Serpent: A New Block Cipher Proposal

Eli Biham!, Ross Anderson?, and Lars Knudsen?

1 Technion, Haifa, Israel; biham@cs.technion.ac.il
2 Cambridge University, England; rja14@cl.cam.ac.uk
3 University of Bergen, Norway; lars.knudsen®@ii.uib.no

Abstract. We propose a new block cipher as a candidate for the Advan-
ced Encryption Standard. Its design is highly conservative, yet still allows
a very efficient implementation. It uses the well-understood DES S-boxes
in a new structure that simultaneously allows a more rapid avalanche, a
more efficient bitslice implementation, and an easy analysis that enables
us to demonstrate its security against all known types of attack. With a
128-bit block size and a 256-bit key, it is almost as fast as DES on a wide
range of platforms, yet conjectured to be at least as secure as three-key
triple-DES.

1 Introduction

For many applications, the Data Encryption Standard algorithm is nearing the
end of its useful life. Its 56-bit key is too small, as shown by a recent distributed
key search exercise [2I]. Although triple-DES can solve the key length problem,
the DES algorithm was also designed primarily for hardware encryption, yet the
great majority of applications that use it today implement it in software, where
it is relatively inefficient.

For these reasons, the US National Institute of Standards and Technology
has issued a call for a successor algorithm, to be called the Advanced Encryption
Standard or AES. The essential requirement is that AES should be both faster
and more secure than triple DES; specifically, it should have a 128 bit block
length and a key length of 256 bits (though keys of 128 and 192 bits must also
be supported).

In this paper, we present a candidate for AES. Our design philosophy has
been highly conservative; we did not feel it appropriate to use novel and un-
tested ideas in a cipher which, if accepted after a short review period, will be
used to protect enormous volumes of financial transactions, health records and
government information over a period of decades.

We therefore decided to use the S-boxes from DES, which have been sub-
jected to intense study over many years and whose properties are thus well
understood, in a new structure which is optimized for efficient implementation
on modern processors while simultaneously allowing us to apply the extensive
analysis already done on DES. As a result, we can show that our design resists
all known attacks, including those based on both differential [7] and linear [20]
techniques.

S. Vaudenay (Ed.): Fast Software Encryption — FSE’98, LNCS 1372, pp. 222-[238] 1998.
(© Springer-Verlag Berlin Heidelberg 1998



Serpent: A New Block Cipher Proposal 223

We propose several variants of the cipher, which we have tentatively named
Serpent. The primary variant is a 32-round cipher which we believe to be as
secure as three-key triple-DES, but which is only slightly slower than DES when
implemented in C on a Pentium (in some assembly languages it may be faster
than DES). It is an SP-network operating on four 32-bit words, thus giving a
block size of 128 bits.

The additional variants have increased block sizes. The block size can be
doubled to 256 bits either by increasing the word size from 32 to 64 bits (which
will be well suited to the new generation of 64-bit processors), or by using the
round function in a Feistel construction. These two variants can be combined to
give a cipher with 512-bit blocks.

At this stage all the variants are still tentative. We are still working on
improvements and analysis. As usual in this field, we encourage interested parties
to analyze the cipher, inform us of any weakness, and pass on any remarks or
suggestions for improvements.

All values used in the ciphers are represented in little-endian, including the
bit order (0-31 in 32-bit words, or 0-127 in the full 128-bit blocks), and the
order of words in the block. Thus bit 0 is the least significant bit, and word
0 is the least significant word. The notation is important, as there are two
equivalent representations of Serpent: a standard representation and a bitslice
representation.

2 The Cipher

The main variant of our cipher encrypts a 128-bit plaintext P to a 128-bit
ciphertext C' in r rounds under the control of r + 1 128-bit subkeys Ko, ..., K,.
(We have chosen r = 32 as the default, and will henceforth replace r by 32 in
order to make the description of the cipher more readable.)

The cipher is an SP-network and consists of:

— an initial permutation I P;

— 32 rounds, each consisting of a key mixing operation, a pass through S-boxes,
and (in all but the last round) a linear transformation. In the last round,
this linear transformation is replaced by an additional key mixing operation;

— a final permutation F'P.

The initial and final permutations do not have any cryptographic significance.
They are used to simplify an optimized implementation of the cipher, which
is described in the next section, and to improve its computational efficiency.
Both these two permutations and the linear transformation are specified in the
appendix; their design principles will be made clear in the next section.

We use the following notation. The initial permutation I P is applied to the
plaintext P giving Bg, which is the input to the first round. The rounds are
numbered from 0 to 31, where the first round is round 0 and the last is round 31.
The output of the first round (round 0) is By, the output of the second round
(round 1) is Bg, the output of round ¢ is Bz+1, and so on, until the output of the



224 Eli Biham, Ross Anderson, Lars R. Knudsen

last round (in which the linear transformation is replaced by an additional key
mixing) is denoted by Bjs. The final permutation F'P is now applied to give the
ciphertext C.

Each round function R; (¢ € {0,...,31} uses only a single replicated S-box.
For example, Ry uses Sy, 32 copies of which are applied in parallel. Thus the first
copy of Sy takes bits 0,1,2 and 3 of By @& K as its input and returns as output
the first four bits of an intermediate vector; the next copy of Sy inputs bits 4-7 of
Bg @Ko and returns the next four bits of the intermediate vector, and so on. The
intermediate vector is then transformed using the linear transformation, giving
B. Similarly, Ry uses 32 copies of S; in parallel on By ® K; and transforms
their output using the linear transformation, giving Bo.

In the last round R3;, we apply Ss3; on 331 @ Kgl, and XOR the result
with K. 32 rather than applying the linear transformation. The result ng is then
permuted by F'P, giving the ciphertext.

Thus the 32 rounds use 32 different S-boxes each of which maps four input
bits to four output bits. Each S-box is used only in one round, in which it is
used 32 times in parallel. The 32 S-boxes are chosen as the 32 separate lines of
the eight DES S-boxes; thus our Sy (used in round 0) is the first line of the DES
S1, our Sy (used in round 1) is the second line of the DES S1, our Sy (used in
round 4) is the first line of the DES S2 and so on.

As with DES, the initial permutation is the inverse of the final permutation.
Thus the cipher may be formally described by the following equations:

By = IP(P)
Bit1 = Ri(B)
C =I1P7Y(B,)
where
Ri(X)=LS(XaK;) i=0,...,r—2
R(X)=S(XaeK)aK, i=r—1

where Si is the application of the S-box S; 32 times in parallel, and L is the
linear transformation.

Although each round of the proposed cipher might seem weaker than a round
of DES, we shall see below that their combination overcomes the weakness. The
greater speed of each round, and the increased number of rounds, make the
cipher both almost as fast as DES and much more secure.

2.1 Decryption

Decryption is different from encryption in that the inverse of the S-boxes must
be used, as well as the inverse linear transformation and reverse order of the
subkeys.



Serpent: A New Block Cipher Proposal 225
3 An Efficient Implementation

Much of the motivation for the above design will become clear as we consider
how to implement the algorithm efficiently. We do this in bitslice mode. For a
full description of a bitslice implementation of DES, see [9]; the basic idea is that
just as one can use a 1-bit processor to implement an algorithm such as DES
by executing a hardware description of it, using a logical instruction to emulate
each gate, so one can also use a 32-bit processor to compute 32 different DES
blocks in parallel — in effect, using the CPU as a 32-way SIMD machine.

This is much more efficient than the conventional implementation, in which
a 32-bit processor is mostly idle as it computes operations on 6 bits, 4 bits, or
even single bits. The bitslice approach was used in the recent successful DES key
search, in which spare CPU cycles from thousands of machines were volunteered
to solve a challenge posed by RSADSI. However the problem with using bitslice
techniques for DES encryption (as opposed to keysearch) is that one has to
process many blocks in parallel, and although special modes of operation can be
designed for this, they are not the modes in common use.

Our cipher has therefore been designed so that all operations can be executed
using 32-fold parallelism during the encryption or decryption of a single block.
Indeed the bitslice description of the algorithm is much simpler than its conven-
tional description. No initial and final permutations are required, since the initial
and final permutations described in the standard implementation above are just
the conversions of the data from and to the bitslice representation. We will now
present an equivalent description of the algorithm for bitslice implementation.

The cipher consists simply of 32 rounds. The plaintext becomes the first
intermediate data By = P, after which the 32 rounds are applied, where each
round ¢ € {0,...,31} consists of three operations:

1. Key Mixing: At each round, a 128-bit subkey K is exclusive or’ed with the
current intermediate data B;

2. S Boxes: The 128-bit combination of input and key is considered as four
32-bit words. The S-box, which is implemented as a sequence of logical
operations (as it would be in hardware) is applied to these four words, and
the result is four output words. The CPU is thus employed to execute the
32 copies of the S-box simultaneously, resulting with S;(B; & K;)

3. Linear Transformation: The 32 bits in each of the output words are linearly
mixed, by

Xo, X1, X2, X3 =8,(B; @ K;)
Xo=Xp <<< 13
Xo=Xo <<« 3
X1 =X10 Xo P Xo
X3 = X3 Xo @ (Xo << 3)



226 Eli Biham, Ross Anderson, Lars R. Knudsen

X1 =X <<<«1
X3 = X3 <<<7
Xo=Xo0 X1 4 X3
Xo=XoD X330 (X7 << 7)
Xo=Xp<<<5b
Xo = Xo <<< 22

Biy1 = Xo, X1, X2, X3

where << < denotes rotation, and << denotes shift. In the last round, this linear
transformation is replaced by an additional key mixing: B, = S,_1(B,_1 &
K,._1) ® K,. Note that at each stage IP(B;) = Bi, and IP(K;) = K;.

The first reason for the choice of linear transformation is to maximize the
avalanche effect. The DES S-boxes have the property that a single input bit
change will cause two output bits to change; as the difference sets of {0, 1, 3, 5,
7, 13, 22} modulo 32 have no common member (except one), it follows that a
single input bit change will cause a maximal number of bit changes after two and
more rounds. The effect is that each plaintext bit, and each round key bit, affect
all the data bits after three rounds. Even if an opponent chooses some subkeys
and works backwards, it is still the case that each key bit affects each data bit
over six rounds. (Some historical information on the design of the above linear
transformation is given in the appendix.) The second reason is that it is simple,
and can be used in a pipelined processor with a minimum number of pipeline
stalls. The third reason is that it was analyzed by programs we developed for
investigating block ciphers, and we found bounds on the probabilities of the
differential and linear characteristics. These bounds show that this choice suits
our needs, although we would like to improve on it.

So we are still considering other, simpler, choices for the linear transfor-
mation. One possibility is to adapt an LFSR-like transform of the form X; =
X; ® ROL(X;_4,7;) for i =1,...,6, where the four data words are X,..., X3,
the indices of X are taken modulo 4, and the r;’s are fixed. The problems with
such a scheme are that it is hard to pipeline, and that every characteristic can
be rotated in all its words and still remain with the same probability. We are
still working on other possible linear transformations.

4 The Key Schedule

As with the description of the cipher, we can describe the key schedule in either
standard or bitslice mode. For reasons of space, we will give the substantive
description for the latter case.

Our cipher requires 132 32-bit words of key material. We first expand the
user supplied 256 bit key K to 33 128-bit subkeys Ky, ..., K32, in the following
way. We write the key K as eight 32-bit words w_g, ..., w_; and expand these
to an intermediate key (which we call prekey) wo, ..., wis1 by the following
affine recurrence:



Serpent: A New Block Cipher Proposal 227

w; = (wi_s Dwi—s Dw;—3 Dw;—1 D (25@2) <<< 11

where ¢ is the fractional part of the golden ratio (v/5 + 1)/2 or 0x9e3779b9
in hexadecimal. The underlying polynomial 2® + 27 4+ 2% + 2% + 1 is primitive,
which together with the addition of the round index is chosen to ensure an even
distribution of key bits throughout the rounds, and to eliminate weak keys and
related keys.

The round keys are now calculated from the prekeys using the S-boxes, again
in bitslice mode. The S-box inputs and outputs are taken at a distance of 33
words apart, in order to minimize the key leakage in the event of a differential
attack on the last few rounds of the cipher. We use the S-boxes to transform
the prekeys w; into words k; of round key by dividing the vector of prekeys into
four sections and transforming the i’th words of each of the four sections using
S(r+3—i) mod r- This can be seen simply for the default case r = 32 as follows:

{ko, k33, kes, koo } = S3(wo, w33, wee, Woy)
{k1, k34, ke7, k100 } = S2(w1, w34, we7, wioo)

{k31, ks, kor, k130} = Sa(ws1, wea, wor, w130)
{ks32, kes, kos, k131} = S3(ws2, wes, wos, w131)

We then renumber the 32-bit values k; as 128-bit subkeys K; (for i € {0, ...,
r}) as follows:

K; = {kai, kaiv1, kaivo, kaivs} (1)

Where we are implementing the algorithm in the form initially described in
section 2 above rather than using bitslice operations, we now apply IP to the
round key in order to place the key bits in the correct column, i.e., K; = IP(Kj;).

5 Security

As mentioned above, the differential and linear properties of the DES S-boxes
are well understood. Our preliminary estimates indicate that the number of
known/chosen plaintexts required for either type of attack would exceed 2128
(they are certainly well over 2!%° and we are working on more accurate bounds).
There is thus no indication of any useful shortcut attack; we believe that such
an attack would require a new theoretical breakthrough. In any case, it should
be noted that regardless of the design of a 128 bit block cipher, it is normally
prudent to change keys well before 264 blocks have been encrypted, in order
to avoid the collision attack of section 5.2 below. This would easily prevent all
known shortcut attacks.



228 Eli Biham, Ross Anderson, Lars R. Knudsen

We designed the cipher with a view to reducing or avoiding vulnerabilities
arising from the following possible weaknesses and attacks. In our analysis, we
use conservative bounds to enable our claims to resist reasonable improvements
in the studied attacks. For example, we analyze the cipher using 24-round and
28-round characteristics, shorter by 8 and 4 rounds than the cipher, while the
best attack on DES uses characteristics that are shorter by only three rounds.
Our estimates of the probabilities of the best characteristics are also very conser-
vative; in practice they should be considerably lower. Therefore, our complexity
claims are probably much lower than the real values, and Serpent is expected to
be much more secure than we actually claim.

5.1 Dictionary Attacks

As the block size is 128 bits, a dictionary attack will require 2!2® different plain-
texts to allow the attacker to encrypt or decrypt arbitrary messages under an
unknown key. This attack applies to any deterministic block cipher with 128-bit
blocks regardless of its design.

5.2 Modes of Operation

After encrypting about 294 plaintext blocks in the CBC or CFB mode, one
can expect to find two equal ciphertext blocks. This enables an attacker to
compute the exclusive-or of the two corresponding plaintext blocks [18]. With
progressively more plaintext blocks, plaintext relationships can be discovered
with progressively higher probability. This attack applies to any deterministic
block cipher with 128-bit blocks regardless of its design.

5.3 Key-Collision Attacks

For key size k, key collision attacks can be used to forge messages with complexity
only 2%/2 [5]. Thus, the complexity of forging messages under 128-bit keys is only
264 under 192-bit keys it is 2°°, and under 256-bit keys it is 228, This attack
applies to any deterministic block cipher, and depends only on its key size,
regardless of its design.

5.4 Differential Cryptanalysis

An important fact about Serpent is that any characteristic must have at least
one active S-box in each round. At least two active S-boxes are required on
average, due to the property that a difference in only one bit in the input causes
a difference of at least two bits in the output of each S-box. Therefore, if only one
bit differs in the input of some round, then at least two differ in the output, and
these two bits affect two distinct S-boxes in the following round, whose output
differences affect at least four S-boxes in the following round.

We searched for the best characteristics of this cipher. For this, we made a
worst case assumption that all the entries in the difference distribution tables



Serpent: A New Block Cipher Proposal 229

have probability 1/2, except the few entries which have only one bit input diffe-
rence and one bit output difference, which are assumed impossible (probability
zero). These bounds are satisfied by all the S-boxes, except for one entry of Ssg,
where the maximal value is 10/16: the highest probabilities in the various S-boxes
are 6/16 and 8/16, except in S2; in which it is 4/16 and in S3g in which it is
10/16. We assume later that round 30 is not approximated by the characteristic
anyway. Thus the following results hold independently of the order of the S-boxes
used in the cipher, and independently of the choice of the S-boxes, so long as
they satisfy these minimal conditions. We searched for the best characteristics
with up to seven rounds, and the ones with the highest probabilities are given
in Table [

Rounds Differential Linear Probability

Probability (1/2 +p) p2
1 271 1/2+6/16 =1/2+2" % 228
2 273 1/2+(6/16)3 =1/2£2722 244
3 277 1/2+(6/16)8 =1/2+ 2743 286
4 2713 1/24(6/16)14 =1/2 42768 2136
5 272 1/24(6/16)%0 =1/2 42793 2186
6 2729 1/24(6/16)%7 =1/2 £ 27122 2244

BN

<273 1/24(6/16)3% = 1/2 £ 27138 5 9276

Table 1. Bounds on the Probabilities of Differential and Linear Characteristics

We can see that the probability of a 6-round characteristic is bounded by
2729 Thus, the probability of a 24-round characteristic is bounded by 27429 =
27116 Tn practice, the probability of the best 24-round characteristic is expected
to be much lower than this. Thus, even if an attacker can implement an 8R-
attack, still the attack requires more than 217 chosen plaintexts (and again,
this is a very conservative estimate). If the attacker can implement only a 4R-
attack, using a 28-round characteristic, the probability of the characteristic is
bounded by 27435 = 27140 and the attack requires more plaintexts than are
available. A 3R-attack would require even more plaintexts.

Notice that if the linear transformation had used only rotates, then every
characteristic could have 32 equiprobable rotated variants, with all the data
words rotated by the same number of bits. This is the reason that we also use
shift instructions, which avoid most of these rotated characteristics.

We have bounded the probabilities of characteristics. However, it is both
much more important and much more difficult to bound the probabilities of
differentials. In order to reduce the probabilities of differentials we have (1)
reduced the probabilities of the characteristics, (2) ensured that there are few
characteristics with the highest possible probability, and that they cannot be
rotated and still remain valid, (3) arranged for characteristics to affect many
different bits, so that they cannot easily be unified into differentials.



230 Eli Biham, Ross Anderson, Lars R. Knudsen

We conjecture that the probability of the best 28-round differential is not
higher than 27!2°, and that such a differential if it exists would be very hard to
find. (Note that for any fixed key there expected to be differentials with proba-
bility 27129, but averaging over all possible keys reduces this average probability
to about 27128))

5.5 Linear Cryptanalysis

In linear cryptanalysis, it is possible to find one-bit to one-bit relations of the S-
boxes. The probability of these relations are 1/2+2/16. Thus, a 28-round linear
characteristic with only one active S-box in each round would have probability
1/2 £2%7(2/16)?® = 1/2 4+ 2757 and that an attack based on such relations
would require about 2% known plaintexts, if it were possible at all (as the
linear transformation assures that in the round following a round with only one
active S-box, at least two are active).

More general attacks can use linear characteristics with more than one active
S-box in some of the rounds. In this case the probabilities of the S-boxes are
bounded by 1/2 + 6/16. As with differential cryptanalysis, we can bound the
probability of characteristics. We searched for the best linear characteristic of
this cipher under the assumptions that a probability of any entry is not further
from 1/2 than 6/16 and that the probability of a characteristic which relates one
bit to one bit is not further from 1/2 than 2/16. Note that due to the relation
between linear and differential characteristics, the searches are very similar; we
actually modified the search program used in the differential case to search for
the best linear characteristics with up to seven rounds, and those with the highest
probabilities are given in Table[Tl

We can see that the probability of a 6-round characteristic is bounded by
1/2 427122 from which we can conclude that the probability of a 24-round
characteristic is bounded by 1/2 + 27458, The probability of a 28-round chara-
cteristic is bounded by 1/2 27522 and an attack based on it would require at
least 2194 known plaintexts. Again, we wish to emphasize that all these figures
are conservative lower bounds, and that the actual complexities of attacks are
expected to be substantially higher.

Based on these figures we conjecture that the probability of the best 28-round
linear differential is bounded by 1/2 £ 27%0, so an attack would need at least
2100 blocks. Again, this is a very conservative estimate; we believe the real figure
is over 2'2® and that linear attacks are thus infeasible. We are working on more
accurate figures; meantime the normal prudent practice of changing keys well
before 254 blocks have been encrypted will prevent linear attacks.

5.6 Higher Order Differential Cryptanalysis

It is well known that a dth order differential of a function of nonlinear order d is
constant, and this can be exploited in higher order differential attacks [4/T7/1Y].
The DES S-boxes all have nonlinear order 5 [I8]. From this one would expect
that the nonlinear order of the output bits after r rounds is about 3", with the



Serpent: A New Block Cipher Proposal 231

maximum value of 127 reachable after five rounds. Therefore we are convinced
that higher order differential attacks are not applicable to Serpent.

5.7 Truncated Differential Cryptanalysis

For some ciphers it is possible and advantageous to predict only the values of
parts of the differences after each round. This notion, of truncated differential
attacks, was introduced by Knudsen in [17]. However, the method seems best
applicable to ciphers where all operations are done on larger blocks of bits.
Because of the strong diffusion over many rounds, we believe that truncated
differential attacks are not applicable to Serpent.

5.8 Related Keys

As the key schedule uses rotations and S-boxes, it is highly unlikely that keys
can be found that allow related key attacks [8/I5/16]. Moreover, different rounds
of Serpent use different S-boxes, so even if related keys were found, related-key
attacks would not be applicable.

Serpent has none of the simpler vulnerabilities that can result from exploi-
table symmetries in the key schedule: there are no weak keys, semi-weak keys,
equivalent keys, or complementation properties.

5.9 Other Attacks

Davies’ attack [12]13] and the Improved Davies attack [6] are not applicable,
since the S-boxes are invertible, and no duplications of data bits are applied.

As far as we know, neither statistical cryptanalysis [22] nor partitioning
cryptanalysis [T4] provides a less complex attack than differential or linear cryp-
tanalysis.

5.10 Fault Analysis

We have not been concerned in this design to build in any particular protection
against attacks based on induced faults [BITOJTT]. If an attacker can progres-
sively remove the machine instructions by which this cipher is implemented,
or progressively destroy selected gates, or progressively modify the bits of the
key register, then he can clearly extract the key. We tend to the view that an
attacker with the ability to inspect or modify the implementation detail will have
many attacks based not just on compromising keys but on subverting protocols,
extracting plaintext directly and so on [2]. The mechanisms required to protect
against such attacks are largely independent of the design of any block cipher
used [1], and are thus beyond the scope of this work.



232 Eli Biham, Ross Anderson, Lars R. Knudsen

6 Performance

We implemented this cipher on a 133MHz Pentium/MMX processor. A 32-
round bitslice (unoptimized) implementation (available online from the authors’
web pages) gave speeds which are only slightly slower than DES: it encrypted
8,976,157 bits per second, while the best optimized DES implementation (Eric
Young’s Libdes) encrypts 9,824,864 bits per second on the same machine.

The performance of the cipher on other processors in bitslice mode should be
only slightly slower than the standard implementation of DES. When coded in
assembly language this cipher might be even faster than DES. It takes somewhat
over 2000 instructions to encrypt 128 bits versus typically 700 instructions to
encrypt 64 bits in DES. The reason our cipher is not 50% slower is that it has
been designed to make good use of pipelining.

The instruction count is based on the observation that a gate circuit of any
of the 4x4 S-boxes requires between 19 and 28 gates on the Pentium, between 18
and 28 on MMX (using only MMX instructions), and between 18 and 25 on the
DEC Alpha (the numbers vary due to the different sets of instructions, which
are detailed in the appendix). MMX has the additional advantage that it can
operate on 64-bit words, or alternatively on two 32-bit words at once (so two
encryptions can be done in parallel using the same or different keys). It is also
implemented with greater parallelism on some recent chips (e.g. the Pentium II).
On the other hand, it does not have rotate operations, so rotates require four
instructions (copy, shift left, shift right, and OR).

It is also worth remarking that if this cipher is adopted as the Advanced
Encryption Standard, and chip makers wish to support high speed implementa-
tion, then it may not be necessary to add a hardware encryption circuit to the
CPU. It would be sufficient to add what we call the ‘BITSLICE instruction’.
This executes an arbitrary boolean function on four registers under the control
of a truth table encoded in a (64-bit) fifth register. We estimate that the cost
of implementing this on an n-bit processor will be only about 100n gates, and
it would have many uses other than cryptography (an example would be image
processing). If supported, one BITSLICE instruction would replace most of the
instructions in each round, and Serpent would become two or three times faster
than DES.

It is also worth noting that hardware implementations of the cipher can
iteratively apply one round at a time, although the S-boxes in each round are
different. The trick is similar to the BITSLICE instruction: the designers of
the hardware can design the round function to get a description of the S-boxes
as a parameter in some register, and compute the S-boxes according to this
description. This trick crucially reduces the number of gates required for the
hardware implementation of the cipher. An estimate of the gate count will be
provided in the full AES submission.



Serpent: A New Block Cipher Proposal 233

7 Other Variants

As we remarked above, there are two ways in which the block size can be doubled:

1. increase the word length (in the bitslice implementation) from 32 to 64 bits
(or more);
2. Use the round-function as the F-function in a Feistel construction.

If both of these are done, then the block size will be quadrupled.

These variants might require other modifications of the cipher, such as mo-
difications in the rotation constants. We believe that these variants are secure
(or can easily be made so). Work on them is ongoing.

8 Conclusion

We have presented a cipher which we have engineered to satisfy the AES requi-
rements. It is about as fast as DES, and conjectured to be as secure as three-key
triple DES. Its security is partially based on the reuse of the thoroughly studied
components of DES, and thus can draw on the wide literature of block cipher
cryptanalysis published in the last decade. Its performance comes from allowing
an efficient bitslice implementation on a range of processors, including the market
leading Intel/MMX and compatible chips.

This is still a preliminary design and may change between the time of writing
and the final AES submission. Readers are invited to attack the cipher, to test
implementations in various environments, and to report any interesting findings
to the authors. A patent application has been filed, but it is our intention to
grant a worldwide royalty-free license for conforming implementations in the
event that this cipher is adopted as the Advanced Encryption Standard.

Finally, up to date information on Serpent, including the latest revision of
the paper, can be found on the authors’ home pages:

http://www.cs.technion.ac.il/ “biham/
http://www.cl.cam.ac.uk/"rjail4/
http://www.ii.uib.no/"larsr/

Acknowledgments

The first author was supported by Intel Corporation during a visit to Cambridge
in September 1997 while much of this work was done; and the name of the cipher
was suggested by Gideon Yuval (see Amos 5.19).

References

1. DG Abraham, GM Dolan, GP Double, JV Stevens, “Transaction Security Sys-
tem”, in IBM Systems Journal v 30 no 2 (1991) pp 206-229



234

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

Eli Biham, Ross Anderson, Lars R. Knudsen

RJ Anderson, MG Kuhn, “Tamper Resistance — a Cautionary Note”, in The
Second USENIX Workshop on Electronic Commerce Proceedings (Nov 1996)
pp 1-11

RJ Anderson, MG Kuhn, “Low Cost Attacks on Tamper Resistant Devices”,
to appear in proceedings of Security Protocols 97

E Biham, ‘Higher Order Differential Cryptanalysis’, unpublished paper, 1994
E Biham, How to Forge DES-Encrypted Messages in 228 Steps, Technical Re-
port CS884, Technion, August 1996

E Biham, A Biryukov, “An Improvement of Davies’ Attack on DES”| in Journal
of Cryptology v 10 no 3 (Summer 97) pp 195-205

E Biham, A Shamir, ‘Differential Cryptanalysis of the Data Encryption Stan-
dard’ (Springer 1993)

E Biham, “New Types of Cryptanalytic Attacks Using Related Keys”, in Jour-
nal of Cryptology v 7 (1994) no 4 pp 229-246

E Biham, “A Fast New DES Implementation in Software”, in Fast Software
Encryption — 4th International Workshop, FSE 97, Springer LNCS v 1267
pp 260-271

E Biham, A Shamir, “Differential Fault Analysis of Secret Key Cryptosystems”,
in Advances in Cryptology — Crypto 97, Springer LNCS v 1294 pp 513-525
D Boneh, RA DeMillo, RJ Lipton, “On the Importance of Checking Cryptogra-
phic Protocols for Faults”, in Advances in Cryptology — Eurocrypt 97, Springer
LNCS v 1233 pp 37-51

DW Davies, ‘Investigation of a Potential Weakness in the DES Algorithm’,
private communication (1987)

D Davies, Murphy, “Pairs and Triplets of DES S Boxes”, in Journal of Cryp-
tology v 8 no 1 (1995) pp 1-25

C Harpes, JL Massey, “Partitioning Cryptanalysis”, in Fast Software Encryp-
tion — 4th International Workshop, FSE ’97, Springer LNCS v 1267 pp 13-27
J Kelsey, B Schneier, D Wagner, “Key-Schedule Cryptanalysis of IDEA, GDES,
GOST, SAFER and Triple-DES”, in Advances in Cryptology — Crypto 96,
Springer LNCS v 1109 pp 237251

LR Knudsen, “Cryptanalysis of LOKI91”, in Advances in Cryptology — Aus-
crypt’92 Springer LNCS

LR Knudsen, “Truncated and Higher-Order Differentials”, in Fast Software
Encryption — 2nd International Workshop, FSE 94, Springer LNCS v 1008
pp 196-211

L.R. Knudsen, Block Ciphers — Analysis, Design and Applications, Ph.D. The-
sis, Aarhus University, Denmark, 1994.

X.J. Lai, ‘Higher Order Derivative and Differential Cryptanalysis’, in Com-
munication and Cryptography, Two Sides of one tapestry, R. Blahut (editor),
Kluwer Academic Publishers, 1994

communication, September 30, 1993.

M Matsui, “Linear Cryptanalysis Method for DES Cipher”, in Advances in
Cryptology — FEurocrypt 93, Springer LNCS v 765 pp 386-397

RSA Data Security Inc., www.rsa.com

S Vaudenay, “An Experiment on DES Statistical Cryptanalysis”, in 8rd ACM
Conference on Computer and Communications Security, March 14-16, 96, New
Delhi, India; proceedings published by ACM pp 139-147



Serpent: A New Block Cipher Proposal 235

A Appendix

A.1 The Initial Permutation IP:

0 32 64 96 1 33 65 97 2 34 66 98 3 35 67 99
4 36 68 100 5 37 69 101 6 38 70 102 7 39 71 103
8 40 72104 9 41 73 105 10 42 74 106 11 43 75 107

12 44 76 108 13 45 77 109 14 46 78 110 15 47 79 111
16 48 80 112 17 49 81 113 18 50 82 114 19 51 83 115
20 52 84 116 21 53 85 117 22 54 86 118 23 55 87 119
24 56 88 120 25 57 89 121 26 58 90 122 27 59 91 123
28 60 92 124 29 61 93 1256 30 62 94 126 31 63 95 127

A.2 The Final Permutation FP:

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124
1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61
65 69 73 77 81 85 89 93 97 101 105 109 113 117 121 125
2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62
66 70 74 78 82 86 90 94 98 102 106 110 114 118 122 126
3 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63
67 71 75 79 83 87 91 95 99 103 107 111 115 119 123 127

A.3 The Linear Transformation:

For each output bit of this transformation, we describe the list of input bits
whose parity becomes the output bit. In each row we describe four output bits,
which later enter the same S-box in the next round. The bits are listed from 0
to 127.

{16 52 56 70 83 94 105} {72 114 125} { 2 9 15 30 76 84 126} {36 90 103}
{20 56 60 74 87 98 109} {1 76 118} { 2 6 13 19 34 80 88} {40 94 107}
{24 60 64 78 91 102 113} { 5 80 122} { 6 10 17 23 38 84 92} {44 98 111}
{28 64 68 82 95 106 117} { 9 84 126} {10 14 21 27 42 88 96} {48 102 115}
{32 68 72 86 99 110 121} { 2 13 88} {14 18 25 31 46 92 100} {52 106 119}
{36 72 76 90 103 114 125} { 6 17 92} {18 22 29 35 50 96 104} {56 110 123}

{14076 80 94 107 118} {10 21 96} {22 26 33 39 54 100 108} {60 114 127}
44 80 84 98 111 122} {14 25 100} {26 30 37 43 58 104 112} { 3 118 }
48 84 88 102 115 126} {18 29 104} {30 34 41 47 62 108 116} { 7 122 }
13 52 88 92 106 119} {22 33 108} {34 38 45 51 66 112 120} {11 126 3}
17 56 92 96 110 123} {26 37 112} {38 42 49 55 70 116 124} { 2 15 76}
21 60 96 100 114 127} {30 41 116} { 0 42 46 53 59 74 120} { 6 19 80}
14 25 100 104 118 } {34 45 120} { 4 46 50 57 63 78 124} {10 23 84}
122 } {38 49 124} { 0 8 50 54 61 67 82} {14 27 88}

4

8

(N

(N

22 33 108 112 126 }{0 42 53} 12 564 58 65 71 86} {18 31 92}
15 26 37 76 112 116} { 4 46 57} 16 58 62 69 75 90} {22 35 96}
19 30 41 80 116 120} { 8 50 61} {12 20 62 66 73 79 94} {26 39 100}
23 34 45 84 120 124} {12 54 65} {16 24 66 70 77 83 98} {30 43 104}
14 27 38 49 88 124} {16 58 69} {20 28 70 74 81 87 102} {34 47 108}
4 18 31 42 53 92} {20 62 73} {24 32 74 78 85 91 106} {38 51 112}
8 22 35 46 57 96} {24 66 77} {28 36 78 82 89 95 110} {42 55 116}

—
P OOOONF NWOONOOWM
=
(oo}

N
©
=
o
=
-

o
(3]

A A A A A A AR S A S S S



236 Eli Biham, Ross Anderson, Lars R. Knudsen
{81226 39 50 61 100} {28 70 81} {32 40 82 86 93 99 114}
{12 16 30 43 54 65 104} {32 74 85} {36 90 103 118 }
{16 20 34 47 58 69 108} {36 78 89} {40 94 107 122 }
{20 24 38 51 62 73 112} {40 82 93} {44 98 111 126 }
{24 28 42 55 66 77 116} {44 86 97} { 2 48 102 115 }
{28 32 46 59 70 81 120} {48 90 101} { 6 52 106 119 }
{32 36 50 63 74 85 124} {562 94 105} {10 56 110 123 }
{03640 54 67 78 89} {66 98 109} {14 60 114 127 }
{44044 58 71 82 93} {60 102 113} { 3 18 72 114 118 125 }
{84448 62 75 86 97} {64 106 117} { 1 7 22 76 118 122 }
{12 48 52 66 79 90 101} {68 110 121} { 5 11 26 80 122 126 }
A.4 S-Boxes

{46
{50
{0
{4
{8
{12
{16
{20
{24
{28
{32

Here are the S-boxes Sy through S3; (each on a separate line):

14 4 1312151183106 125907
0157 414 2131106 12 11 953 8
41148 136211151297 31050
16128249175 11314 10 0 6 13
1518146 11 3497213120 5 10
31347 1528141201106 9 115
0147 11104 131581269321

1381013154 21167 12 05 14
10091463 155113127 11 4 2

62

9
8

13709346 102851412 11 161
136498153011 12125 10 147
11013 06 987 415 14 3 11 5 2 12
71314306 9 101285 11 12 4 15
1381156150347 2121 10 14 9
106 9012117 131513 1452 8 4
31506 101138945 11127 2 14
212417101168 5315130 14 9

14 11 21247 1315015103 986
4211110137 81591256 3 0 14
118127114 2136 15609 10 45 3
1211015926 8013341475 11
1015427 12956113140 11 3 8
914 155281237 0410113 11 6
4321295 151011141760 8 13
4112141508 133129751061
1301174911014 351221586
141113 1237 14 101566 8 05 9 2
6 11 13814107 950 15 14 2 3 12
13284615 11110931450 127
1151381037 41256 110 14 9 2
7114191214 2 0 6 10 13 15 3 5 8
21147 4108 1315129 035 6 11

120}
124}
67}
71}
75}
79}
83}
87}
91}
95}
99}



Serpent: A New Block Cipher Proposal 237
A.5 Lists of Relevant Instructions on Various Processors

The relevant instructions on the following processors are:

Pentium: AND, OR, XOR, NOT, rotate
MMX: AND, OR, XOR, NOT, ANDN, only shifts
Alpha: AND, OR, XOR, NOT, ANDN, ORN, XORN, only shifts

where the ANDN operation on z and y is A (—y), the ORN operation is 2V (—y),
and the XORN operation is @ (—y) (or equivalently —(z @ y)).

On MMX a rotate takes four instructions, while on an Alpha it takes three.
On Pentium and MMX it might be necessary to copy some of the registers before
use, as instructions have only two arguments; but some instructions can refer
directly to memory. The Alpha instructions have 3 arguments (srcl, src2 and
destination), but cannot refer directly to memory.

A.6 Historical Remarks

Here we describe some design history. In our first design, the linear transforma-
tions were just bit permutations, which were applied as rotations of the 32-bit
words in the bitslice implementation. In order to ensure maximal avalanche, the
idea was to choose these rotations in a way that ensured maximal avalanche in
the fewest number of rounds. Thus, we chose three rotations at each round: we
used (0, 1, 3, 7) for the even rounds and (0, 5, 13, 22) for the odd rounds. The
reason for this was that (a) rotating all four words is of course useless (b) a
single set of rotations did not suffice for full avalanche (c¢) these sets of rotations
have the property that no difference of pairs in either of them coincides with a
difference either in the same set or the other set.

However, we felt that the avalanche was still slow, as each bit affected only
one bit in the next round, and thus one active S-box affected only 2-4 out of
the 32 S-boxes in the next round. As a result, we had to use 64 rounds, and the
cipher was only slightly faster than triple-DES. So we moved to a more complex
linear transformation; this improved the avalanche, and analysis showed that we
could now reduce the number of rounds to 32. We believe that the final result
is a faster and yet more secure cipher.

We also considered “improving” the cipher by replacing the XOR operations
by seemingly more complex operations, such as additions. We did not do this
due to two major reasons: (1) Our analysis takes advantage of the independence
between the bits in the XOR operation, as it allows us to describe the cipher
in a standard way, and use the known kinds of security analysis. This analysis
would not hold if the XOR operations were replaced; (2) in some other ciphers
the replacement of XORs by additions (or other operations) has turned out to
weaken the cipher, rather than strengthening it.



238 Eli Biham, Ross Anderson, Lars R. Knudsen

A.7 Reference Implementation

An unoptimized reference C implementation is available from the authors’ home
pages. Note however that the cipher may still be modified in the future as it
progresses through the AES selection process.



	Introduction
	The Cipher
	An Efficient Implementation
	The Key Schedule
	Security
	Performance
	Other Variants
	Conclusion
	Appendix

