↓ ↓

5-HT2CR antagonisth SB242084,i RS102221j ↑ ↑ ↑ ↑ NE ↑

NE, no effect was observed under the treatment conditions employed; NP, no publications identified for these manipulations.
aEvenden, 1998; Evenden and Ryan, 1999; Koskinen et al., 2000; Filip et al., 2004; Blokland et al., 2005.
bMcMahon and Cunningham, 2001; Fantegrossi et al., 2002; Fletcher et al., 2002, 2011; Winstanely et al., 2003, 2004; Fletcher, 2007; Nic Dhonnchadha et al., 2009;

Anastasio et al., 2011; Pockros et al., 2011.
cFilip et al., 2004, 2006; Filip, 2005.
dCallahan and Cunningham, 1995; Filip and Cunningham, 2003; Filip et al., 2004; Neisewander and Acosta, 2007.
eBurbassi and Cervo, 2008; Fletcher et al., 2008, 2011; Grottick et al., 2000; Manvich et al., 2012a.
fNavarra et al., 2008; Cunningham et al., 2011, 2013; Anastasio et al., 2014a.
gKatsidoni et al., 2011.
hSB242084 alone supported self-administration in squirrel monkeys (Manvich et al., 2012b).
iFletcher et al., 2002, 2006, 2008; Winstanely et al., 2003; Frankel and Cunningham, 2004; Neisewander and Acosta, 2007; Burbassi and Cervo, 2008; Manvich et al., 2012b;

Pennanen et al., 2013.
jFilip and Cunningham, 2003.
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experimental conditions before conclusions about their
reinforcing strength and abuse liability are drawn.

V. Cortical Dysregulation and 5-HT2A/C

Receptor Function

Human studies employing functional brain imaging
have begun to define the neural circuitry underlying the
acute pharmacological effects of cocaine and conditioned
responses to cocaine cues. Activation of the anterior
cingulate has been observed in response to acute ad-
ministration of cocaine and related stimulants (Breiter
et al., 1997; Volkow et al., 1999) and cocaine-related
environmental cues (Maas et al., 1998; Childress et al.,
1999; Kilts et al., 2001; Wexler et al., 2001). Moreover,
activation of the dorsolateral PFC has also been observed
in response to cocaine (Kufahl et al., 2005) and cocaine
cues (Grant et al., 1996; Maas et al., 1998). The
dorsolateral PFC and dorsomedial PFC are activated
during the performance of a variety of cognitive tasks
that require working memory or goal-directed behavior
(Fuster, 1997). Hence, it is apparent that the effects of
cocaine and associated cues extend beyond the meso-
accumbens system to engage cortical areas underlying
complex cognitive processes. Unfortunately, the role of
cortical 5-HT2R function in cognition is poorly under-
stood. This is clearly an area of investigation that could
lead to novel therapeutics as adjuncts to the use of
cognitive therapy in the treatment of cocaine addiction.
Several early studies using PET and single photon

emission computed tomography imaging documented
significant cortical dysregulation associated with
chronic cocaine use, including brain perfusion deficits
reported to occur with high frequency (Holman et al.,
1991, 1993; Volkow et al., 1991; Strickland et al., 1993;
Levin et al., 1994). Local perfusion deficits have been
linked closely to changes in cerebral metabolism.
Measures of brain glucose metabolism with PET
imaging in chronic cocaine users documented transient
increases in metabolic activity in DA-associated brain
regions during cocaine withdrawal (Volkow et al.,
1991). Decreases in frontal brain metabolism persisted
after months of detoxification. The same pattern of
decreased glucose metabolism (Reivich et al., 1985) and
perfusion deficits (Volkow et al., 1988) was observed in
the PFC of a subset of cocaine users. Lastly, regional
brain glucose metabolism has been characterized in
conjunction with DA D2 receptor availability (Volkow
et al., 2001). Reductions in striatal DA D2 receptors
were associated with decreased metabolic activity in
the orbital frontal cortex and anterior cingulate cortex
in detoxified individuals. In contrast, the orbital frontal
cortex was hypermetabolic in active cocaine abusers
(Volkow et al., 1991). Collectively, these findings observed
in cocaine abusers document significant dysregulation
of DA systems that are reflected in brain metabolic
changes in areas involved in reward circuitry.

Recent advances in functional connectivity magnetic
resonance imaging have begun to characterize circuit-
level interactions between brain regions in the context
of drug abuse and addiction (Ma et al., 2010; Sutherland
et al., 2012). Chronic drug use is consistently associated
with significant changes in functional connectivity within
PFC and limbic circuitry that likely contribute to loss of
control over drug use and relapse. For example, several
studies have reported disruptions in frontal-striatal
circuitry in cocaine users (Gu et al., 2010; Hanlon et al.,
2011; Wilcox et al., 2011). Compared with control subjects,
cocaine users have lower resting-state functional con-
nectivity within the mesolimbic DA system and lower
network connectivity between limbic regions is correlated
with duration of cocaine use (Gu et al., 2010). Indeed,
a recent review article concluded that loss of PFC
function during abstinence could be the most reliable
clinical biomarker of relapse (Hanlon et al., 2013;
Bough et al., 2014).

It is well recognized that chronic exposure to cocaine
can induce significant changes in the 5-HT system that
may underlie cortical dysregulation. Increases in the
SERT after chronic cocaine have been reported in cells
(Kittler et al., 2010), rodents (Cunningham et al., 1992),
nonhuman primates (Banks et al., 2008; Gould et al.,
2011), and humans (Jacobsen et al., 2000; Mash et al.,
2000). Chronic self-administration of cocaine in rhesus
monkeys also resulted in an upregulation of 5-HT2AR in
the frontal cortex (Sawyer et al., 2012) as determined in
vivo with PET imaging and the selective 5-HT2AR
ligand [11C]M100907 (Fig. 2). Previous studies have
suggested that withdrawal from cocaine sensitizes
5-HT2AR (Baumann and Rothman, 1996, 1998; Carrasco
et al., 2006; Carrasco and Battaglia, 2007), which may
contribute to relapse, particularly as antagonists at
5-HT2AR are able to block cue- and cocaine-primed
reinstatement (Fletcher et al., 2002; Filip, 2005; Nic
Dhonnchadha et al., 2009; Murnane et al., 2013b). It is
important to note that the highest expression of
5-HT2AR in the brain is on the dendrites of layer V
cortical pyramidal glutamatergic cells (Cornea-Hebert
et al., 1999; Jakab and Goldman-Rakic, 2000; Miner
et al., 2003). These layer V pyramidal cells are the
major type of cell in the cortex that sends subcortical
projections. Accordingly, the anatomic localization of
5-HT2AR provides for modulation of cortical regula-
tion of subcortical function (Fig. 1).

The 5-HT2AR has been linked to measures of
impulsivity, a trait that is believed to contribute to
both the predisposition to develop drug abuse and to
drug relapse in humans (de Wit, 2009; Winstanley
et al., 2010; Kirby et al., 2011; Cunningham and
Anastasio, 2014). Cocaine-dependent subjects are more
impulsive than nondrug using subjects (Moeller et al.,
2001a,b), whereas greater impulsivity predicts reduced
retention in outpatient treatment trials for cocaine use
disorder (Moeller et al., 2001b, 2007; Schmitz et al.,
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2009). Cocaine increases measures of impulsivity in
animal models using delay discounting tasks when given
acutely (Dandy and Gatch, 2009; Anastasio et al., 2011)
or repeatedly (Setlow et al., 2009). Furthermore, with-
drawal from cocaine resulted in immediate and marked
disruptions in performance on a 5-choice serial reaction
time (5-CSRT) task (Winstanley et al., 2009). Therefore,
trait impulsivity may contribute to the initiation of
cocaine use, and cocaine use may then increase impul-
sivity, thus contributing to the development and main-
tenance of cocaine abuse and dependence as well as the
risk for relapse (de Wit, 2009; Kirby et al., 2011). In
additional studies, M100907 effectively reduced pre-
mature responding on the 5-CSRT task (Winstanley
et al., 2003; Fletcher et al., 2007) and the one-choice
serial reaction time (1-CSRT) task (Anastasio et al.,
2011) in rats. Importantly, M100907 reversed cocaine-
induced deficits in the 1-CSRT task (Anastasio et al.,
2011) and attenuated premature responding on the
5-CSRT induced by acute administration of cocaine
(Fletcher et al., 2011). Together, these studies suggest
that 5-HT2AR function is important for both baseline
impulsivity and drug-induced impulsive choice and that
decreasing 5-HT2AR function may decrease impulsivity.
Understanding the manner in which the 5-HT2AR

modulates cortical function is decidedly more advanced
than for 5-HT2CR, in part because selective 5-HT2AR
ligands, particularly antagonists [e.g., M100907
(MDL100907)], were accessible to scientists in the
1990s, whereas selective 5-HT2CR agonists (e.g.,
Ro 60-0175) and antagonists (e.g., SB 242084) became
commercially available only more recently. As is the
case for the 5-HT2AR, the 5-HT2CR is important in
establishing the excitatory/inhibitory balance in the
PFC microcircuitry. The 5-HT2CR has also been linked
to measures of impulsivity in preclinical studies.
Global 5-HT depletion increases the number of pre-
mature responses on the 5-CSRT task, an effect that is
mimicked by the 5-HT2CR antagonist SB242084 in rats
(Winstanley et al., 2004). Wild-type mice treated with
SB 242084 also showed diminished response inhibition
in the 5-CSRT task (Pennanen et al., 2013). Impor-
tantly, the 5-HT2CR agonist Ro 60-0175 and M100907

both attenuated cocaine-induced premature respond-
ing on the 5-CSRT task, showing similar functional
effects on a measure of impulsivity (Fletcher et al.,
2011). A recent study used the 1-CSRT task to identify
high and low impulsive phenotypes in rats (Anastasio
et al., 2014b). Lower cortical 5-HT2CR membrane
protein levels and an increased frequency of edited
5-HT2CR mRNA variants linked to reduced 5-HT2CR
signaling capacity distinguished high impulsive rats
from low impulsive rats. Genetic loss of the 5-HT2CR
in the mPFC was also associated with high impulsiv-
ity. Dampened 5-HT2CR agonist sensitivity is also
associated with higher cue reactivity in outbred rats
(Anastasio et al., 2014a,b). In outbred rats engineered
with a genetic knockdown of the 5-HT2CR in the mPFC,
both impulsive action and cue reactivity were elevated
over controls, suggesting that reduced 5-HT2CR tone in
the mPFC confers vulnerability to these interlocked
behaviors (Anastasio et al., 2014b). These data suggest
that therapeutic strategies to enhance 5-HT2CR function
may be useful to maximize suppression of impulsivity
and cue reactivity which may enhancement control over
relapse in cocaine use disorder.

VI. Targeted 5-HT2A/C Receptor
Pharmacotherapy for Cocaine Addiction

A comprehensive literature including clinical and
preclinical studies has identified the 5-HT system as
a potential source of novel pharmacotherapeutic targets
for the treatment of cocaine abuse. This was a particu-
larly exciting possibility because SERT inhibitors have
been used clinically for several decades to treat a variety
of psychopathologies and were known to be safe and
well tolerated. Despite the overwhelming evidence sug-
gesting that SERT inhibitors can reduce the abuse-
related effects of cocaine, fluoxetine has typically failed
to show reductions in cocaine abuse in clinical trials
(Grabowski et al., 1995; Batki et al., 1996; Ciraulo et al.,
2005; Winhusen et al., 2005), although clinical studies
with more selective SERT inhibitors have shown more
promise. For example, citalopram reduced cocaine use
in cocaine-dependent patients (Moeller et al., 2007) and

Fig. 2. PET images showing in vivo distribution of binding of the 5-HT2AR selective ligand [11C]M100907 in rhesus monkey brain. Images were
acquired in subject RGg-9 during a single 90-minute scan and coregistered with the animal’s structural MRI. Three representative images are shown in
the coronal, horizontal, and sagittal planes (from left to right). The high density of cortical binding is clearly evident, especially the PFC. The images
shown were obtained in a control subject. Note that chronic self-administration of cocaine in a group of four male rhesus monkeys over a 3.5-month
period significantly increased 5-HT2AR availability in the frontal cortex (Sawyer et al., 2012).
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sertraline delayed relapse in recently abstinent cocaine-
dependent patients (Oliveto et al., 2012). Although the
reasons for the general lack of efficacy with SERT
inhibitors in clinical studies remain speculative, one
possible explanation is that the indirect activation of all
5-HT receptor subtypes is not an ideal pharmacother-
apeutic strategy, and thus, studies have begun to explore
the therapeutic potential of more specific protein targets
within the 5-HT system.
The studies described in the present review indicate

that 5-HT2AR antagonists may be effective in preventing
relapse in abstinent or treatment-seeking individuals.
For instance, approximately 25% of individuals com-
pleting residential treatment programs relapse within
1–5 years and an additional 18% return to a second
treatment programs within 1 year (Simpson et al., 1999,
2002). 5-HT2AR antagonist treatment, if begun during
the residential phase, may aid in maintaining absti-
nence and preventing relapse after release, particularly
if a patient is exposed to the drug or drug-associated
cues. However, the preclinical studies reviewed do not
suggest 5-HT2AR antagonists would be effective as an
intervention for current, ongoing cocaine abuse. Al-
though 5-HT2AR antagonists reliably attenuate both
cue- and cocaine-primed reinstatement, they are in-
effective in reducing maintenance of cocaine self-
administration (Fletcher et al., 2002; Filip, 2005; Nic
Dhonnchadha et al., 2009; Murnane et al., 2013b). Thus
it appears that the direct reinforcing effects of cocaine
are not dependent on 5-HT2AR, whereas other aspects
of the abuse-related effects of cocaine are dependent on
5-HT2AR function. Although there are no FDA-approved
medications that are selective 5-HT2AR antagonists,
pimavanserin is a potent and selective 5-HT2AR antago-
nist (Vanover et al., 2006) that is under development for
the treatment of psychosis in patients with Parkinson’s
disease. The FDA noted in April 2013 that the successful
pimavanserin phase III trial (Study ACP-103-020; clin-
icaltrials.gov) would suffice for a regulatory filing (http://
www.acadia-pharm.com/pipeline/pimavanserin.htm) and
submission of a new drug application is expected by the
end of 2014 with potential approval in the second half of
2015. Thus, pimavanserin will be available for clinical
trials for efficacy in treatment of cocaine use disorder in
the near future.
The studies reviewed here also indicate that a selective

5-HT2CR agonist may be therapeutically effective to
prevent relapse in abstinent or treatment-seeking indi-
viduals, as suggested for a selective 5-HT2AR antagonist
(above). Unlike the a 5-HT2AR antagonist, which is not
expected to suppress cocaine intake, preclinical studies
suggest that a 5-HT2CR agonist would reduce the
subjective and reinforcing effects of cocaine if a patient is
exposed to the drug during recovery (Callahan and
Cunningham, 1995; Grottick et al., 2000; Frankel and
Cunningham, 2004; Fletcher et al., 2008; Cunningham
et al., 2011). A test of this hypothesis was not possible in

humans until the recent FDA approval of the selective,
high-efficacy 5-HT2CR agonist lorcaserin, which is mar-
keted for reduction of weight in patients with a body-to-
mass index of .30 or with a body mass index .27
comorbid with type-2 diabetes, hypertension, or dyslipi-
demia (www.us.eisai.com/). The availability of lorcaserin
has already prompted the initiation of its efficacy to
support smoking cessation (Arena Pharmaceuticals;
clinicaltrials.gov).

This review highlights the oppositional control of
5-HT2AR and 5-HT2CR ligands over the abuse-related
effects of cocaine (Bubar and Cunningham, 2006, 2008;
Cunningham and Anastasio, 2014). It is probably not
unexpected, therefore, that nonselective 5-HT2A/2CR
antagonists failed to attenuate cocaine seeking in
animals (Schenk, 2000; Burmeister et al., 2004; Filip,
2005) or humans (Ehrman et al., 1996) or influence self-
reported euphoric effects of cocaine (Newton et al., 2001)
or craving (De La Garza et al., 2005; Loebl et al., 2008).
Interestingly, there is a small degree of evidence that the
net consequence of 5-HT2AR and 5-HT2CR function in
mPFC is interactive; the constitutive knockout of the
5-HT2AR resulted in an upregulation of 5-HT2CR control
over the excitability of mPFC pyramidal neurons (Beique
et al., 2007), suggesting that the 5-HT2AR and 5-HT2CR
may act in concert to control behavior. The potential
therapeutic implications in cocaine use disorder are
suggested by the discovery that impulsive action, cocaine
intake, and cue reactivity were suppressed by very low,
ineffective doses of the selective 5-HT2AR antagonist
M100907 plus the selective 5-HT2CR agonist WAY
163909 [(7bR,10aR)-1,2,3,4,8,9,10,10a-octahydro-7bH-
cyclopenta-[b][1,4]diazepino[6,7,1hi]indole] (Cunningham
et al., 2013). The enhancement observed between the
5-HT2AR antagonist M100907 plus WAY 163909 was
achieved at doses that are much lower than the doses of
each ligand necessary to affect the given behavior when
administered alone, suggesting that there may be com-
bination approaches that would potentially minimize
side effects of the medications. At present, there are
no FDA-approved medications known to exhibit this exact
pharmacological profile; however, efforts to chemically
synthesize such molecules are ongoing (Booth et al., 2009;
Shashack et al., 2011; Cunningham et al., 2013).

Biomarkers or predictors for vulnerability to relapse
will be of immense help in facilitation of treatment
goals and appreciation of potential medication efficacy.
Individual differences in vulnerability (such as impul-
sivity or cue reactivity) could be linked to genotypes
that track with altered function of 5-HT2AR and/or
5-HT2CR proteins, such as single nucleotide polymor-
phisms (SNPs). Several SNPs in the promoter or
coding regions of the genes for 5-HT2AR (HTR2A) and
5-HT2CR (HTR2C) have been shown to associate with
personality traits, psychiatric conditions, and response
to psychiatric medications such as atypical antipsy-
chotics and antidepressants. Impulsivity has been
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associated with genotypes that predict reduced 5-HT
function (Bjork et al., 2002; Bevilacqua et al., 2010;
Stoltenberg et al., 2012; Bevilacqua and Goldman, 2013).
TheHTR2A A(-1438)G SNP was associated with response
inhibition in two specific behavioral tasks in normal
subjects (Nomura et al., 2006) and impulsive behavior
in bulimia (Bruce et al., 2005).The HTR2A T102C SNP
is associated with impulse control in cocaine-dependent
subjects (Bjork et al., 2002). A SNP (rs6318) identified
in the coding region of the 5-HT2CR that converts
a cysteine (Cys) to a serine (Ser) at amino acid codon
23 in the N-terminal extracellular domain (Ser23
variant) (Lappalainen et al., 1995) has been implicated
in the pathogenesis of psychiatric disorders (Burnet
et al., 1999; Frisch et al., 2000; Serretti et al., 2000;
Lerer et al., 2001). Recently, cocaine-dependent subjects
carrying the Ser23 variant were shown to display
significantly higher cue reactivity (Anastasio et al.,
2014a). This positive association suggests that cue
reactivity may be related to altered function of the
variant 5-HT2CR (Okada et al., 2004; Fentress et al.,
2005; Walstab et al., 2011). This may be a particularly
important genotype in cocaine use disorder given that
enhanced DA release in the NAc, caudate nucleus, and
putamen in response to a standardized stress challenge
has been linked to the Ser23 variant (Mickey et al.,
2012). Thus, the identification and validation of SNPs in
the HTR2A and HTR2C that predict impulsivity, cue
reactivity or treatment success could also be useful in
guiding prevention efforts (Ducci and Goldman, 2012).
As convergent evidence links genotypes to phenotypes
important in cocaine use disorder and relapse, it will be
possible to understand better and predict medication
efficacy and to integrate this information into more
effective clinical care for afflicted patients.

VII. Conclusion

Although cocaine abuse is a significant public health
problem, no effective pharmacotherapeutics are available
to treat this disorder. Preclinical studies have clearly
indicated that 5-HT plays an important role in the abuse-
related effects of cocaine. Although some human labora-
tory studies have supported the use of SERT inhibitors
for treating cocaine dependence, the preponderance of
evidence does not support clinical efficacy. This likely
reflects a lack of selectivity regarding interactions
with specific 5-HT receptor subtypes. In particular,
SERT inhibition results in indirect agonism of both
the 5-HT2AR and 5-HT2CR, and these receptors have
been shown to oppose each other in their modulation
of the abuse-related effects of cocaine. As such, a more
selective approach is likely to yield improved clinical
effectiveness.
Particularly strong support has been garnered

showing that administration of 5-HT2AR receptor an-
tagonists attenuates reinstatement of cocaine self-

administration, a preclinical model of drug relapse in
human addicts. Indeed, 5-HT2AR antagonists have
been shown to oppose dopaminergic and glutamatergic
neurotransmission, which are closely tied to reinstate-
ment of cocaine self-administration. Given the in-
creased selectivity of 5-HT2AR antagonism compared
with SERT inhibition and the duality of this receptor’s
effects on abuse-related neurochemical changes, it is
likely that 5-HT2AR antagonists will be effective
medications for cocaine dependence. In support of this
contention, previous work has suggested that the
clinical ineffectiveness of SERT inhibitors for treating
cocaine dependence is related to the persistence of drug
craving during treatment with SERT inhibitors. Given
the established role of glutamate in drug- and cue-
induced reinstatement, it is likely that 5-HT2AR
antagonists, through modulation of glutamate in the
PFC, will effectively reduce craving in individuals with
cocaine addiction. As such, because of its selectivity
and proposed clinical mechanism of action, targeting
this receptor is a novel and innovative approach to
treating cocaine dependence. The studies reviewed
here also indicate that selective 5-HT2CR agonists may
be therapeutically effective to prevent relapse in
abstinent or treatment-seeking individuals. Unlike
5-HT2AR antagonists that are not expected to suppress
cocaine intake, preclinical studies suggest that 5-HT2CR
agonists would reduce the subjective and reinforcing
effects of cocaine if a patient is exposed to the drug during
recovery (Callahan and Cunningham, 1995; Grottick
et al., 2000; Frankel and Cunningham, 2004; Fletcher
et al., 2008; Cunningham et al., 2011). Accordingly, we
propose that mixed-action compounds that act both as
5-HT2CR agonists and 5-HT2AR antagonists may be
indicated during the initial phase of pharmacotherapeutic
intervention.
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