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Abstract——5-Hydroxytryptamine (5-HT; serotonin)
was discovered more than 60 years ago as a substance
isolated from blood. The neural effects of 5-HT have
been well investigated and understood, thanks in part
to the pharmacological tools available to dissect the
serotonergic system and the development of the fre-
quently prescribed selective serotonin-reuptake in-
hibitors. By contrast, our understanding of the role of
5-HT in the control and modification of blood pressure
pales in comparison. Here we focus on the role of 5-HT
in systemic blood pressure control. This review pro-
vides an in-depth study of the function and pharma-
cology of 5-HT in those tissues that can modify blood
pressure (blood, vasculature, heart, adrenal gland,

kidney, brain), with a focus on the autonomic nervous
system that includes mechanisms of action and phar-
macology of 5-HT within each system. We compare the
change in blood pressure produced in different spe-
cies by short- and long-term administration of 5-HT or
selective serotonin receptor agonists. To further our
understanding of the mechanisms through which 5-HT
modifies blood pressure, we also describe the blood
pressure effects of commonly used drugs that modify
the actions of 5-HT. The pharmacology and physiolog-
ical actions of 5-HT in modifying blood pressure are
important, given its involvement in circulatory shock,
orthostatic hypotension, serotonin syndrome and
hypertension.

I. Introduction

5-Hydroxytryptamine (5-HT;1 serotonin) is an ancient
substance (Azmitia, 2001). The discovery of 5-HT is part of
pharmacological history. 5-HT was recognized as a sub-
stance, isolated from blood serum (sero-), that could modify
the tone of smooth muscle (-tonin) (Rapport et al., 1948;
Erspamer and Asero, 1952; Page and McCubbin, 1953a,b).
Just a few years later, the two original 5-HT receptors—D
for dibenzyline and M for morphine—were recognized in
smooth muscle preparations by Gaddum and Picarelli
(1957). 5-HT pharmacology was born. Although 5-HT was
discovered within the cardiovascular (CV) system, it is fair
to say that the effects of 5-HT within the cardiovascular
system are not well understood and integrated compared
with the well established actions of 5-HT in the gastroin-
testinal system, and the plethora of knowledge regarding

the actions of 5-HT in the central nervous system (Barnes
and Sharp, 1999; Hoyer et al., 2002; Green, 2006; Berger et
al., 2009).

This review represents an unbiased presentation of
5-HT as a substance that can modify blood pressure. We
refer the reader to other reviews that cover different as-
pects of the CV system or that provide a more detailed
historical perspective of 5-HT in the CV system: Kuhn et
al., 1980; Marwood and Stokes, 1984; Docherty, 1988; Van-
houtte, 1991; van Zwieten et al., 1992; McCall and Clem-
ent, 1994; Yildiz et al., 1998; Nebigil and Maroteaux, 2001;
Ramage, 2001; Doggrell, 2003; Côté et al., 2004; Maurer-
Spurej, 2005; Watts, 2005; Villalón and Centurión, 2007;
Ramage and Villalón, 2008; Nalivaiko and Sgoifo, 2009;
Nichols, 2009; Nigmatullina et al., 2009; Monassier et al.,
2010; and Mercado et al., 2011. We will not discuss pulmo-
nary blood pressure or pulmonary hypertension, but refer
readers to an excellent review: MacLean and Dempsie,
2009.

II. 5-Hydroxytryptamine Biochemistry

and Models

5-HT synthesis begins with dietary intake of l-trypto-
phan, an essential amino acid (Fig. 1). Foods high in L-
tryptophan include egg whites, cod, chocolate, dairy prod-
ucts (yogurt, cheeses, milk), several meats, and nuts. The
fate of tryptophan lies in the comparative activities of the
enzymes indoleamine dioxygenase (IDO)/tryptophan di-
oxygenase and tryptophan hydroxylase (TPH). A majority

1Abbreviations: 5-CT, 5-carboxamidotryptamine; 5-HIAA, 5-hy-
droxyindole acetic acid; 5-HT, 5-hydroxytryptamine (serotonin); 5-HTP,
5-hydroxytryptophan; 8-OH-DPAT, 8-hydroxy-2-(di-n-propylamino)te-
tralin; AVA, arteriovenous anastomoses; CNS, central nervous system;
CV, cardiovascular; DOCA, deoxycorticosterone salt; GR127935, N-[4-
methoxy-3-(4-methyl-1-piperazinyl)phenyl]-2�-methyl-4�-(5-methyl-
1,2,4-oxadiazol-3-yl)-1–1�-biphenyl-4-carboxamide; HR, heart rate;
IDO, indoleamine dioxygenase; IML, intermediolateral nucleus; KO,
knockout; L-NNA, NG-nitro-L-arginine; MAO, monoamine oxidase; NE,
norepinephrine; NOS, nitric-oxide synthase; NTS, nucleus of the trac-
tus solitarius; PCPA, parachlorophenylalanine; PCPAME, parachloro-
phenylalanine methyl ester; RVLM, rostral ventrolateral medulla;
SERT, serotonin transporter; SHR, spontaneously hypertensive rat;
SNRI, serotonin/norepinephrine-reuptake inhibitor; SSRI, selective se-
rotonin-reuptake inhibitor; TCA, tricyclic antidepressant; TPH, trypto-
phan hydroxylase; WT, wild type.
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of L-tryptophan is handled by IDO/tryptophan dioxyge-
nase, an estimated 5 to 10% of tryptophan being shuttled
through the TPH/5-HT pathway (Salter et al., 1995; Stone
and Darlington, 2002). Over the past decade, the field has
recognized two independent forms of TPH. TPH1 is ex-
pressed primarily in peripheral tissues, whereas TPH2 is

expressed primarily in the central nervous system
(Walther and Bader, 2003; Walther et al., 2003). Splice
variants of TPH2 have been observed (Abumaria et al.,
2008). This enzyme, dependent on the important cofactor
tetrahydrobiopterin, commits tryptophan to the fate of
5-HT by converting tryptophan to 5-hydroxytryptophan

FIG. 1. Chemical schematic of the synthesis and metabolism of 5-HT.
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(5-HTP; Fig. 1) (Kuhn 1999). Mouse knockouts of both the
TPH1 and TPH2 (Alenina et al., 2009) isoform are avail-
able, as is a double knockout of TPH1 and TPH2 (Savelieva
et al., 2008). A multitude of aromatic amino acid decar-
boxylases can then convert 5-HTP into 5-HT. 5-HT is rap-
idly converted by monoamine oxidase and aldehyde dehy-
drogenase to 5-hydroxyindole acetic acid (5-HIAA), a stable
metabolite. 5-HT itself can also be converted into melato-
nin (Stone and Darlington, 2002), whereas the IDO prod-
uct, kynurenine, has niacin as one of its downstream prod-
ucts. Thus, ingestion of tryptophan is not a pure
commitment to 5-HT synthesis. This is a relevant state-
ment, given that tryptophan is sold as a dietary supple-
ment, in an unregulated fashion, intended for use an an-
tidepressant and sleep aid. The molecules depicted in Fig.
1 and those in the tryptophan metabolic pathway can be
identified with high-pressure liquid chromatography.

In many cells, 5-HT is taken up by the serotonin trans-
porter (SERT) and by other amine transporters. Both
mouse and rat models with a nonfunctional SERT have
been produced and will be further discussed in section
IV.A. In each species, circulating blood 5-HT is low, but
intestinal 5-HT concentration is not different in wild-type
and the SERT(�/�) animals (Chen et al., 2001; Linder et
al., 2009). Thus, the ability of the body to make 5-HT is not
compromised, but the ability of the platelet to carry 5-HT is
significantly reduced when SERT is not functional. An
outstanding question is the fate of intestinal 5-HT without
the platelet. The SERT dysfunctional rodents, along with
the TPH knockouts, have facilitated important in vivo in-
vestigations of the relationship between 5-HT and blood
pressure, as described in succeeding sections.

III. 5-Hydroxytryptamine

Receptor Pharmacology

As described above, 5-HT receptor pharmacology began
with the discovery of the D receptor (dibenzyline) and M
receptor (morphine) in the guinea pig ileum (Gaddum and
Picarelli, 1957). The International Union of Basic and Clini-
cal Pharmacology (IUPHAR) issues receptor nomenclature
guidelines, and this was last done for 5-HT in publication
form in 1994 (Hoyer et al., 1994; Martin, 1994). IUPHAR
routinely updates its database; thus, the most current infor-
mation, as supported by experts in 5-HT, can be found at this
site: http://www.iuphar-db.org/DATABASE/FamilyMenu
Forward?familyId�1. This particular site covers all 5-HT
receptors except for the 5-HT3 receptor, which can be found
at http://www.iuphar-db.org/DATABASE/FamilyMenu
Forward?familyId�68. This division recognizes that most
5-HT receptors are G protein-coupled, heptahelical proteins
(class A), whereas the 5-HT3 receptors are ion channels. In
Table 1, we present a straightforward nomenclature scheme
for 5-HT receptors. Many of the responses to 5-HT receptor
activation cited in this table will be described below, and it is
clear that 5-HT has significant and diverse effects throughout
the cardiovascular system.

IV. Intersections of 5-Hydroxytryptamine and

the Cardiovascular System that Affect

Blood Pressure

Several tissues, organs, and neural circuits contribute to
the control of blood pressure, and 5-HT can influence many
of them. Table 1 lists the relevant locations of the various
5-HT receptors that contribute to cardiovascular regula-
tion. Although we will briefly describe 5-HT’s effects in the
kidney, adrenal gland, heart, and blood, the focus of this
review is on the vasculature, its control by the sympathetic
nervous system, and the central nervous system pathways
that determine the sympathetic nerve activity to cardio-
vascular tissues. We describe the presence and handling of
5-HT, the function and pharmacology of 5-HT, and give at
least one example of a change in the response to 5-HT in a
pathological condition that is specific to each system.

A. 5-Hydroxytryptamine in Circulating Blood: Free

and Platelet-Bound

It is here that the highest peripheral levels of 5-HT are
found in the cardiovascular system. Understanding the
handling of 5-HT (synthesis, storage, release) in blood is
critical, because it is through the blood that the circulatory
system will come into contact with free, circulating 5-HT as
well as 5-HT contained in platelets.

1. 5-Hydroxytryptamine Synthesis and Handling. Blood
platelets do not synthesize 5-HT, but possess the SERT
and acquire a high concentration of 5-HT (estimated in
the millimolar range) from the intestine, where 5-HT is
synthesized in enterochromaffin cells (Berger et al., 2009).
Biologically active 5-HT (i.e., in contact with vasculature) is
free 5-HT, existing outside of the platelet and measured as
platelet free/poor 5-HT (see Table 2 for free and platelet 5-HT
in humans). Rat free plasma 5-HT has been measured in the
low to mid nanogram per milliliter range, largely consistent
with those of the human. One to �100 nM concentrations of
5-HT are estimated as platelet free plasma in the human
(Kema et al., 2001; Monaghan et al., 2009; estimating a 5-HT
molecular weight of 176 g/mol), although Brand and Ander-
son (2011) question the validity of 5-HT plasma measures in
humans given the high variability of 5-HT concentration re-
ported in 101 studies that they compare. The existence of
whole-blood monoamine oxidase activity implies that blood,
like tissues, has the ability to metabolize 5-HT to a less active
substance (Celeda and Artigas, 1993) and keep circulating
levels of 5-HT low. The SERT(�/�) rat, created by Edwin
Cuppen (Homberg et al., 2007), provides a unique view into
other ways for 5-HT to be carried in blood. The SERT protein
is truncated in this knockout such that the SERT protein,
which is partially expressed, is not functional. This animal
has low circulating platelet-poor and platelet-rich levels of
5-HT compared with the SERT (�/�) rat, which is to be
expected because SERT is thought to be the primary mech-
anism by which 5-HT is concentrated in platelets (Linder et
al., 2008a,b). However, when SERT (�/�) rats are infused
with 5-HT, platelets do take up 5-HT (Davis et al., 2011). This
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suggests either incomplete knockout of SERT or, more likely,
the existence of nonSERT mechanisms to concentrate 5-HT.
The SERT KO mouse has a similar reduction in blood 5-HT
(Chen et al., 2001). Whether there is sufficient free 5-HT
in the blood to activate vascular 5-HT receptors de-

pends on the 5-HT receptor expressed by a blood ves-
sel, because the affinity of 5-HT for these receptors
can vary significantly (Table 1). Circulating blood is
the most immediate source of 5-HT for the peripheral
circulatory system.

TABLE 1
5-HT receptor pharmacology and location in the CV system

Values in parenthese are Ki values. Cloned indicates that values are only from cloned, transfected receptors. Affinity values are from averaged experiments available on
http://pdsp.med.unc.edu/indexR.html. Modified from Watts, 2005.

Receptor Agonists Antagonists Location and Response Relevant to
Blood Pressure

Heptahelical

Ion channel

5-HT1A (2.65 nM) 8-OH-DPAT, U92016A WAY100635, NAN190 Central nervous system (lower,
raise blood pressure)

5-HT1B (16.01 nM) CP-93129, sumatriptan, eletriptan
(some 1D affinity)

GR-127935 (some 1D affinity),
GR55562, isamoltane,
SB236057

Smooth muscle (contraction);
sympathetic presynaptic
terminal (inhibition of NE
release); sympathetic ganglia
(inhibit transmission);
central nervous system
(lower, raise blood pressure)

5-HT1D (10.05 nM) PNU-109291, alniditan, eletriptan
(some 1B affinity), L-703,664

SB 272183, LY310762,
BRL15572

Smooth muscle (contraction)

5-ht1E
a (7.00 nM,

cloned)
5-CT (nonselective), BRL54443

(some 1F affinity)
None available None identified

5-HT1F (67.60 nM,
cloned)

LY334370, BRL54443 (1E
affinity), LY344864

None available Smooth muscle (contraction),
trigeminal nerve

5-HT2A (970.80 nM) DOB (2A/2B, 2C), DOI, �-methyl-
5-HT (non-selective), TCB-2

R-96544, MDL100907,
volinanserin

Platelet (aggregation and 5-HT
release); smooth muscle
(contraction); adrenal gland
(epinephrine release); heart
(tachycardia, contraction);
central nervous system

5-HT2B (11.35 nM) BW723C86 LY272015, RS127445 Endothelium (relaxation);
smooth muscle (contraction);
cardiac valves (proliferation)

5-HT2C (32.58 nM) WAY 163909, DOI (2A, 2B, 2C),
MK212, 1-methylpsilocin

RS102221, SB242084 None identified

5-HT3 (splice variants)
(190.33 nM)

SR57227A, 2-methyl-5-HT,
phenylbiguanide

Odansetron, granisetron Vagus nerve (bradycardia);
ganglia

5-HT4(short,long) (117.00
nM, cloned)

RS67506, BIMU1, BIMU8,
zacopride

GR113808, RS100235,
SB204070

Cardiomyocyte (contraction)

5-HT6 (116.53 nM,
cloned)

WAY 181,187, EMD 386088 Ro 04-6790, SB 399885,
SB271046

None identified
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2. Function and 5-Hydroxytryptamine Pharmacol-

ogy. The 5-HT2A receptor is the dominant receptor in
platelets of multiple species. Once stimulated, 5-HT2A

receptors promote the aggregation of platelets, resulting
in release of more 5-HT, ADP, and other substances.
Preparations of platelets cause either contraction or re-
laxation of isolated arteries (Zellers et al., 1991).

3. Change in Pathological Conditions. Platelets
carry most of the blood 5-HT, so changes in platelet
mechanics, fragility, and aggregation (promoted by
5-HT) can dramatically change local 5-HT concentra-
tion and, potentially, circulating 5-HT (Le Quan Sang
et al., 1991; Ding et al., 1994). In 1989, Umegaki et al.
demonstrated reduced content of platelet 5-HT in de-
oxycorticosterone salt (DOCA salt) hypertensive rats.
This is a finding consistent with a number of models of

hypertension and suggests that, at least in hyperten-
sion, the platelet is “activated,” in that it has a lower
content of 5-HT.

B. 5-Hydroxytryptamine Presence and Function in

the Vasculature

5-HT was discovered, in part, as a vasoconstrictor and
this is the property for which 5-HT is best known in the
cardiovascular system.

1. 5-Hydroxytryptamine Synthesis and Handling. A
serotonergic system (uptake, synthesis, and metabo-
lism) exists in isolated blood vessels (Ni et al., 2008).
Isolated blood vessels from the mouse and rat stain for
antibodies raised against 5-HT, a staining that does not
depend on the presence of resident circulatory cells that
might contain 5-HT. Ni et al. (2004) demonstrated the

TABLE 1–Continued

Receptor Agonists Antagonists Location and Response Relevant to
Blood Pressure

5-HT7(a–d) (3.65 nM,
cloned)

LP12, LP44, AS-19, 5-CT
(nonselective)

SB-269970, SB-258719 Smooth muscle (relaxation);
cardiomyocyte (contraction)

* No physiological response has been associated with receptor, hence lower case.
AS-19, (2S)-(�)-5-(1,3,5-trimethylpyrazol-4-yl)-2-(dimethylamino)tetralin; BIMU1, endo-N-(8-methyl-8-azabicyclo-�3.2.1� oct-3-yl)-2,3-dihydro-3-ethyl-2-oxo-1H-benzimidazole-1-

carboxamide; BIMU8, 2,3-dihydro-N-�(3-endo)-8-methyl-8-azabicyclo�3.2.1�oct-3-yl�-3-(1-methylethyl)-2-oxo-1H-benzimidazole-1-carboxamide; BRL15572, 3-�4-(4-chlorophenyl)piperazin-1-
yl�-1,1-diphenyl-2-propanol; BRL54443, 5-hydroxy-3-(1-methylpiperidin-4-yl)-1H-indole; BW723C86, �-methyl-5-(2-thienylmethoxy)-1H-indole-3-ethanamine; CP-93129, 1,4-dihydro-3-
(1,2,3,6-tetrahydro-4-pyridinyl-5H-pyrrol[3,2-b]pyridin-5-one; DOI, 2,5-dimethoxy-4-iodoamphetamine; EMD 386088, 5-chloro-2-methyl-3-(1,2,3,6-tetrahydro-4-pyridinyl)-1H-indole;
GR113808, 1-methyl-1H-indole-3-carboxylic acid, �1-�2-�(methylsulfonyl)amino�ethyl�-4-piperidinyl�methyl ester; GR-127935, N-�4-methoxy-3-(4-methyl-1-piperazinyl)phenyl�-2�-methyl-4�-
(5-methyl-1,2,4-oxadiazol-3-yl)-1,1�-biphenyl-4-carboxamide; GR55562, 3-�3-(dimethylamino)propyl�-4-hydroxy-N-�4-(4-pyridinyl)phenyl�benzamide; L-703,664, N,N-dimethyl-5-�(5-methyl-
1,1-dioxodo-1,2,5-thiadiazolidin-2-yl)methyl�-1H-indole-3-ethanamine; LP12, 4-(2-diphenyl)-N-(1,2,3,4-tetrahydronaphthalen-1-yl)-1-piperazinehexanamide; LP44, 4-�2-
(methylthio)phenyl�-N-(1,2,3,4-tetrahydro-1-naphthalenyl)-1-piperazinehexanamide; LY272015, 1-�(3,4-dimethoxyphenyl)methy�-2,3,4,9-tetrahydro-6-methyl-1H-pyrido�3,4-b�indole;
LY310762, 1-�2-�4-(4-fluorobenzoyl)-1-piperidinyl�ethyl�-1,3-dihydro-3,3-dimethyl-2H-indol-2-one; LY334370, 4-fluoro-N-(1-methyl-4-piperidinyl)-1H-indol-5-yl]-benzamide; LY344864,
N-�(3R)-3-(dimethylamino)-2,3,4,9-tetrahydro-1H-carbazol-6-yl�-4-fluorobenzamide; MDL100907, (2,3-dimethoxyphenyl)-�1-�2-(4-fluorophenyl)ethyl�piperidin-4-yl�methanol; MK212,
6-chloro-2-(1-piperazinyl)pyrazine; NAN190, 1-(2-methoxyphenyl)-4-(4-phthalimidobutyl)piperazine; PNU-109291, (S)-3,4-dihydro-1-�2-�4-(4-methoxyphenyl)-1-piperazinyl�ethyl�-N-
methyl-1H-2-benzopyran-6-carboxamide; R-96544, (2R,4R)-5-�2-�2-�2-(3-methoxyphenyl)ethyl�phenoxy�ethyl�-1-methyl-3-pyrrolidinol; Ro 04-6790, 4-amino-N-�2,6-bis(methylamino)-4-
pyrimidinyl�-benzenesulfonamide; RS100235, 1-(5-amino-6-chloro-2,3-dihydro-1,4-benzodioxin-8-yl)-3-�1-�3-(3,4-dimethoxyphenyl)propyl�piperidin-4-yl�propan-1-one; RS102221, 8-�5-(2,
4-dimethoxy-5-(4-trifluoromethylphenylsulphonamido)phenyl-5-oxopentyl�-1,3,8-triazaspiro�4.5�decane-2,4-dione; RS127445, 4-(4-fluoro-1-naphthalenyl)-6-(1-methylethyl)-2-
pyrimidinamine; RS67506, 1-(4-amino-5-chloro-2-methoxyphenyl)-3-�1–2-methylsulphonylamino)ethyl-4-piperidinyl�-1-propanone; SB204070, (1-butyl-4-piperidinyl)methyl-8-amino-7-
chloro-1,4-benzodioxane-5-carboxylate; SB236057, 1�-ethyl-7-({4-�2-methyl-4-(5-methyl-1,3,4-oxadiazol-2-yl)phenyl�phenyl}carbonyl)-2,5,6,7-tetrahydrospiro�furo
�2,3-f�indole-1,4�-piperidine�; SB242084, 6-chloro-2,3-dihydro-5-methyl-N-�6-�(2-methyl-3-pyridinyl)oxy�-3-pyridinyl�-1H-indole-1-carboxyamide dihydrochloride; SB258719, 3-methyl-N-
�(1R)-1-methyl-3-(4-methyl-1-piperidinyl)propyl�-N-methylbenzenesulfonamide; SB269970, (2R)-1-�(3-hydroxyphenyl)sulfonyl�-2-�2-(4-methyl-1-piperidinyl)ethyl�pyrrolidine; SB271046,
5-chloro-N-�4-methoxy-3-(1-piperazinyl)phenyl�-3-methyl-benzo�b�thiophen-2-sulfonamide; SB272183, 5-chloro-2,3-dihydro-6-(4-methylpiperazin-1-yl)-1(4-pyridin-4-yl)napth-1-
ylaminocarbonyl�-1H-indole); SB399885, N-(3,5-dichloro-2-methoxyphenyl)-4-methoxy-3-(1-piperazinyl)benzenesulfonamide; SB699551, N-�2-(dimethylamino)ethyl�-N-��4�-��(2-
phenylethyl)amino�methyl��1,1�-biphenyl�-4-yl�methyl�cyclopentanepropanamide; SR57227A, 1-(6-chloro-2-pyridinyl)-4-piperidinamine; U92016A, (R)-8-dipropylamino-6,7,8,9-tetrahydro-
3H-benzo�e�indole-2-carbonitrile; WAY 100635, N-�2-�4-(2-methoxyphenyl)-1-piperazinyl�ethyl�-N-(2-pyridyl)cyclohexanecarboxamide; WAY 163909, �(7bR, 10aR)-1,2,3,4,8,9,10,
10a-octahydro-7bH-cyclopenta-�b��1,4�diazepino�6,7,1-hi�indole�; WAY 181,187, 2-(1-{6-chloroimidazo�2,1-b��1,3�thiazole-5-sulfonyl}-1H-indol-3-yl)ethan-1-amine.

TABLE 2
Blood 5-HT measures (whole, platelet-rich, and platelet poor) in humans

Measures of 5-HT Comments Reference

95–116 ng/ml Whole blood Jelen et al., 1979
378–518 ng/109 platelets Whole platelet Topsakal et al, 2009
65–250 ng/ml Whole blood Breuer et al., 1996
1–3 ng/ml Blood diasylate Castejon et al., 1999
0–609 ng/109 platelets Platelet-rich plasma Koch et al., 2004
350–650 ng/109 platelets Platelet-rich plasma (female) Carrasco et al., 1998
1.0–1.6 nM Platelet rich plasma Brenner et al., 2007
3.4–23.8 nmol/109 platelets Platelet rich plasma Kema et al., 2001
66–106 ng/108 platelets Platelet rich plasma Biondi et al., 1988
105–165 nmol/1011 platelets Platelets Kamal et al., 1984
88–246 ng/108 platelets Platelets Gujrati et al., 1994
3.4–3.5 nmol/109 platelets Platelets Fetkovska et al., 1990
12–20 ng/ml Platelet-poor plasma (children) Breuer et al., 1996
1–4 ng/ml Platelet-poor plasma (female) Carrasco et al., 1998
0.1–1 nM Platelet-poor plasma Brenner et al., 2007
2.5–6.1 ng/ml Platelet-poor plasma Biondi et al., 1988
89.5–115.5 nM Platelet-poor plasma Monaghan et al., 2009
5.6–23.9 ng/ml plasma Platelet-poor plasma Koch et al., 2004
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presence of TPH1 but not TPH2 mRNA and protein in
the isolated normal rat aorta and superior mesenteric
artery, as well as the ability of the isolated artery to
synthesize 5-HTP when arteries were incubated with
exogenous tryptophan and BH4. Isolated blood vessels—
including arteries and veins—concentrate 5-HT actively
through SERT (Ni et al., 2004; Linder et al., 2008a,b).
Fenfluramine can release 5-HT from the blood vessel
into the fluid in which the vessel is bathed (Ni et al.,
2008), and this 5-HT would be near 5-HT receptors that
exist within the blood vessel. Thus, there are at least two
sources of 5-HT for a blood vessel: endogenously synthe-
sized 5-HT and exogenous 5-HT. It is noteworthy that
blood vessels can rapidly metabolize transported 5-HT
to 5-HIAA.

2. Function and 5-Hydroxytryptamine Pharmacol-

ogy. In humans and in animals, 5-HT predominantly
causes direct arterial constriction, and the list of refer-
ences here are just a few that report the effects of 5-HT
in the isolated artery; more are included in the legend to
Fig. 2: McGregor and Smirk, 1970; Docherty, 1988;
Rosón et al., 1990; Vanhoutte, 1991; van Zwieten et al.,
1992; Webb et al., 1992; Nishimura and Suzuki, 1995;
Nishimura, 1996; Yildiz et al., 1996, 1998; Boston and
Hodgson, 1997; Watts, 1997, 2002, 2005, 2009; Hutri-
Kähönen et al., 1999; Ramage, 2001; Janiak et al., 2002;
Doggrell, 2003; Gul et al., 2003; Côté et al., 2004; Watts
and Thompson, 2004; Villalón and Centurión, 2007; Ra-
mage and Villalón, 2008; Nichols, 2009; and Nigmatul-
lina et al., 2009. These studies have been performed in a
variety of isolated blood vessels—basilar, superior mes-
enteric, aortic, femoral, mesenteric resistance, for exam-
ple—such that constriction cannot be attributed to a
single receptor type or size of vessel. The diversity of
vessel response (C � contraction, R � relaxation), spe-
cies response within a vessel and 5-HT receptor subtype
mediating the response (e.g., 1B, 2A) is illustrated in
Fig. 2. This figure was constructed using only data from
isolated vessel studies. Cerebral vessels include the
meningeal, temporal and occipital arteries. Resistance
vessels are included in several of the circulations (cere-
bral and mesenteric). Vasoconstriction is predominantly
mediated by the 5-HT2A receptor, but 5-HT1B/1D recep-
tors can also mediate constriction, exemplified by the
success of the triptans, 5-HT1B/1D agonists, in the treat-
ment of migraine (Gilmore and Michael, 2011). Virtually
every blood vessel, when mounted in a tissue bath, re-
sponds to 5-HT with contraction from baseline.

By contrast, not all blood vessels can relax to 5-HT. In
the rat jugular vein and pulmonary artery and coronary
arteries of rat and greyhound, 5-HT causes relaxation
through activation of 5-HT2B and 5-HT7 receptors
(Mylecharane, 1990; Mankad et al., 1991; Woodman and
Dusting, 1994; Ellis et al., 1995; Glusa and Roos, 1996;
Centurión et al., 2000, 2004; Jähnichen et al., 2005). 5-HT
relaxes human umbilical arteries (Haugen et al., 1997) and
dilates skeletal muscle arterioles, an important finding

with respect to blood pressure (Alsip and Harris, 1992;
Alsip et al., 1996). In some cases, 5-HT receptors that
mediate constriction must be blocked before unmasking or
revealing 5-HT relaxant receptors (McLennan and Taylor,
1984). This raises the question of how these relaxant 5-HT
receptors would be activated physiologically. Do they
dampen the overall effect of 5-HT vasoconstriction? In
what situation(s) can relaxant receptors be directly acti-
vated without activation of contractile receptors? In an
isolated tissue bath, we may not be appropriately mimick-
ing the group of substances that would act as the endoge-
nous constrictors upon which 5-HT would stimulate relax-
ation. There are examples in which 5-HT relaxant
receptors are revealed without blockade of contractile
5-HT receptors. This includes the equine coronary artery
(Obi et al., 1994) and dog coronary artery (Terrón, 1996).
Although no antagonists of contractile 5-HT receptors
were added in the equine coronary artery studies, Terrón
(1996) showed that whereas 5-HT relaxation was present
naturally in the dog coronary artery, the sensitivity to
5-HT and 5-carboxamidotryptamine (5-CT) as relaxants was
increased when the 5-HT1B/1D receptor antagonist N-[4-
methoxy-3-(4-methyl-1-piperazinyl)phenyl]-2�-methyl-4�-(5-
methyl-1,2,4-oxadiazol-3-yl)-1–1�-biphenyl-4-carboxamide
(GR127935) was added. We note that 5-CT has affinity for
5-HT7 receptors (Waeber and Moskowitz, 1995; Krobert et
al., 2001). Thus, both contractile and relaxant receptors are in
play in blood vessels, and the balance of their effects is differ-
ent in different vessel types and species.

The effects of 5-HT in the vasculature become less clear
when studying a system more complicated than an isolated
vessel, probably because 5-HT now has the ability to stim-
ulate multiple receptors within multiple tissue types that
may act in seemingly contradictory fashion as it pertains to
smooth muscle tone. We share here but a few examples.
Calama et al. (2003, 2005) raise the interesting possibility
that �2 adrenergic receptors are the effectors of 5-HT-
induced vasodilation in the rat hindquarters, connecting
5-HT to the adrenal medulla (epinephrine release?), be-
cause 5-HT itself does not have appreciable affinity for
�-adrenergic receptors. Whether released epinephrine
would also interact with �-adrenergic receptors in this
situation is unknown. It is interesting to note that 5-HT
itself has affinity for �-adrenergic receptors (Grandaw and
Purdy, 1996). In pentobarbital-anesthetized dogs, intra-
arterial 5-HT caused a vasodilation in the femoral arterial
circulation that was abolished by ganglionic blockade
(Phillips et al., 1985). Likewise, 5-HT increases the exter-
nal carotid blood flow of the dog (Villalón et al., 1993). In
the human forearm vasculature, 5-HT causes an increase
in forearm blood flow, but the receptor mechanism is un-
clear. Blauw et al. (1988, 1991), Bruning et al. (1993, 1994),
and Kemme et al. (2000) performed a number of studies to
identify this receptor, and the pharmacology of the 5-HT
relaxant receptor was most consistent with that of the
5-HT3 receptor, a receptor unusual to the vasculature.
Because of the inherent difficulty in performing studies in

5-HT AND BLOOD PRESSURE 365



humans, the breadth of the pharmacology used to verify
and identify this response has not been as wide as that in
animal models.

The ability of 5-HT to alter arteriovenous anastomoses
(AVA)—present in the skin, fingers, lips, and ears—has

been studied. Saxena and Verdouw (1982) reported in-
creases in arteriolar blood flow in pig ears and skin, ob-
served as a “pinking” of the tissue after injection of 5-HT
(1–10 �g � kg�1

� min�1) into the carotid artery of the pig,
an event that decreased the blood pressure of the animals.

FIG. 2. Response of the vasculature to 5-HT, as depicted by using the rat vasculature as a model. Both constriction (C) and relaxation (R) may be
listed for the same species if both responses were observed. Species name is listed, and the subtype of the receptor mediating the response is listed
second (1B, 2A). UK, unknown receptor mechanism. Data were collected from the following references: Lemberger et al., 1984; Miller et al., 1984;
Feniuk et al., 1985; Nyborg and Mikkelsen, 1985; Cohen, 1986; Leff et al., 1987; Hamel et al., 1989, 1993; Parsons et al., 1989, 1992; Bodelsson et al.,
1990; Borton et al., 1990; Chester et al., 1990; Gaw et al., 1990; Mylecharane, 1990; Toda and Okamura, 1990; van Heuven-Nolsen et al., 1990; Asher
et al., 1991; Lai et al., 1991; Parsons, 1991; Sumner, 1991; Cushing and Cohen, 1992a,b, 1993; Dorigo et al., 1992; Eglen et al., 1992; Weiner et al.,
1992; Bax et al., 1993; Glusa and Müller-Schweinitzer, 1993; Jansen et al., 1993; Cushing et al., 1994, 1996; Yildiz and Tuncer, 1994; Fujiwara and
Chiba, 1995; Miranda et al., 1995; Schmuck et al., 1996; Terrón, 1996; Valentin et al., 1996; Verheggen et al., 1996, 1998, 2004, 2006; Zwaveling et
al., 1996; Ellwood and Curtis, 1997; Parsons et al., 1998; Nilsson et al., 1999; Roon et al., 1999; Terrón and Falcón-Neri, 1999; Bouchelet et al., 2000;
Galzin et al., 2000; Geerts et al., 2000; Ishida et al., 2001; Lamping and Faraci, 2001; McKune and Watts, 2001; Schöning et al., 2001; Razzaque et
al., 2002; Teng et al., 2002; van den Broek et al., 2002; Froldi et al., 2003, 2008; Edvinsson et al., 2005; Nagai et al., 2007; Zerpa et al., 2007; Masu
et al., 2008; Linder et al., 2010; Radenkoviä et al., 2010.
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This increased flow, presumably in the capillaries or nu-
tritive vessels, was considered to occur at the expense of
non-nutrient or AVA blood flow. Experiments were also
performed in the cat, which similarly responded with a
decrease in blood pressure to intra-arterial 5-HT, but tis-
sue blood flow did not change significantly. In the human,
intra-arterial 5-HT decreased AVA blood flow and in-
creased capillary skin blood flow (Blauw et al., 1991). Like-
wise, the 5-HT1A agonist 8-OH-DPAT decreased AVA
blood flow in the anesthetized pig (Bom et al., 1989) and
caused cutaneous vasoconstriction in the canine forelimb
(Dobbins et al., 1983). The affinity of 8-OH-DPAT for the
5-HT7 receptor complicates the attribution of such an
event to a single receptor (Wood et al., 2000; Sprouse et al.,
2004). In the rat tail, 5-HT has the interesting effect of
causing an increase in tail temperature—indicative of di-
lation in this cutaneous circulation—that was associated
with a decrease in blood pressure (Key and Wigfield, 1992).
Similar results were observed with the administration of
the 5-HT releaser fenfluramine in the rat (Subramanian
and Vollmer, 2004). Thus, a cutaneous vasodilation in the
rat may play a role in the decrease in blood pressure in
response to 5-HT, but the mechanisms of such dilation are
not known. A discussion of the relative contribution of the
cutaneous circulation to changes in systemic blood pres-
sure is beyond the scope of this review but is an interesting
idea in light of the discussion of whether temperature
homeostasis or blood pressure homeostasis has primacy in
the body (Blankfield, 2006).

3. Change in Pathological Conditions. Hyper-reac-
tivity (or enhanced vasoconstriction) to 5-HT is a hall-
mark of vascular damage. This is observed experimen-
tally as a lower threshold for 5-HT to cause contraction,
an increased potency of 5-HT, and/or an increased effi-
cacy of 5-HT compared with a normotensive control. One
of the best-studied changes in vascular response to 5-HT
has been in vessels from humans and animals with high
blood pressure (hypertension). Hyper-reactivity occurs
in arteries and in veins in hypertension, in a number of
different vascular beds and differently sized vessels
(Cummings et al., 1986; Thompson and Webb, 1987;
Huzoor-Akbar et al., 1989; Dohi and Lüscher, 1991;
Webb et al., 1992; Moreno et al., 1996). In several models
of experimental hypertension, up-regulation of 5-HT2B

receptors in the smooth muscle is one mechanism by
which 5-HT becomes hyper-reactive (Watts et al., 1995,
1996; Watts, 1997; Watts and Fink, 1999; Banes and
Watts, 2002, 2003; Russell et al., 2002). Mineralocorti-
coids can directly stimulate expression of the 5-HT2B

receptor (Banes and Watts, 2002, 2003) such that an
up-regulated receptor enables a more sensitive contrac-
tion. It should be noted that the 5-HT2B receptor is
expressed in arterial smooth muscle of a normotensive
animal. This receptor does not seem to be functionally
coupled to contraction as it is in hypertension. Thus,
there may be more than one event in hypertension—up-
regulation of the receptor and/or signaling element—

that allows for vessels to be hyperresponsive to 5-HT.
This is but one example of the change in vascular re-
sponsiveness to 5-HT in a pathological state.

C. 5-Hydroxytryptamine Presence and Function in

the Heart

The effects of 5-HT on the heart are complex, and im-
portant work has been performed, in particular by
Kaumann and Levy (2006) and Nebigil and Maroteaux
(2001).

1. 5-Hydroxytryptamine Synthesis and Handling. 5-HT
has been found in the heart (Sole et al., 1979), and Ikeda et al.
(2005) demonstrated the ability of neonatal rat cardiomyo-
cytes to synthesize 5-HT. 5-HT is a survival factor for
cardiomyocytes, as demonstrated by Nebigil et al.
(2003a). SERT expression has also been observed in
cultured cardiac myocytes (Sari and Zhou, 2003) and
heart valves (Pavone et al., 2008). Loss of TPH in the
mouse resulted in abnormal cardiac activity, suggesting
that peripheral 5-HT—from within or outside of the
heart—is important to cardiac function (Côté et al.,
2003) and development.

2. Function and 5-Hydroxytryptamine Receptor Phar-

macology. Kaumann and Levy (2006) have provided a
focus for 5-HT receptors in the human cardiovascular
system, demonstrating that 5-HT increases atrial func-
tion and arrhythmias as well as positive inotropic, lusi-
tropic, and arrhythmic effects in the ventricle, primarily
through activation of 5-HT4 receptors. The work of
Nebigil and Maroteaux (2001) strongly supports the role
of the 5-HT2B receptor (originally the stomach fundus
5-HT receptor) in normal heart development and func-
tion. These researchers and others have shown that
receptors for 5-HT exist directly on cardiac myocytes and
on the vagus and sympathetic nerves. Stimulation of
5-HT3 receptors on the vagus nerves (cardiac vagal af-
ferents) accounts for the bradycardia elicited by activa-
tion of the Bezold-Jarisch reflex. 5-HT can also act as a
sympatholytic through activation of 5-HT1 receptors on
sympathetic nerve terminals, inhibiting norepinephrine
release. Both of these mechanisms contribute to a re-
duced cardiac output, which would be associated with a
decrease in blood pressure. However, 5-HT can also ac-
tivate the heart. The receptor mechanism for 5-HT to
increase heart rate (positive chronotropy) is species-de-
pendent. For example, this occurs through activation of
5-HT2A receptors in the rat, 5-HT4 receptors in the pig
and human, and 5-HT7 receptors in the cat (Saxena and
Villalón, 1991; Villalón et al., 1997; Côté et al., 2004). In
isolated cardiomyocytes, 5-HT stimulates mitogenesis,
and the 5-HT2B receptor is critical for development of
the heart in the mouse (Nebigil and Maroteaux, 2001).
5-HT stimulates hypertrophy in cardiac myocytes, and
Bianchi et al. (2005) suggested the provocative hypoth-
esis that 5-HT may be used as a substrate for mono-
amine oxidase (MAO), ultimately providing the hydro-
gen peroxide that activates hypertrophic pathways.
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Thus, the cardiac effects of 5-HT are complex and spe-
cies-dependent; collectively, these studies suggest that
5-HT could both increase and decrease blood pressure
through its actions in the heart.

3. Change in Pathological Conditions. Up-regulation
and stimulation of the 5-HT2B receptor within the heart
leads to cardiac hypertrophy (Nebigil et al., 2003b), such
that mice lacking the 5-HT2B receptor are protected
from cardiac hypertrophy. Significant interest has been
paid to the expression of 5-HT receptors on aortic valves
(especially the 5-HT2B receptor), because the 5-HT re-
leaser and weight-loss drug fenfluramine causes valvu-
lar dysfunction (Roth, 2007; Huang et al., 2009; Hajjo et
al., 2010). Finally, SERT KO mice demonstrate cardiac
fibrosis (Pavone et al., 2009).

D. 5-Hydroxytryptamine Presence and Function in

the Kidney

1. 5-Hydroxytryptamine Synthesis and Handling. The
proximal tubules of the kidney are a site of synthesis for
5-HT (Stier and Itskovitz, 1985; Sole et al., 1986; Stier et
al., 1986; Itskovitz et al., 1989; Hafdi et al., 1996). As a
positively charged molecule, 5-HT is excreted by SERT and
other cation transporters within the nephron, where it
may reduce the inhibitory effect of parathyroid hormone-
induced inhibition of sodium-phosphate transport (Hafdi
et al., 1996).

2. Function and 5-Hydroxytryptamine Pharmacol-

ogy. 5-HT has two notable effects on renal function,
both of which would promote the elevation of blood pres-
sure. First, when administered to the isolated, perfused
kidney, 5-HT causes an elevation in perfusion pressure,
a response supported by renal vasoconstriction. The
5-HT receptor of the main renal artery is exquisitely
sensitive to 5-HT, and the pharmacology of this inter-

esting response has yet to be defined, most closely re-
sembling a 5-HT2-like receptor in the rat (Watts and
Thompson, 2004). Second, when 5-HT is given to rats or
cats in vivo or in vitro to cortical tubules, sodium excre-
tion is reduced (Fastier and Waal, 1957; Frandsen and
Nielsen, 1966; Soares-da-Silva, 1996). In the cat (Fastier
and Waal, 1957), 5-HT caused a decrease in blood pres-
sure. In the human, the prodrug �-L-glutamyl-5-hy-
droxy-L-tryptophan was given (16.6 �g � kg�1

� min�1

i.v.) over 60 min. The authors state that there was no
difference in blood pressure and pulse rate on the days of
experimentation, but the data are not presented (Li
Kam Wa et al., 1994). Sodium and volume retention
would keep blood volume elevated. In the dog, the pic-
ture is less clear, because 5-HT has been reported to
increase (Shoji et al., 1989) or more commonly decrease
(Blackmore, 1958; Park et al., 1968) urinary excretion of
sodium. Overall, these findings suggest 5-HT has anti-
natriuretic/antidiuretic effects within the kidney that
increase blood volume and support blood pressure.

3. Change in Pathological Condition. Serotonin syn-
drome, which results from an elevated level of 5-HT
typically caused by ingestion of foods and drugs, can
result in renal failure (Rajapakse et al., 2010). 5-HT has
also been implicated in the nephropathies that accom-
pany diabetes (Doggrell, 2003).

E. 5-Hydroxytryptamine Presence and Function in the

Adrenal Gland

The adrenal gland is a significantly understudied tissue
with respect to 5-HT.

1. 5-Hydroxytryptamine Synthesis and Handling. When
animals are infused with 5-HT for 1 week via a minipump
(ALZET Osmotic Pumps, Cupertino, CA), the adrenal gland
accumulates a significant amount of 5-HT (Linder et al.,

FIG. 3. Distribution of 5-HT in organs when infused with vehicle or 5-HT at a dose of 25 �g � kg�1
� min�1 in the rat for one week. Vehicle animals

receive saline. Bars represent means � S.E.M. for n � 6. Boxes highlight organs that are of cardiovascular interest. [Adapted from Linder AE, Beggs
KM, Burnett RJ, and Watts SW (2009) Body distribution of infused serotonin in rats. Clin Exp Pharmacol Physiol 36:599–601 Copyright © 2009 John
Wiley & Sons, Inc. Used with permission.
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2009), and Fig. 3 illustrates that the adrenal gland becomes
one of the most concentrated reservoirs of 5-HT in the body.
The uptake of 5-HT by the adrenal gland was virtually abol-
ished in the SERT(�/�) rat, demonstrating the importance of
SERT to the adrenal accumulation of 5-HT. It is noteworthy
that endogenous 5-HT has also been located in the adrenal
medulla, with evidence that 5-HT is synthesized within the
chromaffin cells in the frog and rat (Csaba and Sudár, 1978;
Verhofstad and Jonsson, 1983; Holzwarth et al., 1984;
Brownfield et al., 1985; Holzwarth and Brownfield, 1985;
Delarue et al., 1992). However, it is not clear whether the
adrenal gland—cortex or medulla—can synthesize 5-HT. In
the human, TPH was not detected immunohistochemically in
the adrenal cortex (Meyer and Brinck 1999). An interesting
connection between adrenal gland and brain 5-HT synthesis
was made by Miller et al. (1980), who demonstrated that
brain tryptophan utilization was determined by the presence
or absence of the adrenal gland. GTP cyclohydrolase is pres-
ent in the adrenal gland, and this makes the tetrahydrobiop-
terin that is a necessary cofactor of the tyrosine, tryptophan,
and phenylalanine hydroxylases (Nagatsu et al., 1995). Thus,
there is potential for 5-HT to modify blood pressure through
actions in the adrenal gland.

2. Function and 5-Hydroxytryptamine Pharmacol-

ogy. 5-HT can act as a sympathomimetic in the sym-
pathetic nerves of the blood vessels (Kawasaki and
Takasaki, 1984), and 5-HT stimulates adrenal medul-
lary epinephrine release through mechanisms that are
both receptor-dependent and -independent (Bagdy et al.,
1989; Sugimoto et al., 1996). 5-HT also has effects within
the adrenal cortex. The role of the 5-HT4 receptor in the
normal human adrenal gland includes stimulation of
cortisol (Louiset et al., 2004), whereas 5-HT7 receptors
are associated with an increase in adenylate cyclase
activity that leads to aldosterone production (Contesse
et al., 1999; Lenglet et al., 2002), suggesting an impor-
tant mechanism in water and salt retention.

3. Change in Pathological Condition. Little is known
in this regard. 5-HT4 receptors are located in the adrenal
gland (Brudeli et al., 2010), and elevated levels of the tran-
script of this receptor are detected in the adrenal glands of
patients with unilateral aldosterone-producing adenoma
(Cartier et al., 2005; Ye et al., 2007), but it is not known how
or whether the up-regulated 5-HT4 receptor contributes to

the disease. The ability of the adrenal gland to concentrate
5-HT to levels that are 2 to 3 times that in another tissue in
the body (rat) raises the question of what 5-HT does in this
tissue and how this is modified in disease.

F. 5-Hydroxytryptamine Influence on the Autonomic

Control of Blood Pressure

5-HT has a multitude of effects on the peripheral nervous
system that can ultimately modify the effects of sympathetic
activity. Figure 4 depicts various places within the nervous
system where 5-HT might act to affect blood pressure, and we
begin at the level of the sympathetic-vascular junction.

1. Peripheral Effects of 5-Hydroxytryptamine at the

Sympathetic-Vascular Junction. The arterial vascular
system, including resistance arterioles, is innervated by
the sympathetic nervous system. Sympathetic nerve ter-
minals release the sympathetic neurotransmitters—
norepinephrine (NE), neuropeptide Y, and ATP—to con-
tract vascular smooth muscle. The norepinephrine
transporter (NET) is also present on the sympathetic
terminal to facilitate reuptake of NE. Neurotransmitter
release is regulated locally by feedback inhibition
through autoreceptors (adrenergic receptors that inhibit
further NE release), and feedback inhibition of NE re-
lease can occur as a result of other chemicals, including
5-HT. Feuerstein (2008) published a comprehensive re-
view of presynaptic receptors for dopamine, histamine,
and 5-HT. Although autoinhibition of serotonergic
nerves through 5-HT receptors makes intuitive sense,
the finding of 5-HT receptors on adrenergic nerves is
less intuitive. The 5-HT1B/1D receptor class has been
found on sympathetic nerve terminals (Feniuk et al., 1979;
Shepherd and Vanhoutte, 1985; Göthert et al., 1986, 1991;
Molderings et al., 1990). Activation of these receptors results
in a reduced NE release from the terminal such that the
overall effect is reduced contractile tone.

Likewise, the presence of NET in sympathetic terminals
is reasonably understood. Whether SERT has also been
localized to the vascular sympathetic terminal remains in
question. The promiscuity of these transporters—SERT
taking up NE, NET taking up 5-HT—is recognized (Daws,
2009). This promiscuity can have physiological relevance.
In a fascinating study, Kawasaki and Takasaki (1984)
demonstrated that 5-HT could be taken up and released

FIG. 4. Schematic of the potential sites at which 5-HT could interact to lower blood pressure within the context of the sympathetic nervous system.
Small geometric shapes represent individual classes of 5-HT receptors; semicircular red arrow indicates inhibition.
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from sympathetic terminals in the vasculature. This raises
the intriguing possibility that 5-HT may be coreleased with
NE in normal transmission; this is especially important
when recognizing that 5-HT has the ability to potentiate
the contractile response of arteries to endogenous hor-
mones such as NE (MacLennan et al., 1993; Yildiz et al.,
1998). In mesenteric arteries, 5-HT-like immunoreactive
nerves have been reported (Gale and Cowen, 1988). Al-
though circulating levels of 5-HT are typically low as a
result of platelet uptake of 5-HT via SERT, a thrombotic
event that would cause platelet aggregation could lead
to a local increase of 5-HT, such that NET would take it
up and it would be either metabolized or repackaged.
Whether this can happen in all sympathetic nerves re-
mains in question.

Morán et al. (2010) demonstrated that 5-HT inhibits the
pressor effect of sympathetic stimulation in long-term di-
abetic pithed rats. They have suggested that both the
5-HT1A and 5-HT2 receptors are involved in this response.
This would implicate a variety of receptors—5-HT1A,
5-HT1B/1D, 5-HT2—in the inhibition of sympathetic activ-
ity independent of the central nervous system.

2. Peripheral Effects of 5-Hydroxytryptamine on

Sympathetic Ganglionic Transmission.

a. 5-Hydroxytryptamine synthesis and handling. The en-
zymes for dedicated 5-HT synthesis—tryptophan hydroxy-
lase and an aromatic acid amino decarboxylase—exist in
sympathetic ganglia. 5-HT has been immunohistochemically
localized in sympathetic ganglia (Verhofstad and Jonsson,
1983; Dun et al., 1984; Häppölä, 1988; Päivärinta et al., 1989;
Karhula et al., 1995). mRNA for SERT (Nishimura et al.,
1999) and multiple 5-HT receptors (Newberry et al., 1996;
Pierce et al., 1996; Watkins and Newberry, 1996) are present
in ganglia. Removal of celiac superior mesenteric ganglion
results in a loss of 5-HT-like immunoreactive nerves around
mesenteric blood vessels. All of these data point to the ganglia
as a site of 5-HT synthesis, uptake, and possible release.
Given the integral nature of the ganglia to autonomic neu-
rotransmission, understanding the role of 5-HT in this site is
important.

b. Function and 5-hydroxytryptamine pharmacol-

ogy. Many studies using an in vitro preparation have
shown that 5-HT can facilitate transmission within au-
tonomic ganglia. Hertzler (1961) reported 5 decades ago
that 5-HT decreased the threshold and increased the
amplitude of the rat stellate ganglionic responses to
preganglionic stimulation. Wallis and Dun (1987) dem-
onstrated that 5-HT induced depolarization of the
guinea pig celiac ganglion. Meehan and Kreulen (1991)
and Cai et al. (1999) later extended this observation to
include depolarization of the inferior mesenteric gan-
glion. Meehan and Kreulen (1991) found that this effect
was dependent on activation of 5-HT3 receptors. In the
superior cervical ganglion, 5-HT causes a depolarization
and enhanced transmission (Watkins and Newberry
1996) by acting at more than one 5-HT receptor subtype,
including 5-HT2A and 5-HT3 receptors. Thus, there

seems to be an overall ability of 5-HT to stimulate gan-
glionic transmission, but there are exceptions to this
generalization. There is evidence from a few in vitro
studies to implicate an inhibitory role of 5-HT in ganglionic
transmission. Gilbert and Newberry (1987) showed that
5-HT acts on 5-HT1-like receptors to hyperpolarize the cervi-
cal ganglion of the rat. Dun and Karczmar (1981) showed
that 5-HT inhibited ganglionic transmission by a presynaptic
mechanism (i.e., by reducing acetylcholine release from the
presympathetic nerve terminal).

Only a few investigators have used an in vivo model to
study the effects of 5-HT on ganglionic transmission. Jones
et al. (1995) showed that 5-HT1D receptors mediate inhi-
bition of sympathetic ganglionic transmission in anesthe-
tized cats.

c. Changes in Pathological Condition. Most recently,
5-HT3 receptors have been suggested to contribute to
long-term potentiation in sympathetic ganglia, and in-
hibition of 5-HT receptors with the antagonist odanse-
tron decreases blood pressure in obese Zucker rats
(Gerges et al., 2002). Likewise, tropisetron and odanse-
tron (5-HT3 receptor antagonists) prevented the hyper-
tension caused by psychosocial stress (Alkadhi et al.,
2005); the authors suggest that the long-term potentia-
tion facilitated by 5-HT facilitates the increased sympa-
thetic drive that is the basis of the hypertension.

3. Central Effects of 5-Hydroxytryptamine

Influencing the Sympathetic Neural Control of

Blood Pressure

a. Crossing the blood-brain barrier. The extent to
which 5-HT in the systemic circulation has access to
5-HT receptors on cells within the brain is a significant
consideration in understanding the role of 5-HT in reg-
ulating blood pressure. In this regard, many of the pop-
ulations of central neurons controlling the autonomic
neural outflows to the heart, vasculature, and kidney
have 5-HT receptors and receive inputs from the exten-
sive serotonergic pathways within the CNS or from se-
rotonergic primary afferent neurons (Fig. 5). Thus, de-
pending on the extent to which and the site at which
circulating 5-HT crosses the blood-brain barrier, it could
influence blood pressure by altering the discharge of
5-HT receptor-expressing neurons in cardiovascular reg-
ulatory pathways. In contrast with its precursor, 5-HTP,
which moves freely across the blood-brain barrier, the
current consensus is that 5-HT does not cross the blood-
brain barrier (Hardebo and Owman, 1980; Ohtsuki,
2004; Afergan et al., 2008; Ueno, 2009; Pozdzik et al.,
2010). However, a study in 1968 demonstrated that in-
travenous 5-HT administration results in higher levels
of 5-HT and its primary metabolite, 5-HIAA, in the brain
(Bulat and Supek, 1968). Moreover, with the finding
that SERT is on the capillary endothelial cells that com-
prise the blood-brain barrier (Brust et al., 2000; Wa-
kayama et al., 2002), and that 5-HT can be transported
by these cells (Roux and Couraud, 2005), it is possible for
5-HT to move in and out of the CNS. Nakatani et al.
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(2008) described the ability of 5-HT to pass from the
CNS to the periphery. Westergaard (1975, 1978) demon-
strated more than 30 years ago that 5-HT itself can
modify blood-brain barrier function, whereas 5-HT may
also increase the permeability of the barrier under heat
stress (Sharma and Dey, 1984). 5-HT has been localized
in the circumventricular organs of the rat (Takeuchi and
Sano, 1983). Finally, Alenina et al. (2009) demonstrated
that 5-HT was still detectable in the brains of the
TPH2(�/�) mouse. This can be interpreted in three
ways: 1) that TPH2 knockout is not complete, but there
is little other evidence to suggest this is true; 2) there is
another source for 5-HT synthesis (such as TPH1 or
phenylalanine hydroxylase) that is revealed upon re-
moval of the primary 5-HT synthetic source in the CNS
(TPH2); and 3) it is possible that the 5-HT detected in
the brain of the TPH2(�/�) mouse is made by TPH1
(located in the periphery), and this 5-HT moves from the
periphery to the brain. Bagale et al. (2011) reported the
use of ethylamine-functionalized fluorophores that can
be used to visualize SERT in living tissues. Thus, it
remains possible that systemic 5-HT could have effects
on blood pressure by binding to 5-HT receptors on CNS
neurons, and we have tools to test this idea. The poten-
tial effects of systemic 5-HT acting within the brain can
be appreciated from a review of the role of central sero-
tonergic effects on the principal blood pressure-control-
ling pathways within the brain.

b. Central 5-hydroxytryptamine influences on blood

pressure. The central neural networks regulating blood

pressure are primarily those that control the level of
sympathetic activities to cardiovascular tissues. Figure 5
shows some of the major neural circuits known to regu-
late blood pressure and heart rate (Barman and Gebber,
2000; Morrison, 2004; Guyenet, 2006). The sympathetic
ganglion cells innervating the heart, blood vessels, ad-
renal medulla, and kidney receive their principal exci-
tation from sympathetic preganglionic neurons in the
intermediolateral nucleus (IML) in the thoracolumbar
spinal cord. The sympathetic preganglionic neurons, al-
though influenced by a network of spinal interneurons,
receive their primary glutamatergic drive from su-
praspinal populations of sympathetic premotor neurons,
including the major group of cardiovascular regulatory
neurons in the rostral ventrolateral medulla (RVLM).
The activity of these sympathetic premotor neurons is
determined, in turn, by connections from pontine, hypo-
thalamic, and limbic areas and by brainstem inputs
from cardiovascular baroreceptor and chemoreceptor re-
flex circuits. The baroreceptor reflex, for instance, is
initiated by sensory input from stretch receptors in the
carotid sinus and aortic arch that project to the nucleus
of the tractus solitarius (NTS), in a negative feedback
fashion, to alter cardiac output and vascular resistance
to compensate for externally imposed changes in blood
pressure. NTS neurons excite neurons in the caudal
ventrolateral medulla that in turn inhibit RVLM sym-
pathoexcitatory neurons. A reduction in baroreceptor
activity mediates the sympathetic activation that in-
creases heart rate, cardiac contractility, venous stiff-

FIG. 5. Central autonomic circuits and potential central sites of action of systemically administered serotonin. The excitatory (�), inhibitory (�),
or mixed (�) connections shown between the various autonomic nuclei are based on data described by Barman and Gebber (2000), Guyenet (2006),
and Morrison (2004). The solid pentagon symbols show locations of 5-HT receptors. BAT, brown adipose tissue; CVLM, caudal ventrolateral medulla;
DMH, dorsomedial hypothalamus; LTF, lateral tegmental field; NA, nucleus ambiguus; NTS, nucleus of the tractus solitarius.
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ness, and vasoconstriction to compensate for the de-
crease in blood pressure that occurs upon standing when
gravity pulls blood toward the lower extremities. Like-
wise, baroreceptor sensory neurons in the NTS provide
the parasympathetic premotor drive to the cardiac vagal
preganglionic neurons in the medulla that drive cardiac
vagal nerve activity to slow the heart.

Central serotonergic influences on blood pressure arise
from stimulation of serotonin receptors on neurons within
these neural circuits that determine sympathetic and va-
gal outflows (Fig. 5 and Table 3). Not only is there a myriad
of central sites at which 5-HT could influence blood pres-
sure, but there are several 5-HT receptor subtypes with
differing effects on neuronal activity. Further complicating
the interpretation of experimental data is the lack of spec-
ificity of many experimental designs in which cardiovascu-
lar parameters were measured after administration of
5-HT or related compounds into the cerebral ventricles or
into the systemic circulation. Thus, serotonergic drugs can
have access to a wide spectrum of 5-HT receptors on di-
verse populations of neurons. Although this drug delivery
approach has relevance to investigations of a compound’s
therapeutic potential, it is not likely to mimic the normal
physiological release of 5-HT from specific subpopulations
of 5-HT neurons onto restricted sets of target neurons. It is
also apparent, on the basis of the preceding description,
that through different receptor populations, 5-HT could
have divergent effects on different populations of neurons
in the serially connected organization of the central path-
ways determining the sympathetic and vagal outputs con-
trolling blood pressure. Thus, if 5-HT has simultaneous
access to inhibitory 5-HT receptors (such as 5-HT1A recep-
tors) on sympathetic premotor neurons and stimulatory
5-HT receptors (such as 5-HT2A receptors) on sympathetic
preganglionic neurons, it is not surprising that adminis-
tration of serotonin can either inhibit or stimulate pregan-
glionic sympathetic nerves (Lewis and Coote, 1990). More-
over, Pickering et al. (1994) showed that perfusion of a
spinal cord slice preparation with 5-HT induced rhythmic
activity in sympathetic preganglionic neurons.

Central stimulation of 5-HT1A-receptors reduces vaso-
constrictor sympathetic nerve activity and increases car-
diac vagal nerve activity, both leading to a decrease in
blood pressure (Ramage, 2001). This may occur through
inhibition of vasomotor premotor neurons in the RVLM
(McCall and Clement, 1994), although a potential role of
adrenergic receptors in this effect has been suggested (Nos-
jean and Guyenet, 1991), or of their antecedent sympatho-
excitatory neurons in the lateral tegmental field (McCall
and Clement, 1994). As shown in Fig. 5, sympathetic pre-
motor neurons controlling cutaneous vasoconstriction are
located in the rostral medullary raphe, where a local injec-
tion of a 5-HT1A-receptor agonist elicits a cutaneous vaso-
dilation (Ootsuka and Blessing, 2006). Because the cuta-
neous vasculature is strongly constricted at normal
ambient temperatures, inhibition of the skin sympathetic
outflow could contribute significantly to a 5-HT1A-receptor

agonist-evoked decrease in blood pressure. 5-HT1A-
receptor agonists in the spinal IML can, however, elicit a
sympathoexcitation as a result of increased responsiveness
to glutamatergic inputs (Madden and Morrison, 2006), po-
tentially through inhibition of local GABA neurons.

Central stimulation of 5-HT2A-receptors can lead to an
increase in blood pressure, partly through increased vaso-
constrictor sympathetic outflow arising from activation of
sympathetic premotor neurons in the RVLM (Ramage and
Daly, 1998) but also from the contribution of vasopressin
release (Saydoff et al., 1996). Intravenous administration
of a 5-HT2A-receptor agonist facilitates the cutaneous sym-
pathetic outflow (Blessing and Seaman, 2003), potentially
at the IML site of sympathetic preganglionic neurons (Oot-
suka and Blessing, 2005), and thus could contribute to an
elevated arterial pressure in response to central 5-HT2A-
receptor agonist administration.

The NTS is the site of termination of primary sensory
neurons, including those from the baroreceptors, chemore-
ceptors, and cardiopulmonary receptors that participate in
reflex regulation of blood pressure. The NTS receives se-
rotonergic inputs from serotonergic neurons in the nodose
ganglia and from neurons in the medullary raphe nuclei
(Thor and Helke, 1987; Nosjean et al., 1990) (Fig. 5), and
5-HT1A, 5-HT1B, 5-HT2, 5-HT3, and 5-HT4 receptors have
been identified within the NTS, including on vagal afferent
nerve terminals (Laguzzi, 2003).

Microinjection of 5-HT into the NTS can elicit either
depressor or pressor responses (Feldman and Galiano,
1995; Nosjean et al., 1995; Callera et al., 1997; Laguzzi,
2003) that could arise from facilitatory or inhibitory effects
of 5-HT on the NTS circuitry involved in integrating the
baroreceptor and other cardiovascular reflexes. Chemical
destruction of serotonergic neuronal elements in the NTS
by microinjection of the neurotoxin 5,7-dihydroxytryptam-
ine led to a transient (over 6 days) increase in blood pres-
sure (Orer et al., 1991). Selective activation of 5-HT2A

receptors in the NTS by microinjection of DOI significantly
enhanced the cardiovagal component of the baroreceptor
reflex (Laguzzi, 2003), consistent with the possibility that,
under physiological conditions, 5-HT released from the
projections originating in the nodose ganglia and/or nu-
cleus raphe pallidus might trigger the 5-HT2A receptor-
mediated reflex responses.

On the other hand, microinjection of 5-HT or the selec-
tive 5-HT3 receptor agonist 1-(m-chlorophenyl)-biguanide
into the rat NTS increases lumbar sympathetic nerve ac-
tivity and blood pressure (Nosjean et al.,1995), which was
prevented by prior microinjection of zacopride, a 5-HT3

receptor antagonist. Because the gain of the sympathetic
component of the baroreceptor reflex was not changed,
they concluded that activation of 5-HT3 receptors in the
NTS causes sympathoexcitation by a mechanism indepen-
dent of the baroreceptor reflex. In this regard, 5-HT3 re-
ceptor activation excites neurons in the NTS and in the
dorsal motor nucleus of the vagus, directly adjoining the
NTS, by a glutamate-dependent mechanism (Jordan,
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TABLE 3
Effect of acutely administered 5-HT or serotonergic agonist on blood pressure and heart rate in a variety of species

Leftmost column list species or agonist, status of model consciousness, surgical or pharmacological agents on board during experimentation.

5-HT or Agonist and Species Site of
Administration Dose

Effect on
Blood

Pressure

Effect on Heart
Rate

Time
Point Reference

5-HT
Rat, conscious IV 2 �g/rat Decrease Decrease Minutes Callera et al., 2005
Rat, conscious (female) SC 2 mg/kg Decrease Minutes Barney et al., 1981
Rat, conscious ICV 	10 nmol Increase Increase Minutes Dedeoğlu and Fisher,

1991
Rat, conscious ICV 
10 nmol Increase Decrease Minutes Dedeoğlu and Fisher,

1991
Rat, conscious ICV 4 nmol/kg Increase Decrease Minutes Anderson et al., 1996
Rat, conscious ICV 10 �g Increase Decrease Minutes Saydoff et al., 1996
Rat, vagotomized and

pithed, ketanserin
IV 10�9–10�5 mol/kg Decrease Terrón, 1997

Rat, vagotomized,
anesthetized,
ritanserin

IV 1–10 �g � kg�1
� min�1 Decrease Minutes De Vries et al., 1999

Rat, anesthetized,
vagosympathecto-
mized, ketanserin

IV 1–30 �g/kg Decrease Minutes Centurión et al., 2004

Rat, pithed IV 5–20 �g/kg Increase Minutes Cavero et al., 1981
Rat, syrosingopine and

mianserin
IV 20 �g/kg Decrease Minutes Cavero et al., 1981

Rat, anesthetized IR, IMes 1–3 �g/min Increase Increase Minutes Janssen et al., 1989
Rat, anesthetized ICV 20 �g Increase Decrease 5 min Montes and Johnson,

1990
Rat, anesthetized ICV 20 �g Decrease Decrease 10 min Montes and Johnson,

1990
Rat, anesthetized ICV 40, 120 nmol/kg Increase Decrease Minutes Anderson et al., 1992
Rat, anesthetized RVLM 5–50 nmol Decrease Decrease Minutes Key and Wigfield, 1992
Cat, anesthetized Fourth

ventricle
20–640 nmol/kg Decrease Decrease Minutes Shepheard et al., 1994

Dog, anesthetized IV 8 �g � kg�1
� min�1 Decrease Increase Minutes-

hours
Carlson et al., 1967.

Dog, anesthetized IV 20 �g � kg�1
� min�1 Decrease Increase Minutes Martinez and

Lokhandwala, 1980
Calf, metrenperone IV 0.05 mg � kg�1

� min�1 Decrease Decrease, then
increase

Minutes Linden et al., 1999

Human, conscious IV 2–4 �g � kg�1
� min�1 Variable Minutes–

hours
Carlson et al., 1967

Human, conscious IV 20 nmol � kg�1
� min�1 No Change No Change Minutes Hansen et al., 2008

Human, conscious IL 2.5–250 nmol No Change No Change Minutes Hansen et al., 2008
Human, conscious IA (forearm) 10–80 ng � kg�1

� min�1 No change No change Minutes Blauw et al., 1988
8-OH-DPAT

Rat, anesthetized IV 8–128 �g/kg Decrease Decrease Minutes-
hours

Fozard et al., 1987

Rat, anesthetized IV 1 mg/kg Decrease Decrease Minutes Helke et al., 1993
Rat, conscious IP 0.05–0.25 mg/kg Decrease Minutes van den Buuse and

Wegener, 2005
Rat, conscious,

hemorrhaged
ICV, IV 48 nmol/kg Increase Minutes Scrogin, 2003

Rat, conscious,
hemorrhaged

IV 30 nmol/kg Increase Minutes Tiniakov et al., 2007

Rat, conscious ICV 	10 nmol Increase Increase Minutes Dedeoğlu and Fisher,
1991

Rat, conscious ICV 
10 nmol Decrease Decrease Minutes Dedeoğlu and Fisher,
1991

Rat, hemorrhaged ICV 10 nmol Increase Increase Minutes Jochem et al., 2009
Rat, anesthetized Ventral

medulla
0.1 �g/0.1 �l Decrease Decrease Minutes Valenta and Singer,

1990
Rat, anesthetized ICV 3 nmol/kg Increase Increase Minutes Anderson et al., 1992
Rat, anesthetized Ventral

medulla
20–50 ng Decrease Decrease Minutes Helke et al., 1993

Rabbit, hypovolemic
conscious

Fourth
ventricle

10–30 nmol Increase Minutes Evans et al., 1993

Cat, anesthetized IV 1–100 �g/kg Decrease Decrease Minutes Ramage and Fozard,
1987

Cat, anesthetized Fourth
ventricle

2.5–40 nmol/kg Decrease Decrease Minutes Shepheard et al, 1994

Pig IA 0.3–10 �g � kg�1
� min�1 None Decrease Minutes Bom et al., 1989

Dog IV 10–300 �g/kg Decrease No change Minutes Dabiré et al., 1990
Dog VA 0–3 �g/kg Decrease Decrease Minutes Dabiré et al., 1990
Dog VLPA 0.2 �g/site Decrease Decrease Dabiré et al., 1990

Buspirone
Rat, conscious IP 0.1/0.5 mg/kg Decrease/

increase
Minutes van den Buuse and

Wegener, 2005
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2005), and 5-HT3 receptor blockade reduces excitatory
amino acid transmission in NTS (Wan and Browning,
2008). Vagal afferents expressing 5-HT3 receptors arise
not only from the gut but also from the heart, mediating
the Bezold-Jarish reflex. Activation of 5-HT3 receptors on
vagal afferents could influence blood pressure through a
reduction in the effectiveness of the arterial chemoreceptor
reflex (Moreira et al., 2007). Thus, the effects on blood
pressure of 5-HT administration into the NTS and its
effects on specific reflexes that influence blood pressure is
complex, varying with factors such as anesthesia, species,
and relative prominence of or exposure to various 5-HT re-
ceptor subtypes. The existence of 5-HT receptors on both the
sensory and synaptic terminals of primary afferents suggests

that transmission in these pathways could be influenced both
by the levels of circulating 5-HT and by 5-HT released within
the NTS from the terminals of raphe neurons.

V. Effect of 5-Hydroxytryptamine on Blood

Pressure: Whole-Animal Studies

A. Effects of 5-Hydroxytryptamine and Serotonergic

Agonists on Blood Pressure

1. Short-Term. When 5-HT is administered intrave-
nously to anesthetized rodents over the course of sec-
onds to minutes, a classic triphasic response is observed
(Dalton et al., 1986; Hardcastle and Hardcastle, 1999)
(Fig. 6A). There is 1) a depressor response attributed to

TABLE 3–Contiuned

5-HT or Agonist and Species Site of
Administration Dose

Effect on
Blood

Pressure

Effect on Heart
Rate Time Point Reference

5-CT
Rat, anesthetized,

vagotomized.
ketanserin

IV 0.01–0.3 �g/kg Decrease Minutes Centuriónetal,2004

Rat, vagotomized,
pithed, ketanserin

IV 10�11-10�7 mol/kg Decrease Minutes Terrón, 1997

Rat, anesthetized ICV 3 nmol/kg Increase Increase Minutes Anderson et al., 1992
Cat, anesthetized Fourth

ventricle
2.5–40 nmol/kg Decrease No change Minutes Shepheard et al, 1994

DP-5-CT
Rat, anesthetized ICV 3 nmol/kg Increase Increase Minutes Anderson et al., 1992
Cat, anesthetized Fourth

ventricle
2.5–40 nmol/kg Decrease Decrease Minutes Shepheard et al., 1994

Rizatriptan
Rat, anesthetized IV 0.63–2500 �g/kg Decrease Decrease Minutes Pagniez et al., 1998

Sumatriptan
Rat, anesthetized IV 0.63–2500 �g/kg Decrease Decrease Minutes Pagniez et al., 1998
Cat, anesthetized Fourth

ventricle
10–160 nmol/kg Decrease No change Minutes Shepheard et al., 1994

�-Methyl-5-HT
Rat IV 3–30 �g Increase Minutes Dalton et al., 1986

5-Methoxytryptamine
Rat, vagotomized,

pithed, ketanserin
IV 10�9–10�5 mol/kg Decrease Minutes Terrón, 1997

DOI
Rat, anesthetized ICV 40, 120 nmol/kg Increase Decrease Minutes Anderson et al., 1992
Rat, anesthetized Intra-NTS 0.05–1 pmol Decrease Decrease Minutes Comet et al., 2007
Rat, anesthetized ICV 2 �mol/kg Increase Increase Minutes Knowles and Ramage,

1999
DOB

Rat, anesthetized Intra-NTS 0.025–0.5 pmol Decrease Decrease Minutes Merahi and Laguzzi,
1995

m-CPBG
Rat, anesthetized Third ventricle 80–320 nmol Decrease No change Minutes Ferreira et al., 2004

2-Methyl-5-HT
Rat, anesthetized IV 3–30 �g Decrease Decrease Minutes Dalton et al., 1986

m-CPP
Rat, anesthetized Third ventricle 80–320 nmol Increase Decrease then

increase
�30 min Ferreira et al., 2005

Quipazine
Rat, anesthetized ICV 2 �mol/kg Increase Increase Minutes Knowles and Ramage,

1999
5-HTP

Rat, conscious IV 2–40 mg � kg�1
� h�1 Decrease 24 h Echizen and Freed,

1982
Cat, anesthetized IV 5–10 mg/kg Decrease Hours Flórez and Armijo,

1974
Tryptophan

Rat, SHR, conscious IP 1–100 mg/kg Decrease Hours Sved et al., 1982
Rat, conscious IV 2–40 mg � kg�1

� h�1 No change 24 h Echizen and Freed,
1982

5-HTP, 5-hydroxytryptophan; DOB, 2,5-dimethoxy-4-bromoamphetamine hydrochloride; DOI, (�)-2,5-dimethoxy-4-iodoamphetamine; DP-5-CT, dipropyl-5-carboxamido-
tryptamine; IA, intraarterial; ICV, intracerebroventricular; IL, intraluminal (intestinal); IMes, intramesenteric artery; IP, intraperitoneal; IR, intrarenal artery; IV,
intravenous; m-CPBG, m-chlorophenylbiguanidine; m-CPP, 1-(3-chlorophenyl)piperazine hydrochloride; VA, vertebral artery; VLPA, ventrolateral pressor area.
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a reduction in heart rate (HR) by activation of the Be-
zold-Jarisch reflex followed by 2) a significant elevation
in blood pressure. This pressor response is thought to be
mediated by 5-HT2 receptors in the vasculature. After
this transient pressor response, there is 3) a slow va-
sodepressor response that has been attributed to acti-
vation of both 5-HT7 and 5-HT1B/1D receptors (Terrón
et al., 2007). In studies of anesthetized animals, this
response can be observed up to 60 min after 5-HT
administration and a decrease in blood pressure to
5-HT can continue for at least a week with continued
5-HT administration.

Table 3 compiles responses to 5-HT administered in a
number of different ways, but all in an acute (seconds to
minute) time frame. Multiple investigators have demon-
strated the ability of 5-HT, given either subcutaneously or
intravenously, to decrease blood pressure in either rodents
or dogs. In a pithed rat model, administration of 5-HT
results in an increase in blood pressure (Cavero et al.,

1981), suggesting that the interaction with the central
sympathetic nervous system may be key for the mecha-
nism of blood pressure decrease. There are few reports of
the response of the human to 5-HT (intravenous), and in
one study that addressed directly the effect of 5-HT on
blood pressure in man, the effects of 5-HT on blood pres-
sure were variable (Carlson et al., 1967). 5-HT (0.1–50 ng �

kg�1
� min�1, intra-arterial) caused a dose-dependent in-

crease in forearm blood flow in humans, but this alone was
insufficient to decrease blood pressure, which is somewhat
expected given the restriction of circulating substances in
the assay used (Blauw et al., 1988).

The effect of serotonergic agonists other than 5-HT on
blood pressure are tabulated in the lower part of Table 3.
In the conscious rat, the 5-HT1A receptor agonist 8-OH-
DPAT causes variable effects on blood pressure when
given intraperitoneally or intravenously but overall re-
duces blood pressure (van den Buuse and Wegener, 2005).
By contrast, in the hemorrhaged rat, 8-OH-DPAT pro-
duces a significant pressor response and is described as
rescuing blood pressure from the effects of hemorrhage
(Tiniakov et al., 2007). In the cat (anesthetized), 8-OH-
DPAT (intravenous) causes a decrease in blood pressure
(Ramage and Fozard, 1987). 5-CT has a significantly
greater affinity for more of the 5-HT1 receptor subtypes
and causes a decrease in blood pressure (Terrón et al.,
2007), with the caveat that 5-CT also has significant affin-
ity for the 5-HT7 receptor (Waeber and Moskowitz, 1995;
Krobert et al., 2001). These animals, however, were anes-
thetized, vagotomized, and treated with ketanserin to un-
mask a 5-HT-stimulated relaxation/depressor response
(Terrón, 1997; Centurión et al., 2004), so, as with isolated
arteries, the physiological relevance of such a response
remains in question. Sumatriptan and rizatriptan (intra-
venous), 5-HT1B/1D receptor agonists, also caused a de-
crease in blood pressure, but this effect may not be periph-
eral. Pagniez et al. (1998) have suggested that this effect is
due to central 5-HT1A receptor activation. In contrast to
these studies, in which serotonergic agonists were clearly
depressors when given peripherally, 5-HT2 receptor ago-
nists such as �-methyl-5-HT and (�)-2,5-dimethoxy-4-
iodoamphetamine elevate blood pressure. Because it is
unclear whether these agonists—including 5-HT—cross
the blood-brain barrier or interact with the area postrema,
we cannot exclude the idea that the effects observed on
blood pressure are at least partially centrally mediated.

2. Long-Term. Because of our interest in the role of
5-HT in blood pressure, we studied prolonged elevation
of 5-HT in the normal rat and followed blood pressure
using radiotelemetry. The time period of 5-HT infusion
was over the course of a week. Although many of the
studies described in Table 3 suggest that 5-HT is largely
a depressor agent in short-term peripheral administra-
tion, the knowledge that 1) 5-HT is a direct vasoconstric-
tor, 2) blood vessels from hypertensive animals are hy-
per-responsive to 5-HT, and 3) circulating levels of free
5-HT are elevated in hypertension suggested to us that

FIG. 6. A, classic triphasic (1, 2, 3) effect of 5-HT (75 �g/kg bolus) on
blood pressure in the anesthetized rat. Time base below traces is 1
s/division. Total time base is 75 s. B, effect of 5-HT (25 �g � kg�1

� min�1,
subcutaneous pump) on blood pressure (top) and heart rate (bottom) in
the conscious rat over the course of 30 h. Dashed vertical line indicates
implantation of pump. Points represent means � S.E.M. for the number
of animals in parentheses.

5-HT AND BLOOD PRESSURE 375



5-HT could be a pathogenic factor in hypertension, con-
tributing to an elevation in blood pressure. Contrary to
these ideas, we observed that 5-HT caused a decrease in
blood pressure in the conscious sham and DOCA-salt
hypertensive rats (Diaz et al., 2008). In these studies,
5-HT was given in an Alzet miniosmotic pump (25 �g �

kg�1
� min�1) placed subcutaneously and with an anti-

oxidant. On day 7, plasma 5-HT (free) was elevated from
2.7 � 0.03 (vehicle) to 47.1 � 13.18 ng/ml (5-HT; 17-fold
increase) in a sham rat. This is within the range of that
found in experimental and genetic hypertensive rats
(25–60 ng/ml or �125 nM 5-HT). Measures of human

5-HT have been carefully re-evaluated using liquid chro-
matography–tandem mass spectrometry. Estimated
5-HT concentrations in platelet-depleted plasma were
89.5 to 115.5 nM in 18 healthy subjects (Monaghan et
al., 2009). Thus, the rat is a good model to use because
the levels of 5-HT we achieve in this model are physio-
logical and comparable with what is found in human.
Stunningly, 5-HT nearly normalized the blood pressure
of the DOCA-salt hypertensive rat (Table 4), dropping
blood pressure by over 50 mm Hg and maintaining a
lower pressure for the entire week. Platelet free 5-HT
levels were increased 10- to 15-fold in the experiments
represented in these tables. This was the first study to
demonstrate that, unlike the effects of 5-HT in minutes
of infusion, 5-HT continues to exert its antihypertensive
effects over days. It is possible but not proven that with
the longer-term infusion, we are extending phase 3 of
the response to 5-HT (Fig. 6A, phase 3). To investigate
this possibility, we tracked changes in blood pressure
and heart rate within the first 30 h after 5-HT admin-
istration in normal male Sprague-Dawley rats (Fig. 6B,
conscious). Our findings suggest that there are at least
two hypotensive phases upon long-term 5-HT adminis-
tration: one within the first 3 h and a second, more
stable decrease after nearly 20 h of administration.
Heart rate remains elevated during these first 30 h.
Thus, it is unlikely that the long-term (1 week) decrease
in blood pressure to 5-HT is simply an extension of the
decrease observed within the first hour. We do not know
whether these different phases of changes in blood pres-
sure have the same mechanism. In Fig. 7, we demon-
strate the ability of 5-HT [Alzet miniosmotic pump (25

�g � kg�1
� min�1)] to lower blood pressure in the spon-

taneously hypertensive rat (SHR) over 1 week. Blood
pressure was significantly reduced within the first 2
days of delivery, during which time the HR was ele-
vated. HR returned to normal levels, whereas blood
pressure remained reduced by day 7. This suggests that
although the baroreceptor reflex is intact, it cannot com-
pletely correct for the decrease in pressure. Table 4
compiles the results of experiments from our laboratory
investigating the response to a 1-week infusion of 5-HT
[Alzet miniosmotic pump (25 �g � kg�1

� min�1)] on

TABLE 4
Effect of long-term administration of 5-HT (25 �g � kg�1

� min�1, 1-week administration, subcutaneous) on blood pressure in the rat

Rat Group (All n 
 4) Control BP Nadir BP Time Point Reference

mm Hg h

Male SD (CRiver) 101 � 2 86 � 1 24 Diaz et al., 2008
Male SD (CRiver) 102 � 3 79 � 2 48 Diaz et al., 2008
Male DOCA-salt SD (CRiver) 166 � 7 112 � 3 48 Diaz et al., 2008
Male SD (Harlan) 103 � 3 83 � 3 24 Diaz et al., 2008
Male L-NNA SD (Harlan) 161 � 4 153 � 5 72 Diaz et al., 2008
Male SERT(�/�) (Wistar) 107 � 11 84 � 1 24 Davis et al., 2011
Male SERT(�/�) (Wistar) 103 � 2 88 � 4 24 Davis et al., 2011
Female SERT(�/�) (Wistar) 111 � 3 89 � 2 24 Davis et al., 2011
Female SERT(�/�) (Wistar) 109 � 2 94 � 3 24 Davis et al., 2011

BP, blood pressure; CRiver, Charles River Laboratories; SD, Sprague Dawley.

FIG. 7. Top, ability of 5-HT (25 �g � kg�1
� min�1, subcutaneous pump)

to lower blood pressure of a male SHR. Bottom, concomitant heart rate
measures. Dashed vertical line indicates implantation of the pump.
Points are means � S.E.M. for the number of animals in parentheses. �,
p 	 0.05, significantly different from vehicle time point.
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blood pressure in several rodent models, and these
studies support the ability of 5-HT to reduce rodent
blood pressure.

Potential mechanisms contributing to the 5-HT-induced
decrease in blood pressure in the chronic setting include a
role for NOS and for the SERT. The NOS inhibitor L-NNA
abolished the ability of 5-HT to cause a decrease in blood
pressure in both normal and DOCA-salt rats given L-NNA.
We have validated this finding in a study using newly
available iPrecio pumps (Primetech Corp., Tokyo, Japan),
which allow for programmable release of infusions over
time. We conducted a dose-response curve to 5-HT within
normal rats and demonstrated a dose-dependent decrease
in blood pressure, one that could be prevented with admin-
istration of L-NNA (Tan et al., 2011). Thus, 5-HT is inter-
acting with NOS somewhere to effect the decrease in blood
pressure. The decrease in 5-HT is not physiologically an-
tagonized by L-NNA, which elevated the initial blood pres-
sure, because 5-HT readily reduces the blood pressure of
the DOCA-salt and SHRs (Diaz et al., 2008; Fig. 4). 5-HT
can increase NO production from several different types of
cells and tissues (Arima et al., 1996; Manivet et al., 2000;
Borgdorff et al., 2002; Bellou et al., 2003; Borgdorff and
Tangelder, 2006; García et al., 2006; Chanrion et al., 2007).
Hoffmann et al. (1990) described 5-HT receptors as medi-
ating the long-lasting decrease in blood pressure after ex-
ercise and implicated 5-HT1 and 5-HT2 receptors in medi-
ating this response. Use of the SERT dysfunctional rat also
suggests that SERT function is important to 5-HT-induced
decrease in blood pressure because the magnitude of the
blood pressure decrease induced by 5-HT was reduced by
50% in the SERT dysfunctional mice compared with the
male wild-type mice (Davis et al., 2011). SERT function is
important in the concentration of 5-HT by blood vessels (Ni
et al., 2004), but the presence of SERT expression on the
blood-brain barrier suggests the possibility that 5-HT
crosses the blood-brain barrier to cause a decrease in blood
pressure.

This work with long-term 5-HT administration comes
approximately 30 years after a series of elegant studies
done using 5-HTP and investigating the effect of this 5-HT
precursor on blood pressure. 5-HTP but not tryptophan
lowered blood pressure in a prolonged (24–48 h) fashion
(Echizen and Freed, 1982; Fregly et al., 1987a; Ding et al.,
1989; Itskovitz et al., 1989; Baron et al., 1991) (Table 3).
5-HTP is dedicated to 5-HT synthesis, whereas only 5 to
10% of tryptophan is dedicated to 5-HT. A study by Sved et
al. (1982) differs in that tryptophan (intraperitoneal) was
able to reduce blood pressure of SHRs over the course of
hours. Likewise, Fregly et al. (1987b) demonstrated that
tryptophan administration inhibited the development of
DOCA-salt hypertension in the rat. 5-HTP also inhibited
the development of DOCA-salt hypertension (Fregly et al.,
1987a) and thus raises the possibility that 5-HT is able to
reduce the activity of mechanisms responsible for the ele-
vation of blood pressure. Like tryptophan, 5-HTP is rele-
vant because of the enormous concern of the side effects of

unregulated administration of 5-HTP for aide in a multi-
tude of disorders, including depression, fibromyalgia, obe-
sity, insomnia, and headache (Birdsall, 1998; Das et al.,
2004; Turner et al., 2006).

C. Effect of Removal of 5-Hydroxytryptamine on

Blood Pressure

Another way to ask the question of the importance of
5-HT to blood pressure is to investigate the outcome of
removing 5-HT from the body or preventing its synthesis.
This has been done in two ways: pharmacological inhibi-
tion of TPH by use of parachlorophenylalanine (PCPA) and
removal of the TPH gene. p-Chlorophenylalanine methyl
ester (PCPAME) was used for decades as a tool to inhibit
TPH. In 1976, Buckingham et al. demonstrated that
PCPAME (400 mg/kg) caused a significant decrease in
blood pressure that lasted for at least 8 days in the male
DOCA-salt hypertensive rat, with the reduction in blood
pressure observed on the first day of administration. Al-
though this decrease was present in the normal animal, it
did not reach the magnitude of decrease reached in the
DOCA-rat and was observed only after 5 days of treatment
(a latent response). Brainstem 5-HT was depleted by
PCPAME, but circulating 5-HT was not measured. These
findings suggest that 5-HT promotes a rise in blood pres-
sure by an unknown mechanism, and this is not consistent
with the findings just presented in which long-term 5-HT
exposure caused a reduction in blood pressure. By con-
trast, other studies suggest that depletion of 5-HT cen-
trally (primarily brainstem) results in an elevation in blood
pressure. Central PCPA administration to Wistar rats was
accompanied by elevated blood pressure under anesthesia
(Althaus et al., 1985), and central depletion of 5-HT was
again associated with an elevated blood pressure in awake
rats (Kellett et al., 2005).

Similarly conflicting outcomes have been observed when
5-HT synthesis is removed genetically. TPH1 knockout
mice have been created; this isoform of TPH is primarily
responsible for peripheral 5-HT, and these mice have nor-
mal central 5-HT levels. Systemic arterial pressure (ca-
rotid catheterization) was measured in halothane-
anesthetized TPH1 KO mice and, compared with WT,
TPH1 KO mice showed a significant elevation in basal
arterial pressure, where pressure was taken in anesthe-
tized mice (Morecroft et al., 2007). This implies that pe-
ripheral 5-HT acts to lower blood pressure or inhibits a
mechanism that supports blood pressure. It would have
been ideal to measure blood pressure using telemetry,
given that anesthetics themselves typically lower blood
pressure. Significantly more work has been done with the
TPH2 KO mouse, a mouse in which removal of 5-HT is
primarily in the central nervous system, and peripheral
5-HT is largely normal. Blood pressure measured telemet-
rically in TPH2 KO mice was significantly lower than that
of the wild type, especially during late afternoon and eve-
ning (Alenina et al., 2009). A caveat of this study is that
activity was not measured, and because decreased activity
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(as may be seen with extended sleep) is associated with a
decreased blood pressure, the blood pressure data are
somewhat difficult to interpret. Brain 5-HT was not abol-
ished in the TPH2 KO mice but significantly reduced.
Taken together, 5-HT seems to have different roles in
regulating blood pressure by acting in the periphery
(lower) versus central compartment (elevation), at least in
the mouse. Mice in which both TPH1 and TPH2 are
knocked out have been created (Savelieva et al., 2008), but
blood pressure in these animals was not measured. As
expected, TPH1 KO but not TPH2 KO mice show dramat-
ically reduced levels of circulating 5-HT. It is noteworthy
that measures of peripheral levels of 5-HT in the blood
were not zero in mice in which both TPH1 and TPH2 were
knocked out. The fact that 5-HT levels were not zero in
these animals is interesting, and it has been proposed that
enzymes such as phenylalanine hydroxylase may serve to
produce 5-HT (Savelieva et al., 2008).

VI. 5-Hydroxytryptamine, Pharmaceutical

Compounds and Clinical Situations

A. Pharmaceuticals

Drugs that modify 5-HT concentration are frequently
prescribed. These drugs prevent either the uptake or
the metabolism of 5-HT, both of which would promote the
elevation of 5-HT concentration. As such, study of the
effects of these drugs on blood pressure may give addi-
tional insights into the potential actions of 5-HT in modi-
fying blood pressure. To our knowledge, no drugs that
inhibit 5-HT production are currently used therapeuti-
cally. A selective serotonin-reuptake enhancer has been
described—tianeptine—but it is the only one of its class
and its effectiveness as an enhancer of SERT has been
questioned. Lexicon Pharmaceuticals (The Woodlands,
TX) currently has the tryptophan hydroxylase inhibitor
telotristat etiprate (LX1032) in phase 2 clinical trials for
carcinoid tumors, a condition in which 5-HT is made in
inappropriately high amounts by slow-growing tumors of
the enterochromaffin cells in the intestine. It is noteworthy
that hypotension is one of the presenting symptoms of
patients with this type of tumor.

The various classes of drugs that modify 5-HT concen-
tration include the selective serotonin-reuptake inhibitors
(SSRI), serotonin/norepinephrine-reuptake inhibitors
(SNRI), and MAO A/B monoamine oxidase. The oldest
class of drugs is the tricyclic antidepressants (TCAs). A
preponderance of these drugs are/were used in the treat-
ment of depression and some related mood disorders. Table 5
compiles data from a number of studies, animal and hu-
man, in which mean arterial blood pressure was measured
as one endpoint. Blood pressure was either the focus of the
study cited or a variable measured within a trial. Rela-
tively clear patterns emerge from the gathering of these
studies. Use of TCAs—still prescribed—has been associ-
ated directly with a decrease in blood pressure and/or a
decreased tolerance for blood pressure changes associated

with moving from a supine to standing posture (orthostatic
hypotension). This finding was consistent in multiple spe-
cies tested, including dog, rabbit, and human. MAO inhib-
itors have also been used clinically; they, too, are associ-
ated with a decrease in blood pressure or orthostatic
hypotension (Stahl and Felker, 2008). Some of the later
compounds, such as rasagiline, seem to exert less of an
effect on blood pressure.

With the introduction of zimeldine, indalpine, fluvoxam-
ine, and fluoxetine in the mid- to late 1980s, the class of
SSRIs was born. Zimeldine was the first developed SSRI
(Carlsson and Wong, 1997), and fluoxetine (Prozac; Eli
Lilly & Co., Indianapolis, IN) is the best-known SSRI.
There is little information as to the effect of fluoxetine, or
a related compound fluvoxamine, on blood pressure except
for reports in the rat, in which fluoxetine causes hyperten-
sion (Tsai and Lin, 1986; Lazartigues et al., 2000). By
contrast, fluoxetine reduced blood pressure in the SHR
(Sved et al., 1982). It is noteworthy that fluoxetine has
been cited for use in the treatment of orthostatic hypoten-
sion, the very syndrome caused by TCAs and MAO inhib-
itors (Grubb et al., 1994). Thus, fluoxetine has divergent
effects on blood pressure. Other compounds in this class—
citalopram, paroxetine, sertraline, and zimeldine—have
varied effects on blood pressure, no effect being the most
common outcome. This differs significantly from the effect
of SNRIs. Table 5 lists some of the reports that suggest this
class of drugs has a more pronounced effect on blood pres-
sure, elevating blood pressure in many cases. A number of
meta-analyses have been performed in this regard (Thase,
1998; Kim et al., 2003; de Lemos et al., 2008; Johansson et
al., 2010). Because these compounds inhibit reuptake of
NE as well as 5-HT, one can understand their potential to
elevate blood pressure, because the SNRI would prolong
the effect of NE (and 5-HT) at the vascular junction to
promote an increase in total peripheral resistance. The
SNRI sibutramine was a drug prescribed for medical man-
agement of weight loss but was pulled from the market in
2010 because of concerns over cardiovascular side effects
that include an elevation in blood pressure. It is less clear
how SNRIs would reduce blood pressure, but such a result
has been observed in humans for both venlafaxine and
duloxetine.

On the whole, it is difficult to attribute the effects of any
of the MAOIs, SSRIs, SNRIs, or TCAs to inhibition of
metabolism or uptake of 5-HT because of the importance of
MAO and uptake systems to norepinephrine and epineph-
rine. MAO metabolizes both amines as well as 5-HT, and
the transport systems are known to be imperfect in their
selectivity, such that NET can take up 5-HT and vice versa
(Daws, 2009). Moreover, whereas these compounds each
elevate 5-HT concentration, their effects are not absolutely
specific for 5-HT. For example, more than a dozen publi-
cations describe the ability of fluoxetine and its metabolite
norfluoxetine to inhibit multiple classes of potassium chan-
nels that operate in the cardiovascular system (exemplified
by Tytgat et al., 1997). Given our experimental findings of
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TABLE 5
Effect of serotonergic compounds on blood pressure of different species

Compound Species Effect on Blood Pressure Dose Reference

TCAs
Imipramine Human Orthostatic hypotension 1–5 g/kg/day Giardina et al., 1985
Imipramine Human Orthostatic hypotension 100 mg/day Thayssen et al., 1981
Imipramine Human Orthostatic hypotension �225 mg/day Glassman et al., 1979
Imipramine Rabbit Decrease 29 mg/kg Hughes and Radwan, 1979
Imipramine Dog Decrease 0.1–10 mg/kg Kato et al., 1974
Imipramine Dog Decrease 1–10 mg/kg Yokota et al., 1987
Imipramine Human Orthostatic hypotension 200 mg/day Guelfi et al., 1983
Imipramine Dog Decrease 0.5 mg � kg�1

� min�1 Lindbom et al., 1982
Nortriptyline Human Orthostatic hypotension 0.5–3.5 mg/kg/day Giardina et al., 1985
Nortriptyline Human No change 40 mg/day Thayssen et al., 1981
Amitriptyline Rabbit Decrease 15 mg/kg Hughes and Radwan, 1979
Amitriptyline Dog Decrease 0–20 mg/kg Lindbom et al., 1982
Amitriptyline Dog Decrease 1–10 mg/kg Yokota et al., 1987
Amitriptyline Dog Decrease 0.1–10 mg/kg Kato et al., 1974
Amitriptyline Human Decrease 25 mg/day Ogura et al., 1983
Amitriptyline Human No change 75 mg/day Penttilä et al., 2001
Maprotiline Rabbit Decrease 34 mg/kg Hughes and Radwan, 1979
Clomipramine Dog Decrease 1–10 mg/kg Yokota et al., 1987
Clomipramine Human Orthosatic hypotension 150 mg/day Christensen et al., 1985
Clomipramine Dog Decrease 0–20 mg/kg Lindbom et al., 1982
Desmethylimipramine Human Increase 100 mg Ross et al,. 1983
Desipramine Human No change 100 mg/day Chalon et al., 2003

MAO Inhibitors
Rasagiline Rat No change 0.2–1 mg/kg Finberg et al., 2006
Rasagiline Rat No change 1 mg/kg Abassi et al., 2004
Rasagiline Rat Decrease 10 mg/kg Abassi et al., 2004
Selegiline Rat No change 1–5 mg/kg Finberg et al., 2006
Selegiline Human Orthostatic hypotension 10 mg/day Turkka et al., 1997
Selegiline Rat No change 1 mg/kg Abassi et al., 2004
Selegiline Rat Decrease 10 mg/kg Abassi et al., 2004
L-Deprenyl Rat No change 5 mg/kg Stevens et al., 1998
L-Deprenyl Rat Increase 25 �g/100 g Kerecsen and Bunag, 1989
Clorgyline Rat No change 2 mg/kg Finberg et al., 2006
Clorgyline Rat No change/decrease 25 �g/100g Kerecsen and Bunag, 1989
Clorgyline Human Decrease 28 mg/day Murphy et al., 1979
Harmaline Rat Decrease 20 mg/kg Marwood et al., 1985
Pargyline Rat Decrease 100 mg/kg Marwood et al., 1985
Pargyline Rat Decrease 10 mg/kg Fuentes et al., 1979
Pargyline Human Decrease 87 mg/day Murphy et al., 1979
Tranylcypromine Rat Decrease 10 mg/kg Marwood et al., 1985
Tranylcypromine Rat Decrease 5 mg/kg Ashkenazi et al., 1983
Tranylcypromine Human Orthostatic hypotension 20–100 mg/day Nolen et al., 1993
Tranylcypromine Rat Increase 25 mg/kg Finberg et al., 2006
Isoniazid Rat Decrease 30–300 mg/kg Vidrio et al., 2000
Brofaromine Human Orthostatic hypotension 50–250 mg/day Nolen et al., 1993

SSRIs
Citalopram Human No change 40 mg/day Christensen et al., 1985
Citalopram Human No change 40–60 mg/day Pedersen et al., 1982
Citalopram Human No change 20 mg/day Penttilä et al., 2001
Fluvoxamine Human No change 300 mg/day Guelfi et al., 1983
Fluoxetine Rat Increase 10–50 �g i.c.v. Lazartigues et al., 2000
Fluoxetine Rat Decrease 10 mg/kg Sved et al., 1982
Fluoxetine Human Increase 20 mg/day Amsterdam et al., 1999
Paroxetine Dog Increase/ Decrease 0.1–10 mg/kg Yokota et al., 1987
Sertraline Human, adolescent No change Up to 200 mg/day Wilens et al., 1999
Sertraline Human No change Up to 400 mg/day Saletu et al., 1986
Zimeldine Dog Decrease 1–20 mg/kg Lindbom et al., 1982
Zimeldine Human No change 100 mg/day Saletu et al., 1986

SNRIs
Milnacipran Human Increase 0.2–0.8 mg/kg Caron et al., 1993
Venlafaxine Human Increase 75–225 mg/day Perahia et al., 2008
Venlafaxine Human Decrease 75–225 mg/day Alexandrino-Silva et al., 2008
Venlafaxine Human Increase 225–525 mg/day Mbaya et al., 2007
Duloxetine Rat Decrease 30 mg/day Chudasama and Bhatt, 2009
Duloxetine Human Increase 120–400 mg/day Derby et al., 2007
Duloxetine Human No change 60–120 mg/day Perahia et al., 2008
Duloxetine Human No change 40–120 mg/day Bailey et al., 2006
Duloxetine Human Increase 80 mg/day Chalon et al., 2003
Sibutramine Human Decrease 10–15 mg/day Sharma et al., 2009
Sibutramine Human Basal increase, decrease in

sympathetic stimulation
15 mg/day Birkenfeld et al., 2005

Sibutramine Rat No change 5 mg/day Chudasama and Bhatt, 2009
Sibutramine Human Decrease 10–15 mg/day Gaciong and Placha, 2005
Sibutramine Human Increase 5–20 mg/day McMahon et al., 2000
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the ability of 5-HT to reduce blood pressure in the long
term, it is tempting to speculate that the decrease in blood
pressure observed in response to these drugs is due specif-
ically to inhibition of 5-HT metabolism or uptake, but the
caveats described make it difficult to do so. Alternatively,
we have to question what an elevation in blood pressure in
response to these compounds means if 5-HT is a purported
antihypertensive agent.

B. Clinical Situations

1. Circulatory Shock. The involvement of 5-HT in
shock, a condition of near cardiovascular collapse be-
cause of significant blood loss, is interesting and compli-
cated. With the loss of blood, the body loses a significant
portion of its 5-HT, because platelets are the primary
source of circulating 5-HT. Shock is a 5-HT-reduced
condition. Scrogin (2003) and Tiniakov et al. (2007) have
done elegant work in demonstrating that activation of
the 5-HT1A receptor centrally can reverse the profound
reduction in total peripheral resistance in shock that is
due to hemorrhage and can rescue blood pressure. The
5-HT1A receptor has markedly complex roles in blood
pressure regulation, as outlined in Table 3. Depending
on the site of injection and the dose, 8-OH-DPAT (which
has significant affinity for 5-HT1 and 5-HT7 receptors)
can either elevate or reduce blood pressure in the rat,
the species in which the greatest amount of work has
been performed. The 5-HT1A receptor clearly serves mul-
tiple purposes, but in shock, the 5-HT1A receptor sup-
ports blood pressure.

2. Orthostatic Hypotension. Orthostatic hypotension
(postural hypotension) is defined clinically as a �20 mm
Hg decrease of systolic blood pressure or �10 mm Hg
decrease of diastolic blood pressure upon standing (Me-
dow et al., 2008). The dizziness experienced, associated
with fainting, can limit the use of these medications,
which occurs with a majority of the TCAs. The associa-
tion of orthostatic hypotension with multiple types of
serotonergic inhibitors raises the question of the in-
volvement of 5-HT in this event. We cannot explain how
SSRIs such as fluoxetine are used to treat orthostatic
hypotension whereas TCAs cause hypotension, but it is
logical to believe 5-HT is not at the root cause of either
event.

3. Serotonin Syndrome. More aptly named serotonin
toxicity or serotonin toxidrome, this situation occurs
with an overdose or interaction of drugs that promote an
elevation of 5-HT (Skop et al., 1994; Mason et al., 2000;
Boyer and Shannon, 2005). This is best recognized with
ingestion of foods rich in tryptophan taken with MAO
inhibitors, TCAs, SSRIs, SNRIs, or sometimes a combi-
nation of these drugs. This has also been observed with
alternative, nonregulated therapies, such as St. John’s
wort and tryptophan. 5-HT toxicity presents with a mul-
titude of symptoms that include central, gastrointesti-
nal, muscular, autonomic, and cardiovascular symp-
toms. Of these, an elevation in temperature is notable.

Hypertension is also associated with 5-HT toxicity. Ob-
viously, 5-HT has a multitude of physiological effects
that make its ability to reduce blood pressure, as we
observed in infusions, obfuscated by other activated
pathways.

4. Hypertension. The role played by 5-HT in hyper-
tension is still unclear. With the discovery of 5-HT in
blood, it made sense that 5-HT would be regarded as a
pathological factor in hypertension, promoting an in-
crease in total peripheral resistance. Indeed, arteries
isolated from both human and experimental models of
hypertension show a classic hyper-reactivity to 5-HT
that would support this activity. However, the action of
5-HT in vivo is far more complex. In the human, free
circulating 5-HT is elevated, and the uptake of 5-HT
appears to be impaired in the platelet of the hyperten-
sive human such that the platelet appears “activated”
(Kamal et al., 1984; Persson et al., 1988; Fetkovska et
al., 1990a,b; Carrasco et al., 1998; Brenner et al., 2007).

By contrast, in pregnancy-induced hypertension, plate-
let content of 5-HT is increased and release of 5-HT is
reduced (Gujrati et al., 1994) or shown to be unchanged
(Jelen et al., 1979). Filshie et al. (1992) found that urinary
5-HIAA was not elevated in women with pregnancy-
induced hypertension compared with women with normal
pregnancy. Thus, there is no clear-cut association between
platelet 5-HT content and blood pressure. The association
of a reduced level of circulating 5-HT with elevated blood
pressure in the human was suggested by Topsakal et al.
(2009). In patients with hypertension who do not show the
normal decrease in nocturnal blood pressure (“nondip-
pers”), thrombocyte 5-HT levels were lower compared with
“dippers” and control dubjects. We made an attempt to
address this question of whether there is a correlative
relationship between circulating 5-HT levels (free and
platelet-bound) and blood pressure. For this purpose, we
performed a regressive correlation of the free plasma and
platelet-rich measures of 5-HT circulating in the rodent,
along with telemetric measures of systolic blood pressure
taken at the end of a 1-week infusion of 5-HT [Alzet min-
iosmotic pump (25 �g � kg�1

� min�1)]. These results were
retrieved from our published articles and represent only
male rats—both normotensive and hypertensive—that re-
ceived 5-HT (Diaz et al., 2008; Davis et al., 2011; 25 �g �

kg�1
� min�1 for 1 week). The 5-HT values in Fig. 8 repre-

sent the 5-HT concentration measured on the last day of
infusion. Using these values, there is no linear relationship
between either platelet-poor (free) or platelet-rich (plasma)
and mean arterial blood pressure in the rat. As such, it is
difficult to describe changes in circulating 5-HT as causal
or a result of elevated blood pressure.

The pathogenic effect of 5-HT was initially supported by
studies reported decades ago that showed the ability of the
5-HT2A/2C receptor antagonist ketanserin to reduce blood
pressure in the human and in experimental models of
hypertension (Nelson et al., 1987; Liu et al., 1991; Azzadin
et al., 1995; Krygicz et al., 1996; van Schie et al., 2002), but
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this effect was later attributed to �-adrenergic receptor
blockade (Vanhoutte 1991; Wenting et al., 1982; Cohen et
al., 1983a; Vanhoutte et al., 1988; van Zwieten et al., 1992).
Other 5-HT2A receptor antagonists such as ritanserin and
6-methyl-1-(1-methylethyl)ergoline-8â-carboxylic acid
2-hydroxy-1-methylpropyl ester (LY53857) have not
proven effective in reducing blood pressure (Cohen et al.,
1983b; Gradin et al., 1985; Dalton et al., 1986; Nelson et
al., 1987; Frishman et al., 1988; Stott et al., 1988; Do-
cherty, 1989), making the effect of 5-HT on blood pressure
equivocal. In the human, one report suggests that polymor-
phism of the 5-HT2A receptor is associated with elevation
of blood pressure (Halder et al., 2007), but the mechanism
of contribution of this polymorphism to blood pressure is
not understood.

VII. Conclusions and Outstanding Questions

The role of 5-HT in modifying blood pressure is complex.
We present both in vitro and in vivo evidence that argues
5-HT does have effects on blood pressure, many times
opposite in nature in in vitro versus in vivo settings. These
studies have raised a number of important questions that
are the basis for future studies:

• What is the mechanism of 5-HT-induced long-term
depression of blood pressure? Time and again, it
has been demonstrated that 5-HT causes a long-
term decrease in blood pressure. This decrease
seems to be completely dependent on 5-HT stimu-
lation of NOS activity, because the NOS inhibitor
L-NNA abolishes the effect of 5-HT. Where in the
body does 5-HT stimulate NOS? The vascular en-
dothelial cell and neuron are the best candidates.

• Does 5-HT cross the blood-brain barrier? This ques-
tion is important to answer given the long-held belief
that 5-HT does not cross the blood-brain barrier, a
belief held despite data, though decades old, that sug-
gest the opposite. This knowledge would help us in-
clude or eliminate the central nervous system as a
target for 5-HT in reducing blood pressure during

prolonged exposure.
• How are temperature and blood pressure linked by

5-HT? In several studies, 5-HT decreases blood pres-
sure while causing heat loss. The ability of 5-HT to
modify temperature itself, but also change tempera-
ture through cutaneous vasodilation, is interesting.
Studies that investigate the primacy of temperature
versus blood pressure homeostasis and whether 5-HT
is a ‘connector’ to these two important physiological
endpoints would be fascinating.

• Does intracellular 5-HT modify cardiovascular func-
tion? The possibility that intracellular 5-HT can mod-
ify proteins has been raised. This is carried out by the
enzyme transglutaminase to change the function of
proteins such as the small G protein Rho. Paulmann
et al. (2009) made the important observation that
5-HT regulates insulin secretion from pancreatic �

cells by serotonylating (e.g., adding 5-HT to a protein
covalently) GTPases. All the work cited above consid-
ers the biological activities of 5-HT as being exerted
external to the cell through classic receptor stimula-
tion. This particular article points to the idea that we
may need to reconsider whether 5-HT also exerts bi-
ological effects internal to the cell.
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(2005) Triptan-induced contractile (5-HT1B receptor) responses in human cerebral
and coronary arteries: relationship to clinical effect. Clin Sci 109:335–342.

Eglen RM, Perkins LA, Walsh LK, and Whiting RL (1992) Agonist action of indole
derivatives at 5-HT1-like, 5-HT3, and 5HT4 receptors in vitro. J Auton Pharmacol
12:321–333.

Ellis ES, Byrne C, Murphy OE, Tilford NS, and Baxter GS (1995) Mediation by
5-hydroxytryptamine2B receptors of endothelium-dependent relaxation in rat jug-
ular vein. Br J Pharmacol 114:400–404.

Ellwood AJ and Curtis MJ (1997) Involvement of 5-HT(1B/1D) and 5-HT2A receptors
in 5-HT-induced contraction of endothelium-denuded rabbit epicardial coronary
arteries. Br J Pharmacol 122:875–884.

Erspamer V and Asero B (1952) Identification of enteramine, the specific hormone of
the enterochromaffin cell system, as 5-hydroxytryptamine. Nature 169:800–801.

Evans RG, Haynes JM, and Ludbrook J (1993) Effects of 5-HT-receptor and alpha
2-adrenoceptor ligands on the haemodynamic response to acute central hypovol-
aemia in conscious rabbits. Br J Pharmacol 109:37–47.

Fastier FN and Waal H (1957) The antidiuretic action of 5-hydroxytryptamine in
cats in relation to the production of certain chemoreflexes. Br J Pharmacol Che-
mother 12:484–488.

Feldman PD and Galiano FJ (1995) Cardiovascular effects of serotonin in the
nucleus of the solitary tract. Am J Physiol 269:R48–R56.

Feniuk W, Humphrey PP, and Watts AD (1979) Presynaptic inhibitory action of
5-hydroxytryptamine in dog isolated saphenous vein. Br J Pharmacol 67:247–254.

Feniuk W, Humphrey PP, Perren MJ, and Watts AD (1985) A comparison of 5-hy-
droxytryptamine receptors mediating contraction in rabbit aorta and dog saphe-
nous vein: evidence for different receptor types obtained by use of selective ago-
nists and antagonists. Br J Pharmacol 86:697–704.

Ferreira HS, de Castro e Silva E, Cointeiro C, Oliveira E, Faustino TN, and Fre-
goneze JB (2004) Role of central 5-HT3 receptors in the control of blood pressure in
stressed and non-stressed rats. Brain Res 1028:48–58.

Ferreira HS, Oliveira E, Faustino TN, Silva Ede C, and Fregoneze JB (2005) Effect
of the activation of central 5-HT2C receptors by the 5-HT2C agonist mCPP on blood
pressure and heart rate in rats. Brain Res 1040:64–72.

Fetkovska N, Amstein R, Ferracin F, Regenass M, Bühler FR, and Pletscher A
(1990a) 5-Hydroxytryptamine kinetics and activation of blood platelets in patients
with essential hypertension. Hypertension 15:267–273.

Fetkovska N, Pletscher A, Ferracin F, Amstein R, and Buhler FR (1990b) Impaired
uptake of 5 hydroxytryptamine platelet in essential hypertension: clinical rele-
vance. Cardiovasc Drugs Ther 4 (Suppl 1):105–109.

Feuerstein TJ (2008) Presynaptic receptors for dopamine, histamine, and serotonin.
Handb Exp Pharmacol 184:289–338.

Filshie GM, Maynard P, Hutter C, Cooper JC, Robinson G, and Rubin P (1992)
Urinary 5-hydroxyindole acetate concentration in pregnancy induced hyperten-
sion. BMJ 304:1223.

Finberg JP, Gross A, Bar-Am O, Friedman R, Loboda Y, and Youdim MB (2006)
Cardiovascular responses to combined treatment with selective monoamine oxi-
dase type B inhibitors and L-DOPA in the rat. Br J Pharmacol 149:647–656.
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