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Abstract

The mammalian serum- and glucocorticoid-inducible kinase SGK1 regulates the endocyto-

sis of ion channels. Here we report that in C. elegans sgk-1 null mutants, GFP-tagged MIG-

14/Wntless, the sorting receptor of Wnt, failed to localize to the basolateral membrane of

intestinal cells; instead, it was mis-sorted to lysosomes. This effect can be explained in part

by altered sphingolipid levels, because reducing glucosylceramide biosynthesis restored

the localization of MIG-14::GFP. Membrane traffic was not perturbed in general, as no obvi-

ous morphological defects were detected for early endosomes, the Golgi apparatus, and

the endoplasmic reticulum (ER) in sgk-1 null animals. The recycling of MIG-14/Wntless

through the Golgi might be partially responsible for the observed phenotype because the

subcellular distribution of two plasma membrane cargoes that do not recycle through the

trans-Golgi network (TGN) was affected to a lesser degree. Consistently, knockdown of the

ArfGEF gbf-1 altered the distribution of SGK-1 at the basolateral membrane of intestinal

cells. In addition, we found that sgk-1(RNAi) induced unfolded protein response in the ER,

suggesting at least an indirect role of SGK-1 early in the secretory pathway. We propose

that SGK-1 function is required for lipid homeostasis and that it acts at different intracellular

trafficking steps.

Introduction

Mammalian serum- and glucocorticoid-inducible kinase 1 (SGK1) is an AGC kinase that was

cloned as a gene whose transcription was stimulated by serum and glucocorticoids in rat mam-

mary tumor cells [1–3]. Although SGK1 knockout mice display no severe defects [4–6], exces-

sive expression of SGK1 leads to several disorders including hypertension, obesity, and tumor

growth [4, 5]. In mammals, SGK1 is activated by insulin and growth factors through phosphoi-

nositide 3-kinase (PI3-kinase) and 3-phosphoinositide (PIP3)-dependent kinase (PDK1) [5, 7].

PLOSONE | DOI:10.1371/journal.pone.0130778 June 26, 2015 1 / 25

OPEN ACCESS

Citation: Zhu M, Wu G, Li Y-X, Stevens JK, Fan C-X,

Spang A, et al. (2015) Serum- and Glucocorticoid-

Inducible Kinase-1 (SGK-1) Plays a Role in

Membrane Trafficking in Caenorhabditis elegans.

PLoS ONE 10(6): e0130778. doi:10.1371/journal.

pone.0130778

Editor: Julie G. Donaldson, NHLBI, NIH, UNITED

STATES

Received: January 9, 2015

Accepted: May 22, 2015

Published: June 26, 2015

Copyright: © 2015 Zhu et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are

credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information files.

Funding: This work was funded by the Ministry of

Science and Technology of China and by the

municipal government of Beijing. The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared

that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0130778&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


SGK1 can be further activated by mammalian target of rapamycin complex 2 (mTORC2) [8].

Similar to another AGC kinase Akt (also called PKB), SGK1 can phosphorylate and inhibit the

forkhead transcription factor FOXO3a (FKHRL1) [9]; but unlike Akt, SGK1 can activate

nuclear factor-kappa B [10–12]. In response to a variety of stress stimuli, SGK1 up-regulates

many ion channels, transporters and enzymes [13–15].

How SGK1 regulates these ion channels and transporters is mostly unknown. Recently, it

was suggested that SGK1 is involved in the endocytosis of membrane proteins [16]. Cystic

fibrosis transmembrane conductance regulator (CFTR) is a chloride channel residing on the

apical plasma membrane (PM) of epithelial cells [17]. Curiously, while SGK1 inhibits the endo-

cytosis of CFTR in human airway epithelial cells, it promotes the endocytosis of the epidermal

growth factor receptor, which is also an apical plasma membrane protein [16]. Thus mamma-

lian SGK1 may be involved in differentially regulating endocytosis of plasma membrane

proteins.

Endocytosis is a key process by which cells internalize molecules [18]. Through receptor-

mediated endocytosis, the major route in most cells, plasma membrane proteins and lipids are

internalized in clathrin-coated vesicles and delivered to various destinations [19]. Once endo-

cytosed, different cargoes are sorted in the early endosomes [20]: ligands typically enter the

degradative pathway while their membrane receptors are often recycled back to the plasma

membrane [21]. There are three different routes in which membrane receptors are recycled

back to the plasma membrane: directly from sorting endosome through the tubular membrane

structures (fast recycling), from the sorting endosome to the recycling endosomes or endoso-

mal recycling compartments (ERC) (slow recycling), or through retrograde transport to the

trans-Golgi network (TGN) followed by re-export to the plasma membrane [22–24].

In yeast, Ypk1—a homologue of SGK-1—activates serine palmitoyl-CoA acyltransferase

(SPT) and promotes the biosynthesis of ceramide and sphingolipid [25, 26]. Ceramide is syn-

thesized at ER and transported to the Golgi for conversion to sphingomyelin (SM) [27]. Cer-

amide is an important structural element of cell membranes and SM is one of the major lipid

species in the lipid bilayer. Disruption of the biosynthesis of ceramide affects membrane traf-

ficking [28].

In C. elegans, sgk-1 encodes the sole ortholog of mammalian SGK1. Compared to the wild

type (WT), loss-of-function (lf) mutants of sgk-1 are abnormal in egg laying, development,

stress response, and lifespan [29, 30], but the underlying mechanism is largely unknown. SGK-

1 had been thought to regulate C. elegans lifespan in a way that resembles AKT-1 and AKT-2,

by inhibiting the C. elegans FOXO transcription factor DAF-16 [29]. Recent genetic results sug-

gested that SGK-1 activates DAF-16 [30–32]. However, it remains unknown whether sgk-1 can

regulate membrane trafficking in C. elegans.

Materials and Methods

C. elegans strains

Strains of C. elegans were cultured and maintained using standard protocols. The following

strains or alleles were used: the wild-type N2, pwIs765 (Pvha-6MIG-14::GFP), qxIs194 (Ptat-

1mCHERRY::MANS), zcIs4 (hsp-4pr::GFP), qxIs162 (Pges-1mCHERRY::TRAM), qxEx2247

(Pvha-6GLUT1::GFP), pwIs112 (Pvha-6hTAC::GFP), pwIs846 (Pvha-6tagRFP::RAB-5), qxIs111

(Pges-1mCHERRY::RAB-7), and pwIs72 (Pvha-6GFP::RAB-5). sgk-1(mg455) was kindly provided

by Alexander Soukas (Harvard Medical School). sgk-1(ok538) was obtained from CGC. sgk-1

(ok538) and sgk-1(mg455) were backcrossed to N2 for 6 and 4 times, respectively, and assigned

strain names MQD1027 and MQD1029. BR3063 byEx (Psgk-1SGK-1::GFP) was kindly provided

by Ralf Baumeister (Albert-Ludwig University, Germany). GFP was fused to the C terminus of
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SGK-1, using a 7.3 kb genomic sequence containing the a isoform of sgk-1 (5.1 kb) and a 2.2 kb

upstream regulatory sequence. The sequence at the far 5’ end is: CTCCGGTAACTTACTC

ATTTTCAAC and the sequence at far 3’ end is: CGTCGACACCAATCGCGTTTTGGTC.

BR3063 was integrated by gamma-irradiation and renamed as hqIs150 (Psgk-1SGK-1::GFP).

hqIs150 was backcrossed to N2 for 3 times and assigned the strain name MQD862.

Microscopy and imaging analysis

Differential interference contrast (DIC) and fluorescent images were captured with a Zeiss

AxioImager M1 equipped with an AxioCammonochrome digital camera. A 10 × air Plan-Neo-

fluar objective was used for detection of Phsp-4GFP. For confocal images, a Zeiss LSM 510 Meta

inverted confocal microscope with 488 nm and 543 nm lasers was used, and images were pro-

cessed and viewed using LSM Image Browser software and ZEN lite 2012 (Carl Zeiss). For

SGK-1::GFP upon gbf-1 RNAi, animals were mounted on 2% agarose pads in a drop of M9

containing 10 mM Levamisole, covered with a vaseline-rimmed cover slip and imaged with a

spinning-disk confocal system Andor Revolution (Andor Technologies, Belfast, Northern Ire-

land) mounted onto an IX-81 inverted microscope (Olympus, Center Valley, PA) equipped

with an iXonEM+ electron-multiplying charge-coupled device camera (Andor Technologies).

Specimens were imaged using a 63×/1.42 numerical aperture oil objective. Each pixel repre-

sents 0.107 μm. Excitation was achieved using solid-state 488 nm laser. Exposure time was

100 ms.

Quantitation of co-localization of mCHERRY::RAB-7 and MIG-14::GFP,
the fluorescence intensity of MIG-14::GFP, hTAC::GFP, hsp-4pr::GFP
and SGK-1::GFP with gbf-1 RNAi

mCHERRY::RAB-7 positive ring-like vesicles containing 0, 1 or� 2 MIG-14::GFP puncta were

counted for six N2 worms and ten sgk-1(ok538)mutant worms, within a 3,036 μm2 area in the

intestine of each worm. The cytoplasmic MIG-14::GFP was quantified by determining the aver-

age pixel intensity in non-overlapping 80 μm2 areas (8 μm × 10 μm) in the intestine (4 areas

per worm, 8 worms of N2, 10 worms of sgk-1(mg455) and 13 worms of sgk-1(ok538)). The P

value was calculated using Wilcoxon rank sum test. The cytoplasmic accumulation of hTAC::

GFP was quantified by determining the average pixel intensity within 32 non-overlapping

80 μm2 areas (8 μm × 10 μm) in the intestine (4 areas per worm; 8 worms). The intensities of

hTAC::GFP on the basal membrane and the lateral membrane were each measured as an aver-

age over 32 non-overlapping 35 μm2 areas (2.86 μm × 12.27 μm) in the intestine (4 areas per

worm; 8 worms). The average pixel intensity per unit area was determined using Image J 1.46r

software as described before [33]. The P value was calculated using Wilcoxon rank sum test.

The expression of the hsp-4 promoter driven GFP was quantified using Image J 1.46r software

as follows. Each image containing 15 worms was taken using the same exposure time (1,000

ms). The background was subtracted by deleting pixels that are nearly completely black (grey

values = 0, 1, or 2). Then, the average intensity of an entire image was measured. The results of

10 independent images are shown for each condition (a total of 150 worms). Z-stack images of

SGK-1::GFP upon gbf-1 RNAi were compressed in ImageJ version 1.48 (Wayne Rasband,

National Institutes of Health, USA) using the average projection tool, and total fluorescence

intensity and area was measured on the intestine that was outlined by the polygon selection

tool.
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RNAi

RNAi was performed as described [34]. For RNAi feeding experiments, the full-length cDNA

of sgk-1 was cloned into the empty vector L4440, and the resulting plasmid pZM79 was used to

transform the E. coli strain HT115. The cgt-1, cgt-3, gbf-1 andmon-2 RNAi bacterial strains

were obtained from the Ahringer RNAi library. The arl-1, cgt-1, cgt-3 and unc-11 RNAi bacte-

rial strains were obtained from the RCE1181 RNAi library. NGM plates containing 1 mM

IPTG were inoculated with RNAi bacteria and induced for 12 hours at room temperature. Eggs

were cultured at 20°C until L4. Bacteria transformed with the empty RNAi vector served as

control for feeding. RNAi started from 5–10 adult worms for 3–4 days and the L4 larvae of the

next generation were imaged. The only exception was the gbf-1 RNAi experiment for SGK-1::

GFP, in which RNAi started from L3 larvae for 3 days and the adult worms were imaged.

Immunoprecipitation-Mass Spectrometry (IP-MS) analysis

Chromosomally integrated transgenic worms expressing SGK-1::GFP were cultured on high-

growth (HG) plates. Lysates were made from 2 ml of packed, unsynchronized worms using

FastPrep-24 (MP Biomedicals) in lysis buffer (20 mM Tris-HCl pH 8.0, 150 mMNaCl, 0.1%

NP40, 2 mM EDTA, 1 × cocktail of protease inhibitors from Roche (Complete, EDTA free)).

Proteins bound to the GBP (GFP binding protein) beads (ChromoTek) were eluted with 60 μl

of 0.1 M glycine-HCl, pH 2.6, and neutralized with 10 μl of 1 M Tris-HCl, pH 8.0. The proteins

were precipitated with 4 × volumes of cold acetone and then re-dissolved in 8 M urea, 100 mM

Tris-HCl, pH 8.5. After reduction with 5 mM TCEP and then alkylation with 10 mM iodoace-

tamide, the samples were diluted fourfold to 2 M urea, 1 mM CaCl2, 20 mMmethylamine,

100 mM Tris-HCl, pH 8.5, and digested with 1 μg of trypsin at 37°C overnight. The MS analy-

sis was done in duplicates (two technical repeats). For each technical repeat, one fourth of the

resulting peptides were pressure-loaded onto a fused silica capillary column packed with 5 μm

Luna C18 material (RP, Phenomenex, Ventura, CA), with a Kasil frit at the end. The column

was washed with a buffer containing 95% water, 5% acetonitrile, and 0.1% formic acid. After

desalting, a 9 cm 100 μm i.d. capillary with a 5 μm pulled tip packed with 5 μm Luna C18 mate-

rial was attached to the two-phase column with a union. The peptides were separated over a

2-h reverse phase gradient generated by an Agilent 1100 quaternary HPLC (Agilent) and

sprayed directly into an LTQ Orbitrap mass spectrometer (ThermoFisher Scientific) with the

application of a distal 2.5 kV spray voltage. The gradient was as follows: 5 min from 100%

buffer A (5% acetonitrile, 0.1% formic acid) to 5% buffer B (80% acetonitrile, 0.1% formic

acid), then increasing to 30% buffer B over 75 min, further to 80% buffer B in 10 min, to 100%

buffer B in 10 min, and lastly, a 20-min 100% buffer B wash. The flow rate was maintained at

0.1 ml/min and the flow was split using a microTee that was connected, at one of its openings,

to an empty 50 μm i.d. capillary. The length of the empty capillary was adjusted so that a flow

rate of about 200 nl/min was achieved at the tip of the column. The mass spectrometer was

operated in the data-dependent mode. Survey MS scans were acquired in the orbitrap with the

resolution set to a value of 60000. Each survey scan (400−2000 m/z) was followed by 8 data-

dependent tandem mass (MS/MS) scans in the linear ion trap at 35% normalized collision

energy. AGC target values were 200,000 for the survey scan and 10,000 for the MS/MS scan.

Target ions already selected for MS/MS were dynamically excluded for 30 seconds. Proteins

were identified by searching the MS/MS spectra against a C. elegans protein database using

Prolucid [35] and filtering the search results with DTASelect 2.0 [36] at 0.01 false discovery

rate (FDR) at the spectral level, 5 ppm precursor mass accuracy, and a minimal Z score of 4.0.

The overall false discovery rate for protein identification is less than 0.5%. Using the control

IP-MS results of seventeen transgenic strains expressing unrelated GFP fusion proteins,
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identified proteins were ranked by WD scores calculated as described previously [37]. WD

scores help downgrade common contaminant proteins and enrich for specific binding proteins

[37]. The RAW data of SGK-1::GFP IP-MS experiments has been deposited to the ProteomeX-

change Consortium [38] via the PRIDE partner repository with the dataset identifier

PXD002190.

Yeast two-hybrid analysis

We used the Matchmaker system (Clontech). The cDNA of the sgk-1 gene was cloned into a

prey vector modified from the pGAD GH vector (Clontech). The cDNA of the arl-1, unc-11,

cogc-3 and fragments ofmon-2, gbf-1 were cloned into a bait vector modified from the

pGBKT7 vector (Clontech). Bait and prey plasmids were co-transformed into the AH109 strain

and transformants were selected on the double dropout medium (SD/–Leu/–Trp). The activa-

tion of the HIS3 reporter gene was assessed on the triple dropout medium (SD/–Leu/–Trp/-

His).

Quantitative RT-PCR

Total RNA was extracted from synchronized L4 worms using TRIZOL (Invitrogen), followed

by the removal of contaminant DNA using DNase I. cDNAs were synthesized from the total

RNA templates using a reverse transcription kit (Takara). Primers used for qPCR of hsp-4 were

primers #1 [GTGGCAAACGCGTACTGTGATGA]/[CGCAACGTATGATGGAGT

GATTCT], primers #2 [TTCCGTGCTACATTGAAGCCGGTT]/[GCTTCGTCAGGGTT

GATTCCACGA], primers #3 [GGACTTGTTCCGTGCTACATTGAAG]/[GCTTCGTCA

GGGTTGATTCCACGA] and pmp-3F [GAATGGAATTGTTTCACGGAATGC]/ pmp-3R

[CTCTTCGTGAAGTTCCATAACACGATG] for pmp-3 as the internal standard. qPCR was

carried out on an ABI 7500 Fast real-time PCR system using a Takara real-time PCR kit (SYBR

Premix Ex TaqTM II).

Feeding of Myriocin

A 1 mg/ml myriocin (Sigma) stock solution was made in methanol. Gravid adults (five per

plate) were transferred to plates containing UV-irradiated (10 min at 100 mJ/cm2) OP50

mixed with an equal volume of myriocin or solvent control (methanol). Precipitation of myrio-

cin occurred at 25.2 μM and 50.4 μM. The first batch of L4 larvae of the next generation were

imaged.

Results

In sgk-1mutants MIG-14 failed to localize to the basolateral membrane
of intestinal cells

To determine whether SGK-1 plays a conserved role in endocytosis, we investigated the func-

tion of SGK-1 in recycling of the plasma membrane protein MIG-14.mig-14 encodes the C. ele-

gans homologue of Wntless, an evolutionarily conserved multi-pass transmembrane protein,

which binds Wnt in the Golgi and escorts Wnt to the plasma membrane for its release. Wnt

proteins are a conserved family of secreted lipid-modified signaling glycoproteins that play a

critical role in embryonic development [39]. Plasma membrane-bound MIG-14 is retrieved

through endocytosis and transported to the Golgi in a retromer-dependent manner. In mutant

C. elegans lacking subunits of the retromer complex, MIG-14 is mis-sorted into late endosomes

and lysosomes [40–42].
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The distribution of MIG-14/Wntless clearly changed in sgk-1mutants. In wild-type animals,

MIG-14::GFP is located on the basolateral membrane (Fig 1A) and also on dispersed punctate

structures in the cytoplasm (Fig 1A’). In two putative null mutants of sgk-1, ok538 andmg455,

the basolateral membrane localization of MIG-14::GFP was hardly detectable, and most of

MIG-14::GFP punctate structures localized near the apical membrane and the averaged fluo-

rescence intensity of the cytoplasmic MIG-14::GFP decreased slightly (Fig 1B–1D and S1–S5

Figs). Thus the subcellular localization of MIG-14 is dependent on SGK-1.

MIG-14::GFP was mis-sorted into early lysosomes in sgk-1mutant
worms

Cargo that cannot be retrieved to the TGN remains mostly in endosomes and hence should be

transported to lysosomes [42]. To test this notion, we determined the subcellular localization

of MIG-14::GFP in sgk-1mutants. In wild-type animals, late endosomes and early lysosomes

are both marked by mCHERRY::RAB-7 but can be distinguished morphologically: the former

are punctate structures and the latter ring-like vesicles [33, 43]. We found that mCHERRY::

RAB-7 labeled ring-like vesicles contained no or only a single MIG-14::GFP punctum in the

wild type (Fig 2, panels A, A’, A” and C), while most of the them contained two or more MIG-

14::GFP puncta in the sgk-1mutant, indicating that MIG-14::GFP is mis-sorted to lysosomes

(Fig 2, panels B, B’, B” and C). A similar phenotype of MIG-14::GFP was reported in a mutant

lacking rme-8 [42], which encodes a retromer-associated protein.

Golgi-independent recycling of membrane receptors was defective in
sgk-1mutants

Given that we only investigated a cargo that recycles through the Golgi so far, we asked next

whether recycling to the plasma membrane was generally affected in sgk-1mutant animals.

hTAC (the a-chain of the human IL-2 receptor TAC) and GLUT1 (glucose transporter 1) are

plasma membrane receptors internalized via clathrin-independent endocytosis and recycled

back to the plasma membrane through the endocytic recycling compartment (ERC) and RME-

1-positive basolateral recycling endosomes [44, 45]. hTAC::GFP mainly localized to the baso-

lateral membrane in the wild type (Fig 3, panels A and A’). In the sgk-1(ok538)mutant, the

pool of hTAC::GFP on the basolateral membrane decreased slightly. However, strikingly, large

hTAC::GFP structures, possibly aggregated vesicles, accumulated in the cytoplasm (Fig 3, pan-

els B, B’ and D). In the sgk-1(mg455)mutant, similar cytoplasmic accumulation of hTAC::GFP

was observed, as well as a slight reduction of hTAC::GFP on the basal membrane (Fig 3, panels

C, C’, D, E and F, and S1, S2 and S6–S8 Figs). To further explore whether the internal aggrega-

tions are abnormal early endosomes, we determined the distribution of hTAC::GFP and an

early endosome marker, RFP::RAB-5 in wild type and sgk-1(ok538)mutant worms. In wild

type worms, only a small portion of the cytoplasmic hTAC::GFP puncta co-localized with early

endosomes labeled by RFP::RAB-5 (S9 Fig) In sgk-1(ok538)mutant worms, most of the hTAC::

GFP labeled large, aggregated structures that are also labeled by RFP::RAB-5 (S9 Fig). It is

unclear whether these structures were abnormal early endosomes or protein aggregates that

contain both hTAC::GFP and RFP::RAB-5.

In intestinal cells of L4 larvae, GLUT1::GFP is limited to the apical membrane and punctate

structures near the apical membrane (Fig 3G). Loss of sgk-1 did not affect the apical membrane

localization of GLUT1::GFP, but it increased the amount of cytosolic GLUT1::GFP near and

away from the apical membrane (Fig 3H). In young wild-type adults, GLUT1::GFP is seen on

both apical and basolateral membranes [43]. We found that the basolateral membrane
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localization of GLUT1::GFP was abolished in young sgk-1mutant adults (S10 Fig). The reason

for the change in localization during development is unclear.

The above results suggest that sgk-1 plays a role in intracellular traffic of plasma membrane

receptors. The less pronounced phenotype observed for GLUT1::GFP may suggest that apical

recycling is less profoundly dependent on SGK-1 than basolateral recycling.

Reduction of glucosylceramide alleviates the sgk-1(lf) induced trafficking
defects

To find out whether sgk-1 regulates membrane trafficking through sphingolipids, we first tested

Myriocin, an inhibitor of the first and the key step in sphingosine biosynthesis. We fed the wild

type and sgk-1(ok538) worms with 4.2 μM, 25.2 μM and 50.4 μM of Myriocin, but did not

detect any obvious growth or morphological effect in either strain. Also, we did not see any

effect of Myriocin on the localization pattern of either hTAC::GFP or MIG-14::GFP in wild

type animals (S11 and S12 Figs). It is plausible that the drug may not accumulate efficiently in

cells to show an effect. Therefore, we knocked-down cgt-1 and cgt-3, which encode two of the

three ceramide glucosyltransferases that are important for the synthesis of glucosylceramide

and glycosphingolipids. Similar to the cgt-1; cgt-2; cgt-3 triple mutant, cgt-1; cgt-3 double

mutant animals have reduced glucosylceramide levels and arrest at the L1 larval stage [46]. In

about 50% of the wild-type worms, cgt-1/3 double RNAi reduced the expression of hTAC::GFP

to an undetectable level. In the remaining 50% wild-type worms, cgt-1/3 RNAi significantly

decreased the amount of small cytoplasmic hTAC::GFP puncta (Fig 4). Larger-sized hTAC::

GFP puncta or aggregates were seen in the cytoplasm of intestinal cells in the sgk-1mutant, but

they were reduced in number upon cgt-1/3 RNAi (Fig 4). Therefore, cgt-1/3 RNAi alleviated

the phenotype of sgk-1 null with respect to hTAC::GFP. Similarly, cgt-1/3 double RNAi sup-

pressed sgk-1 with respect to MIG-14::GFP. sgk-1 null nearly abolished MIG-14::GFP on the

basolateral membrane, but this was restored by cgt-1/3 double RNAi (Fig 5). It has been

reported that worms treated with cgt-1/3 double RNAi arrested at the L1 stage [46], but in our

hands, only some of the cgt-1/3 double RNAi animals arrested at L1, probably due to a weaker

RNAi effect. The sgk-1mutant worms develop somewhat more slowly than the wild type. Inter-

estingly, sgk-1mutant worms treated with cgt-1/3 double RNAi developed very slowly (Fig 6).

Altogether, our results show that sgk-1 and cgt-1/3 have complex genetic interactions. Our data

indicate that SGK-1 plays a conserved role in lipid homeostasis.

sgk-1(lf) did not affect the morphology of early endosomes, the Golgi and
ER

So far we provided evidence that plasma membrane proteins are mis-localized in sgk-1

mutants. One explanation for the phenotype is that the proteins do not reach the plasma mem-

brane efficiently. Therefore, we asked next, whether the morphology of the organelles along the

secretory pathway were affected in sgk-1mutant animals. First, we examined early endosomes

by checking the distribution of GFP::RAB-5 in the wild type and sgk-1(ok538) backgrounds

(Fig 7, panels A and B). No obvious difference was detected, suggesting that SGK-1 function is

not required for the formation of early endosomes. In earlier experiments we observed large

Fig 1. Both putative sgk-1(null) alleles abolished the plasmamembrane localization of MIG-14::GFP in intestinal cells.Confocal images of the
intestine of wild type (A, A’), sgk-1(ok538) (B, B’) and sgk-1(mg455) (C, C’) animals expressing MIG-14::GFP. In wild type intestinal cells, MIG-14::GFP is
seen on the basolateral membrane (arrows, best viewed on a focal plane near the top of the cell) but not on the apical membrane (arrowheads, best viewed
on a focal plane in the middle of the cell). Scale bars: 5 μm. (D) Quantitation of average pixel intensity of MIG-14::GFP localized in the cytoplasm. The
average intensity is denoted with a red line. *** P value <0.001, ** P value <0.01 (Wilcoxon rank sum test).

doi:10.1371/journal.pone.0130778.g001
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Fig 2. MIG-14::GFP was delivered to early lysosomesmarked by RAB-7.Confocal images of the wild type (A, A’, A”) and sgk-1(null) (B, B’, B”) intestinal
cells expressing MIG-14::GFP (A, B) or mCHERRY::RAB-7 (A’, B’). Insets showmagnified areas (× 2.5). Scale bars: 5 μm. Quantitation of RAB-7-positive
ring-like vesicles with or without MIG-14::GFP puncta inside (C). *** P value <0.001, ** P value <0.01 (Student’s t-test).

doi:10.1371/journal.pone.0130778.g002
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aggregates in the sgk-1(ok538)mutant that were positive for RFP::RAB-5 and hTAC::GFP (S9

Fig), but it was unclear whether these were protein aggregates or abnormal early endosomes.

Given that sgk-1(ok538) had no effect on GFP::RAB-5, they were most likely protein aggregates

that contained both hTAC::GFP and RFP::RAB-5. Alternatively, loss of sgk-1may affect early

endosomes only in a sensitized background such as when the trafficking system is overloaded

with cargoes. Similarly, loss of sgk-1 did not change the morphology of the Golgi compartment

labeled by mCHERRY::MANS (mannosidase), which appeared as dispersed punctate struc-

tures in the intestinal cells (Fig 7, panels C and D). Next, we examined the morphology of ER

using a GFP-tagged TRAM (translocating chain-associating membrane protein), an ER-

Fig 3. Defective membrane trafficking of hTAC::GFP and GLUT1::GFP in sgk-1(null)mutants.Confocal
images of wild type (A, A’, G), sgk-1(ok538) (B, B’, H) and sgk-1(mg455) (C, C’) intestinal cells expressing
hTAC::GFP or GLUT1::GFP. The apical, basal and lateral membranes are indicated by open arrow heads,
solid arrow heads and arrows, respectively. Scale bars: 5 μm. See Fig 2 legend for explanations of different
focal planes. (D-F) Quantitation of average pixel intensity of hTAC::GFP localized in the cytoplasm (D), on the
basal membrane (E) or lateral membrane (F). The average intensity is denoted with a red line. *** P value
<0.001, ** P value <0.01 (Wilcoxon rank sum test).

doi:10.1371/journal.pone.0130778.g003
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specific marker, and found no obvious difference between wild type and the sgk-1mutant

(Fig 7, panels E and F). However, loss of sgk-1 induced unfolded protein response in the ER

(UPR-ER) as indicated by an elevated expression of hsp-4pr::GFP (Fig 8, panels A and B). We

confirmed the UPR induction by detecting increased hsp-4mRNA levels in sgk-1(ok538) L4

mutant worms (Fig 8C). Together, these results indicate that the morphology of early endo-

somes, Golgi and ER is not grossly altered and that sgk-1may be important for protein

homeostasis.

SGK-1::GFP is distributed at the cortex of the plasma membrane and
throughout the cytoplasm of intestinal cells

To find out where SGK-1 may physically interact with the membrane trafficking system, we

examined the distribution of SGK-1::GFP driven by its own promoter. SGK-1::GFP was

Fig 4. The effect of cgt-1/3 double RNAi on the localization patterns of hTAC::GFP. Confocal images of
intestinal cells of wild type worms treated with control RNAi (A, A’), cgt-1/3 double RNAi (B, B’) and sgk-1

(ok538)mutant animals treated with control RNAi (C, C’), cgt-1/3 double RNAi (D, D’) expressing hTAC::
GFP. The basolateral membranes were indicated by arrows. Scale bars: 5 μm.

doi:10.1371/journal.pone.0130778.g004
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expressed at a high level in the intestine, as well as the head and tail neurons (S13 Fig). In the

intestinal cells, SGK-1::GFP was seen at the cortex of the plasma membrane (most prominently

the apical membrane) (Fig 9A’ and S13 Fig) and throughout the cytoplasm in a diffuse pattern

(Fig 9, panels B’ and C’, and S13B Fig), occasionally in punctate structures over a diffuse back-

ground (not shown). The cortical SGK-1::GFP pool did not colocalize with RFP::RAB-5 (Fig 9,

panels A, A’ and A”). The diffused appearance of SGK-1::GFP in the cytoplasm precludes the

conclusion of co-localization of SGK-1::GFP and mCHERRY::MANS or mCHERRY::TRAM,

an ER marker (Fig 9). However, it is possible that SGK-1 may interact with membrane proteins

or membrane-associated proteins and is transiently recruited to organelles.

Fig 5. The effect of cgt-1/3 double RNAi on the localization patterns of MIG-14::GFP. Confocal images
of intestinal cells of wild type worms treated with control RNAi (A, A’), cgt-1/3 double RNAi (B, B’) and sgk-1

(ok538)mutant animals treated with control RNAi (C, C’), cgt-1/3 double RNAi (D, D’) expressing MIG-14::
GFP. The basolateral membranes were indicated by arrows. Scale bars: 5 μm.

doi:10.1371/journal.pone.0130778.g005
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SGK-1 interacts with proteins involved in the regulation of intracellular
transport

To identify potential SGK-1 binding proteins on membranes, we performed co-immunopre-

cipitation experiments. Using GFP binding protein (GBP), which is a high-affinity single-chain

antibody of GFP [47], we immunoprecipitated (IP) a SGK-1::GFP fusion protein expressed in

C. elegans under its own promoter. Co-immunoprecipitated proteins were identified using

mass spectrometry (MS). After subtracting background binding proteins and non-specific

interacting proteins that co-immunoprecipitated with GFP alone or a number of unrelated

GFP fusion proteins [37], we found five SGK-1 associated proteins with an established function

in intracellular transport: ARL-1, COGC-3, GBF-1, MON-2 and UNC-11 (Table 1). Interest-

ingly, homologs of all but UNC-11 have been reported to be localized to the Golgi apparatus

[48–52]. For example, the human homologue of ARL-1 is localized to the Golgi and is a

Fig 6. sgk-1mutant worms treated with cgt-1/3 double RNAi developed very slowly. Images of wild type (A, B, C) and sgk-1(ok538)mutant animals (D,
E, F) treated with control RNAi (A, D) and cgt-1/3 double RNAi from Ahringer library (B, E) and RCE1181 library (C, F). The experiments started with 5 gravid
adult worms on each plate and the plates were imaged 5 days later.

doi:10.1371/journal.pone.0130778.g006
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member of the Arf/Sar family small GTPases, which are activated by guanine nucleotide

exchange factors (ArfGEFs) [48, 49]. By sequence similarity, GBF-1 and MON-2 are classified

as ArfGEFs and both are shown to reside on the Golgi, although MON-2 lacks a domain

responsible for guanine nucleotide exchange [50, 52]. In addition, COGC-3 is part of a tether-

ing complex at the Golgi [51].

MON-2 and COGC-3 also interacted with SGK-1 in yeast two-hybrid assay, validating

these two hits (S14 Fig). To find out whether SGK-1 regulates membrane trafficking through

interaction with our candidate proteins, we assessed the localization of MIG-14::GFP and

hTAC::GFP after knock-down of the individual candidates. We obtained RNAi bacterial

strains of arl-1, gbf-1,mon-2 and unc-11. We found that gbf-1(RNAi) caused an accumulation

of hTAC::GFP in the cytoplasm (S15 Fig) and about 60% of the arl-1 RNAi treated worms

showed a large decrease in the expression level of hTAC::GFP. The basolateral membrane

localization of hTAC::GFP were not affected by any of them (S15 Fig).mon-2(RNAi) abolished

Fig 7. Wild type-like morphology of early endosomes, the Golgi and ER in sgk-1(lf)mutant. Confocal images of the wild type (A, C, E) and sgk-1(ok538)

(B, D, F) intestinal cells expressing GFP::RAB-5 (A, B), mCHERRY::MANS (C, D) or GFP::TRAM (E, F). Scale bars: 5 μm.

doi:10.1371/journal.pone.0130778.g007
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Fig 8. Loss of sgk-1 activity induced the UPR-ER. (A) Fluorescent images of worms carrying a GFP transgene under the hsp-4 promoter and treated with
control RNAi (empty vector pL4440) or sgk-1RNAi. Scale bars: 50 μm. (B) Quantitation of average pixel intensity of the images shown in (A) and 18
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specifically the lateral membrane localization of MIG-14::GFP along the circumferential (S16

Fig; vertical lines). RNAi of the other three genes had no obvious effect on MIG-14::GFP (S16

Fig). Together, these results neither prove nor reject the possibility of sgk-1 regulating mem-

brane trafficking through these four candidates.

GBF-1 function is required for proper SGK-1 localization

Among the five candidate proteins, the ArfGEF protein GBF-1 has been characterized in intra-

cellular trafficking in C. elegans [50]. The largest pool of GBF-1 resides at the cis-Golgi, and

GBF-1 is required for endosome-mediated membrane traffic and the normal morphology of

the Golgi and ER [50]. Thus, like SGK-1, GBF-1 acts at different stages in trafficking pathways.

Therefore, we checked whether GBF-1 and SGK-1 would affect each other. sgk-1(RNAi) had no

effect on steady-state GBF-1 localization (data not shown). In contrast, gbf-1(RNAi) affected

the localization of SGK-1. SGK-1::GFP displayed a smooth, continuous distribution along the

cortex of basolateral membrane of the intestinal cells. Upon gbf-1 RNAi, SGK-1::GFP at the

cortex of basolateral membrane changed to small punctate structures (Fig 10). Likewise the api-

cal localization of SGK-1::GFP was affected by gbf-1 RNAi, since the staining was strongly

reduced in the RNAi-treated animals (Fig 10, panels B and B’, pointed arrows). Meanwhile,

there were more bright, large-sized SGK-1::GFP aggregates on the basolateral side of the intes-

tinal cells (Fig 10C’, open arrows). Such aggregates were observed in control animals only occa-

sionally (Fig 10C, open arrows). The overall fluorescence intensity of SGK-1::GFP appeared

not affected by gbf-1 RNAi (S17 Fig), probably because the increase of SGK-1::GFP aggregates

offset the decrease in the plasma membrane associated SGK-1::GFP. Considering that GBF-1

co-immunoprecipitated with SGK-1 (Table 1), this result suggests that GBF-1 may be required

additional images, nine for control RNAi and nine for the sgk-1 RNAi. The average intensity is denoted with a red line. There were fifteen L4 worms in each
image and ten images for each treatment. *** P value <0.001 (Student’s t-test). (C) Relative mRNA levels of hsp-4 in wild type and sgk-1(ok538)mutant
animals. ** P value <0.01, * P value <0.05 (Student’s t-test).

doi:10.1371/journal.pone.0130778.g008

Fig 9. SGK-1::GFP did not colocalize with RFP::RAB-5, mCHERRY::MANS or mCHERRY::TRAM.Confocal images of the intestine in transgenic worms
expressing SGK-1::GFP together with RFP::RAB-5 (A-A”), mCHERRY::MANS (B-B”) or mCHERRY::TRAM (C-C”). Insets showmagnified areas (× 2). Scale
bars: 5 μm.

doi:10.1371/journal.pone.0130778.g009
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for SGK-1 function near the basolateral membrane by either being involved in the exocytosis

of a SGK-1 binding protein at the plasma membrane or through a role in lipid homeostasis.

Alternatively, SGK-1 may directly require GBF-1 GEF function.

Discussion

In this study, we have found that SGK-1 associates in vivo with five proteins functioning in

membrane trafficking. In C. elegans, both COGC-3 and GBF-1 reside on the Golgi, and the

same can be said for ARL-1 and MON-2 in other species [48, 50, 52, 54]. The N-terminal

region of Mon2p, which is conserved from yeast to human, is sufficient to bind the Golgi mem-

brane where Mon2p acts as a scaffold protein [52]. Thus, we speculate that SGK-1 may be

recruited onto the Golgi membrane to regulate membrane trafficking, although no apparent

co-localization was detected between SGK-1::GFP and the Golgi marker mCHERRY::MANS.

Further studies are needed to determine whether SGK-1 is recruited to the Golgi membrane

under certain conditions.

The ArfGEF protein GBF-1 is localized in close proximity to the Golgi and the ER-exit sites,

and is required for the normal morphology of ER [50]. In this study, we found that GBF-1 co-

immunoprecipitated with SGK-1 (Table 1) and the loss of sgk-1 induced unfolded protein

response in ER (Fig 8). Therefore, although SGK-1::GFP is seen diffusely distributed in the

cytoplasm for the most part (S13 Fig), we speculate that SGK-1 may be transiently recruited

onto intracellular membranes by GBF-1 and functions with or through GBF-1 to regulate traf-

ficking of cargo proteins in or out of ER. Supporting this idea, the smooth distribution of SGK-

1::GFP along the basolateral membrane was disrupted by gbf-1 RNAi (Fig 10). It is conceivable

that SGK-1 may phosphorylate GBF-1 and alter its activity at the periphery of ER. More studies

are needed to characterize the interaction between SGK-1 and GBF-1 and dissect the mecha-

nism by which these two proteins regulate protein trafficking around ER.

Table 1. Proteins co-immunoprecipitated with SGK-1 are involved in membrane trafficking.

Protein
Name

Spectral
count of
Rep 1
and 2

Mass Spec Identification of Membrane Trafficking Proteins Co-
immunoprecipitated with SGK-1

ARL-1 2 3 Homologous to human ARF1, a small GTPase that localizes to the Golgi
apparatus and plays a central role in intra-Golgi transport [48].

COGC-3 1 1 Ortholog of mammalian COG-3/Sec34, a subunit of lobe A of the conserved
oligomeric Golgi complex (COGC) [51].

GBF-1 1 4 Guanine nucleotide exchange factor of the Arf family small GTPases (ArfGEF).
GBF-1 localizes to the cis-Golgi, is part of the t-ER-Golgi elements, required for
secretion and the integrity of the Golgi and ER. [50]

MON-2 3 3 ArfGEF-like protein orthologous to Saccharomyces cerevisiae Mon2p and the
vertebrate MON2 proteins, predicted to function in the endosome-to-Golgi
retrograde transport in C. elegans [52].

UNC-11 1 2 clathrin-adaptor protein AP180 that functions in clathrin-mediated endocytosis
[53].

Spectral count: number of spectra that identify a protein, suggestive of the abundance of this protein in the

sample. The spectral counts of SGK-1 are 302 and 412 in two technical repeats (Rep 1 and Rep 2). The

spectral counts of the five membrane trafficking proteins are low, indicating their low abundance in the

SGK-1::GFP immunoprecipitates. However, these proteins were highly specific for SGK-1::GFP, for they

were not seen in the immunoprecipitates of seventeen other unrelated GFP fusion proteins (not shown).

doi:10.1371/journal.pone.0130778.t001
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Transcytosis allows for the exchange of cargoes between the apical and basolateral mem-

branes and it is critical for the establishment and maintenance of the cell polarity [55].

Although there is no obvious membrane-targeting signal on SGK-1, this protein is seen near or

on the plasma membrane in intestinal cells (S13 Fig). The concentration of SGK-1::GFP is

higher in the cortex of apical membrane than that of basolateral membrane. Curiously, deletion

of sgk-1 affected basolateral recycling more severely than apical recycling, suggesting that SGK-

1 activity is more important at basolateral membrane than apical membrane where there is

more SGK-1 under normal situations. Also, gbf-1 RNAi disrupted the smooth appearance of

SGK-1::GFP lining the basolateral membrane, but not that lining the apical membrane

(Fig 10). It would be interesting to determine whether SGK-1 and GBF-1 are both involved in

transcytosis to coordinate directed movement of cargoes.

Ypk1—the yeast homologue of SGK-1—activates serine palmitoyl-CoA acyltransferase

(SPT), which catalyzes the first and the key step of de novo synthesis of ceramide [25, 26].

Recently, Ypk1 is also reported to activate ceramide synthase [26]. We suspect that similar to

yeast Ypk1, C. elegans SGK-1 may play a positive role in ceramide biosynthesis. In C. elegans,

two types of complex sphingolipids, sphingomyelins and glycosphingolipids, are derived from

ceramide and both contain an unusual, branched-chain sphingonoid base known as d17iso

[56]. It is suggested that a particular species of sphingolipid called d17iso-GluCer or its deriva-

tive activates the TORC1 complex to promote larval development [57]. Inactivating the

enzymes along the biosynthesis pathway of d17iso-GluCer arrests C. elegans at the L1 stage

[57] or causes an uncharacterized lethal phenotype [58]. Our observation that sgk-1(null) exac-

erbated the developmental phenotype of cgt-1/cgt-3 RNAi (Fig 6) is consistent with SGK-1

playing a positive role in ceramide synthesis, because this phenotype can be explained by a

reduction of d17iso-GluCer by cgt-1/cgt-3 RNAi, which is moderate in the wild-type back-

ground but greatly worsened by a reduction of ceramide, the precursor of d17iso-GluCer, in

sgk-1 null animals. Also, we speculate that cgt-1/cgt-3 RNAi alleviated the trafficking phenotype

of sgk-1(null) animals (Figs 4 and 5) by diverting the limited supply of ceramide to synthesizing

sphingomyelins. In sgk-1mutants, sphingomyelins may be reduced the most among all com-

plex sphingolipids, which leads to impaired membrane trafficking. Alternatively, all complex

sphingolipids may be reduced to similar levels, but the trafficking phenotype may be more sen-

sitive to a reduction in sphingomyelins than in glycosphingolipids. Following the hypothesis

that SGK-1 regulates membrane trafficking by regulating ceramide synthesis, we expected that

Myriocin, an inhibitor of SPT, would alter the membrane localization of MIG-14::GFP and

hTAC::GFP, but it did not (S11 and S12 Figs). Possibly, Myriocin was not delivered efficiently

enough to show an effect due to the tight barrier of the worm cuticle. It remains to be tested

whether inactivating sptl-1, sptl-2 and sptl-3, the SPT genes in C. elegans, would cause the same

trafficking phenotype observed in sgk-1mutants.

Supporting Information

S1 Fig. Autofluorescence of wild type and sgk-1(ok538)mutant animals in red, green and

blue channels. Confocal images of intestinal cells of wild type worms (A, A’, A”, A”‘) and sgk-1

(ok538)mutant animals (B, B’, B”, B”‘) in red channel (A’ B’), green channel (A”, B”) and blue

Fig 10. SGK-1::GFP lining the basolateral membrane of intestinal cells was affected by gbf-1RNAi. Confocal images of intestinal cells of worms
expressing SGK-1::GFP treated with control RNAi (A, B, C) or gbf-1 RNAi (A’, B’, C’). Scale bar represents 10 μm. (D) Quantitation of SGK-1::GFP labeled
basolateral membranes. Some worms show dotted basolateral membranes in the top plane and smooth lateral membranes in the middle plane and they are
named as “both”. *** P value <0.001, ns: non-significant (Student’s t-test).

doi:10.1371/journal.pone.0130778.g010
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channel (A”‘, B”‘). Scale bars: 5 μm.

(EPS)

S2 Fig. Autofluorescence of wild type and sgk-1(ok538)mutant animals in red, green and

blue channels with different imaging conditions. Confocal images of intestinal cells of wild

type worms (A to I) and sgk-1(ok538)mutant animals (A’ to I’) in red channel (A to C, A’ to

C’), green channel (D to F, D’ to F’) and blue channel (G to I, G’ to I’) in “low” condition (A, D,

G, A’, D’, G’), “middle” condition (B, E, H, B’, E’, H’) and “high” condition (C, F, I, C’, F’, I’).

Low, middle, high denote three different settings of pinhole size and detector gain. High means

larger number and low means smaller number. Scale bars: 5 μm.

(EPS)

S3 Fig. Colocalization of MIG-14::GFP and autofluorescence in wild type worms. Confocal

images of intestinal cells of wild type worms in green channel showing MIG-14::GFP (A, B)

and blue channel (A’, B’) indicating the autofluorescence. The basolateral and apical mem-

branes are indicated by arrows and arrowheads, respectively. The autofluorescent spots were

different in shape and size from the MIG-14::GFP positive structures and the GFP signals in

Fig 1 did not colocalize with the autofluorescence in blue channel. Scale bars: 5 μm.

(EPS)

S4 Fig. Colocalization of MIG-14::GFP and autofluorescence in sgk-1 null mutant. Confocal

images of intestinal cells of sgk-1(ok538)mutant worms in green channel showing MIG-14::

GFP (A, B) and blue channel (A’, B’) indicating the autofluorescence. The autofluorescent

spots were different in shape and size from the MIG-14::GFP positive structures and the GFP

signals in Fig 1 did not colocalize with the autofluorescence in blue channel. Scale bars: 5 μm.

(EPS)

S5 Fig. Colocalization of MIG-14::GFP and autofluorescence in sgk-1 null mutant. Confocal

images of intestinal cells of sgk-1(mg455)mutant worms in green channel showing MIG-14::

GFP (A, B) and blue channel (A’, B’) indicating the autofluorescence. The autofluorescent

spots were different in shape and size from the MIG-14::GFP positive structures and the GFP

signals in Fig 1 did not colocalize with the autofluorescence in blue channel. Scale bars: 5 μm.

(EPS)

S6 Fig. Colocalization of hTAC::GFP and autofluorescence in wild type worms. Confocal

images of intestinal cells of wild type worms in green channel showing hTAC::GFP (A, B) and

blue channel (A’, B’) indicating the autofluorescence. The autofluorescent spots were different

in shape and size from the hTAC::GFP positive structures and the GFP signals in Fig 3 did not

colocalize with the autofluorescence in blue channel. Scale bars: 5 μm.

(EPS)

S7 Fig. Colocalization of hTAC::GFP and autofluorescence in sgk-1 null mutant. Confocal

images of intestinal cells of sgk-1(ok538)mutant worms in green channel showing hTAC::GFP

(A, B) and blue channel (A’, B’) indicating the autofluorescence. The autofluorescent spots

were different in shape and size from the hTAC::GFP positive structures and the GFP signals

in Fig 3 did not colocalize with the autofluorescence in blue channel. Scale bars: 5 μm.

(EPS)

S8 Fig. Colocalization of hTAC::GFP and autofluorescence in sgk-1 null mutant. Confocal

images of intestinal cells of sgk-1(mg455)mutant worms in green channel showing hTAC::GFP

(A, B) and blue channel (A’, B’) indicating the autofluorescence. The autofluorescent spots

were different in shape and size from the hTAC::GFP positive structures and the GFP signals
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in Fig 3 did not colocalize with the autofluorescence in blue channel. Scale bars: 5 μm.

(EPS)

S9 Fig. Colocalization of hTAC::GFP and RFP::RAB-5 in wild type and sgk-1 null mutants.

Confocal images of the wild type (A, A’, A”) and sgk-1(null) (B, B’, B”) intestinal cells express-

ing hTAC::GFP (A, B) or RFP::RAB-5 (A’, B’). Insets show magnified areas (× 2.5). The over-

lapped and non-overlapped regions are indicated by arrows and arrowheads, respectively.

Scale bars: 5 μm.

(EPS)

S10 Fig. The expression pattern of GLUT1::GFP in young adult worms. Confocal images of

intestinal cells of young adult wild type (A) and sgk-1(ok538) (B) worms expressing GLUT1::

GFP. The basolateral membranes are indicated by arrows. Scale bars: 5 μm.

(EPS)

S11 Fig. The localization patterns of hTAC::GFP are unaffected by Myriocin. Confocal

images of wild-type intestinal cells treated with control (A, A’), 4.2 μM of myriocin (B, B’),

25.2 μM of myriocin (C, C’) and 50.4 μM of myriocin (D, D’) expressing hTAC::GFP. The

basolateral membranes were indicated by arrows. Scale bars: 5 μm.

(EPS)

S12 Fig. The localization patterns of MIG-14::GFP are unaffected by Myriocin. Confocal

images of wild-type intestinal cells treated with control (A, A’), 4.2 μM of myriocin (B, B’),

25.2 μM of myriocin (C, C’) and 50.4 μM of myriocin (D, D’) expressing MIG-14::GFP. The

basolateral membranes were indicated by arrows. Scale bars: 5 μm.

(EPS)

S13 Fig. Expression pattern of SGK-1::GFP. SGK-1::GFP expression is seen in embryos, all

larval stages and throughout adulthood. SGK-1::GFP is highly expressed in the intestine and

the head and tail neurons, as described previously [28]. The apical and basolateral membranes

were indicated by arrow heads and arrows. Scale bars: 10 μm.

(EPS)

S14 Fig. Yeast two-hybrid assay of SGK-1 and candidate binding proteins. Yeast cells were

co-transformed with a GAL4BD-bait plasmid and a GAL4AD-prey plasmid as indicated.

Among the double transformants (grown in the absence of Leu and Trp, or–LW) only two

(AD-SGK-1/BD-COGC-3 and AD-SGK-1/BD-MON-2N) displayed positive interactions as

they grew in the absence of Leu, Trp and His (–LWH). The apparent positive interaction of

AD-SGK-1/BD-UNC-11 was false because BD-UNC-11 showed self-activating activity inde-

pendent of the prey (AD-SGK-1 or AD-Xrc4). Xrc4 is a negative control; it is a nonhomolo-

gous end joining factor from S. pombe [59] and is not expected to interact with C. elegans

proteins. MON-2N: 1–800 aa; MON-2C: 801–1648 aa; GBF-1N: 1–1147 aa; GBF-1C: 1148–

1975 aa.

(EPS)

S15 Fig. Localization of hTAC::GFP upon RNAi of candidate interacting proteins of SGK-

1. Confocal images of intestinal cells of wild type worms treated with control RNAi (A, A’), arl-

1 RNAi (B, B’), gbf-1 RNAi (C, C’),mon-2 RNAi (D, D’), and unc-11 RNAi (E, E’) and sgk-1

(ok538)mutants (F, F’) expressing hTAC::GFP. Scale bars: 5 μm.

(EPS)

S16 Fig. Localization of MIG-14::GFP upon RNAi of candidate interacting proteins of

SGK-1. Confocal images of intestinal cells of wild type worms treated with control RNAi (A,
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A’), arl-1 RNAi (B, B’), gbf-1 RNAi (C, C’),mon-2 RNAi (D, D’), and unc-11 RNAi (E, E’) and

sgk-1(ok538)mutants (F, F’) expressing MIG-14::GFP. The basolateral membranes are indi-

cated by arrows. Scale bars: 5 μm.

(EPS)

S17 Fig. Overall fluorescence intensity of SGK-1::GFP with gbf-1 RNAi. The overall fluores-

cence intensity of SGK-1::GFP was unaffected by gbf-1 RNAi treatment. � P value<0.05 (Stu-

dent’s t-test).

(EPS)

S1 File. Worms expressing SGK-1::GFP treated with control RNAi showing smooth baso-

lateral membrane.

(AVI)

S2 File. Worms expressing SGK-1::GFP treated with gbf-1 RNAi showing dotty basolateral

membrane.

(AVI)

S3 File. Worms expressing SGK-1::GFP treated with gbf-1 RNAi showing “both” basolat-

eral membrane.

(AVI)

S1 Table. Summary of pinhole size, detector gain, offset, and laser intensity settings for

each figure.

(XLSX)
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