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Abstract

Rationale: Although lipids, apolipoproteins, and lipoprotein
particles are important modulators of inflammation, varying
relationships exist between these parameters and asthma.

Objectives:Todeterminewhether serum lipids and apolipoproteins
correlate with the severity of airflow obstruction in subjects with
atopy and asthma.

Methods: Serum samples were obtained from 154 atopic and
nonatopic subjects without asthma, and 159 subjects with atopy and
asthma. Serum lipid and lipoprotein levels were quantified using
standard diagnostic assays and nuclear magnetic resonance (NMR)
spectroscopy. Airflow obstruction was assessed by FEV1%predicted.

Measurements and Main Results: Serum lipid levels correlated
with FEV1 only in the subjects with atopy and asthma. Serum levels
of high-density lipoprotein (HDL) cholesterol and apolipoprotein
A-I (apoA-I) were positively correlated with FEV1 in subjects with
atopy and asthma, whereas a negative correlation existed between

FEV1 and serum levels of triglycerides, low-density lipoprotein (LDL)
cholesterol, apolipoprotein B (apoB), and the apoB/apoA-I ratio.
NMR spectroscopy identified a positive correlation between FEV1

and HDLNMR particle size, as well as the concentrations of large
HDLNMR particles and total IDLNMR (intermediate-density
lipoprotein) particles in subjects with atopy and asthma. In contrast,
LDLNMR particle size and concentrations of LDLNMR and VLDLNMR

(very-low-density lipoprotein) particles were negatively correlated
with FEV1 in subjects with atopy and asthma.

Conclusions: In subjects with atopy and asthma, serum levels
of apoA-I and large HDLNMR particles are positively correlated
with FEV1, whereas serum triglycerides, LDL cholesterol, and
apoB are associated with more severe airflow obstruction. These
results may facilitate future studies to assess whether apoA-I and
large HDLNMR particles can reduce airflow obstruction and disease
severity in asthma.

Keywords: asthma; airflow obstruction; lipids; lipoprotein
particles; apolipoproteins

Lipoprotein metabolism has been
extensively investigated based on the central
role of cholesterol and triglycerides (TGs) in
the pathogenesis of vascular inflammation
and atherosclerosis (1). Cholesterol is
primarily carried to cells by low-density

lipoprotein (LDL) particles, which interact
with LDL receptors (LDLR) to internalize
their lipid cargo by receptor-mediated
endocytosis (1). In contrast, high-density
lipoprotein (HDL) particles are formed in
the liver and intestine via the interaction of

lipid-poor apolipoprotein A-I (apoA-I)
with the cholesterol-phospholipid
transporter, ABCA1 (ATP-binding cassette,
subfamily A, member 1), followed by
the acquisition of additional lipids and
apolipoproteins (2, 3). Epidemiologic
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studies have shown that increases in serum
levels of LDL cholesterol (LDL-C) are
associated with an increased risk of
myocardial infarction, whereas HDL
cholesterol (HDL-C) is inversely associated
with the risk of coronary artery disease
(1, 3).

Apolipoproteins, which are known to
modulate normal lung development and
homeostasis, as well as adaptive immune
responses and host defense in the lung
(4–12), have also been shown to participate

in the pathogenesis of experimental murine
asthma. For example, apoA-I levels are
reduced in bronchoalveolar fluid from
ovalbumin (OVA)-challenged mice
and this finding has similarly been
demonstrated in human subjects with
asthma (13, 14). Furthermore, OVA-
challenged apoA-I2/2 mice have significant
increases in bronchoalveolar fluid
neutrophils that are primarily mediated by
enhanced granulocyte colony-stimulating
factor expression (13). Moreover,
administration of apoA-I mimetic peptides
attenuates airway inflammation, airway
hyperreactivity, and mucous cell metaplasia
in house dust mite– and OVA-induced
models of experimental asthma (15, 16).
Similarly, administration of holo–apoA-I
to house dust mite–challenged mice
attenuates airway inflammation and airway
hyperreactivity, promotes the recovery of
disrupted epithelial tight junction proteins,
and increases the production of lipoxin A4
(14). Also, OVA-challenged transgenic mice
that express human ABCA1 under the
control of the Tie2 promoter have reduced
OVA-induced bronchoalveolar fluid
neutrophils and decreased granulocyte
colony-stimulating factor production by
vascular endothelial cells and alveolar
macrophages (17).

Collectively, these studies support the
concept that the apoA-I/ABCA1 pathway
has a protective effect in experimental
murine models of allergic asthma.
Additionally, the ABCG1 transporter has
also been shown to regulate asthma
pathogenesis because OVA-challenged

Abcg12/2 mice have reduced Th2-mediated
adaptive immunity, but increased IL-
17–dependent airway neutrophils (18).
Lastly, apoE, which is expressed by
alveolar macrophages, has also been
shown to negatively regulate airway
hyperreactivity and mucous cell metaplasia
in experimental house dust mite–induced
asthma by interacting with LDLRs
expressed by ciliated airway epithelial
cells (19).

Although these experimental studies in
mostly animal models suggest a role
for apolipoprotein pathways in the
pathogenesis of asthma, prior clinical
studies have found heterogeneous results
regarding the relationship between serum
lipid levels and asthma (20). However,
a recent cross-sectional analysis of a large
pediatric cohort found a statistically
significant association between asthma
prevalence and higher serum TG levels,
and higher rates of insulin resistance,
independent of body mass. This suggested
that metabolic abnormalities, such as
hypertriglyceridemia and insulin resistance,
may influence asthma prevalence (21). Here,
we sought to assess whether serum lipids,
apolipoproteins, and lipoprotein particles,
as quantified using standard diagnostic
assays, correlate with the severity of airflow
obstruction, as measured by the FEV1%
predicted, in a cohort comprised of
nonatopic subjects without asthma, atopic
subjects without asthma, and atopic subjects
with asthma. Furthermore, we used nuclear
magnetic resonance (NMR) spectroscopy
to assess whether the size and concentration

Table 1. Clinical Characteristics of the Study Groups

Nonatopic
Nonasthmatic

Atopic
Nonasthmatic

Atopic
Asthmatic

Number of subjects 80 74 159
Age 316 12.9 33.46 12.4 37.56 14.4*
Sex, female/male 56/24 35/39 100/59
Race, white/black/other 53/16/11 48/14/12 99/39/21
Body mass index, kg/m2 25.56 5.2 25.86 4.8 28.26 6.7*
FEV1% predicted 1106 14.9 1096 12.6 866 21.1*
FEV1/FVC 856 5.5% 846 5.6% 716 13.1%*
Immunoglobulin E, IU/ml† 22 (8.5–48) 80 (35–234)* 222 (103.5–472.5)*
Absolute eosinophil count, per ml† 100 (70–144) 131 (82–194)* 232 (143–375)*
C-reactive protein, mg/L† 0.9 (0.4–2.3) 0.8 (0.4–2.3) 1.4 (0.6–4.9)*
No. of subjects on
lipid-modifying medication

4 1 9

Values shown are means6 SD, except as noted in the footnote.
*P< 0.05 as compared with the nonatopic nonasthmatic group; one-way analysis of variance.
†Denotes median (lower quartile–upper quartile).

At a Glance Commentary

Scientific Knowledge on the

Subject: Apolipoproteins have
increasingly been recognized to
modulate lung development and
homeostasis, as well as adaptive
immune responses and host defense.
Multiple prior studies, however,
have reported heterogeneous
results regarding whether serum
apolipoprotein and lipid levels are
altered in subjects with asthma
compared with subjects without
asthma.

What This Study Adds to the

Field: This study provides new data
that serum apolipoprotein and lipid
levels correlate with the severity of
airflow obstruction in atopic asthma. A
positive correlation exists between the
FEV1% predicted and serum levels of
high-density lipoprotein cholesterol
(HDL-C) and apolipoprotein A-I
(apoA-I), whereas there is a negative
correlation between the FEV1%
predicted and serum levels of
triglycerides, low-density lipoprotein
cholesterol, apolipoprotein B (apoB),
and the apoB/apoA-I ratio.
Furthermore, our findings, using
nuclear magnetic resonance (NMR)
spectroscopy, suggest that the
positive correlation between FEV1%
predicted and HDL-C or apoA-I in
atopic asthma may be largely mediated
by the subfraction of large HDLNMR

particles. These findings may serve as
the basis for future studies to assess
whether apoA-I and large HDLNMR

particles can reduce airflow
obstruction and disease severity in
asthma.
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of specific subgroups of lipoprotein particles
correlate with FEV1.

Methods

Study Population

Healthy subjects without asthma with and
without atopy and clinically stable subjects
with atopy and asthma were recruited
to participate in institutional review
board–approved protocols (96-H-0100 and
13-H-0059) at the NHLBI between 1999
and 2014, after providing written informed
consent. The diagnosis of asthma was
established according to NHLBI guidelines
(22), and severe asthma was defined using
European Respiratory Society/American
Thoracic Society guidelines (23). All
subjects with asthma demonstrated either
reversible airflow obstruction following
administration of an inhaled short-acting
b2-agonist or, alternatively, airway
hyperreactivity in response to methacholine
bronchoprovocation testing. Subjects
without asthma had a history and
physical examination that was negative
for asthma, and absence of airway
hyperreactivity as documented by a
negative methacholine bronchoprovocation
challenge. Atopy was defined by a positive
clinical history and skin test reactivity
to at least one of four common
aeroallergens, or a history of severe
allergy or anaphylaxis. Subjects without
atopy had a negative clinical history of
allergy and negative skin test reactivity
to the four aeroallergens.

Statistics

Statistical analyses were performed using
SAS Enterprise Guide Version 4.3 (SAS
Institute Inc., Cary, NC). Differences
between study groups and control subjects
were examined using a one-way analysis
of variance (Dunnett test), whereas
correlation analyses were performed using
Pearson correlation. Type 1 error was
controlled for at the level of comparison
with alpha set at 0.05. Additional details
regarding the methods and statistical
analyses are provided in the online
supplement.

Results

Table 1 presents the baseline clinical
characteristics of the three subject groups:

(1) subjects with no atopy or asthma (NN),
(2) subjects with atopy and no asthma
(AN), and (3) subjects with atopy and
asthma (AA). A total of 130 (82%) subjects
within the AA group had mild or moderate
asthma, whereas 29 (18%) had severe
disease. As compared with the NN
control group, the AA but not the AN group
were older, had higher body mass index and
C-reactive protein levels, but lower FEV1. The
AA group, but not the AN group, also had
a lower FEV1/FVC ratio, indicative of airflow
obstruction, as compared with the NN group,
whereas both the AN and AA groups had
higher eosinophil counts and IgE levels than
the NN group, consistent with the presence of
atopy.

The standard clinical lipid profiles of
the three groups were compared using one-
way analysis of variance, and no significant
differences were found between the AN
group and NN control subjects for any
of the lipid or apolipoprotein levels, whereas
in the AA group, only serum levels of
total cholesterol (TC) were significantly higher
than the NN group (Table 2). To account
for differences in age, sex, race and
ethnicity, body mass index, and C-reactive
protein levels among the groups that may
have affected the clinical lipid profiles,
a multivariate regression analysis using
linear models was performed. These
variables were found to be significant
in the multivariate analysis and

Table 2. Standard Clinical Lipid Profiles of the Study Population Presented as

Unadjusted Means

Nonatopic
Nonasthmatic

Atopic
Nonasthmatic

Atopic
Asthmatic

Number of subjects 80 74 159
Total cholesterol, mg/dl 176.76 32.9 173.21 37.3 191.46 35.7*
Triglycerides, mg/dl† 105.5 (70.5–141) 97.5 (72–165) 108 (76–161)
LDL-C, mg/dl 103.36 31 98.76 29.1 112.36 32
apoE, mg/ml† 20.0 (14.0–32.2) 19.6 (12.0–28.6) 23.2 (14.7–32.5)
HDL-C, mg/dl 49.66 16.7 47.61 16.7 53.86 17.1
apoA-I, mg/dl 169.66 30.3 158.36 31.8 170.46 34.4
apoB, mg/dl 87.26 22.3 84.76 23.8 91.66 24.2
apoB/apoA-I ratio 0.546 0.19 0.566 0.19 0.566 0.19

Definition of abbreviations: apo = apolipoprotein; LDL-C = low-density lipoprotein cholesterol; HDL-C =
high-density lipoprotein cholesterol.
Values shown are means6 SD, except as noted in the footnote.
*P< 0.05, as compared with the nonatopic nonasthmatic group, one-way analysis of variance.
†Denotes median (lower quartile–upper quartile).

Table 3. Adjusted (Least Squares) Means for Standard Clinical Lipid Profile Parameters

from Multivariate Linear Regression Models Incorporating Age, Body Mass Index,

Race/Ethnicity, Sex, and C-Reactive Protein

Nonatopic
Nonasthmatic

Atopic
Nonasthmatic

Atopic
Asthmatic

Total cholesterol, mg/dl 180.6 (172.7–188.4) 176.8 (169.0–184.6) 187.6 (181.8–193.3)
Triglycerides, mg/dl 118.6 (106.5–132.1) 113.4 (101.9–126.2) 111.4 (102.9–120.6)
LDL-C, mg/dl 108.8 (101.5–116.0) 103.0 (95.8–110.2) 111.1 (105.9–116.4)
apoE, mg/ml 22.7 (19.8–26.1) 19.4 (16.8–22.4) 22.7 (20.4–25.2)
HDL-C, mg/dl 45.2 (41.6–48.9) 46.5 (42.8–50.1) 51.4 (48.7–54.0)*
apoA-I, mg/dl 162.6 (155.7–169.4) 157.4 (150.6–164.2) 164.7 (159.7–169.7)
apoB, mg/dl 92.7 (87.5–98.0) 88.0 (82.8–93.3) 91.5 (87.6–95.3)
apoB/apoA-I ratio 0.60 (0.6–0.6) 0.6 (0.5–0.6) 0.6 (0.6–0.6)

Definition of abbreviations: apo = apolipoprotein; LDL-C = low-density lipoprotein cholesterol; HDL-C =
high-density lipoprotein cholesterol.
Values shown are means (95% confidence intervals).
*P< 0.05, as compared with the nonatopic nonasthmatic group, multivariate regression analysis
(linear models).
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were included in the linear models.
After accounting for these potential
confounding variables, there again were
no statistically significant differences
between the AN and NN control groups,
whereas the AA group had significantly
higher HDL-C levels as compared with
the NN control group. Adjusted (least
squares means) values are provided in
Table 3.

Next, a Pearson correlation analysis
was performed to determine if there were
significant correlations between serum
lipids and lipoproteins and the severity of
airflow obstruction, as measured by the
FEV1. Interestingly, as shown in Figures 1
and 2, correlations between components
of the standard clinical lipid profiles
and the severity of airway obstruction
were found only in the AA group. In
particular, FEV1 was found to be
negatively associated with serum TG,
LDL, and apoB levels, as well as the ratio
of apoB/apoA-I. In contrast, FEV1 was
positively associated with HDL-C and
apoA-I levels. Serum levels of TC or apoE,
however, were not found to correlate with
FEV1 in either of the groups.

Having shown that serum HDL and
apoA-I are positively correlated with FEV1

in the AA group alone, we next performed
a more detailed examination of lipoprotein
subfractions, using NMR spectroscopy to
determine which particle subfractions could
be mediating this effect. Similar to the
correlations with the standard lipid profiles,
only in the AA group were the NMR
lipoprotein subfractions correlated with
lung function. In particular, there was
a positive correlation between FEV1 and
HDLNMR size (Figure 3), the concentration
of large HDLNMR particles (Figure 4), and
the concentration of total intermediate-
density lipoprotein (IDLNMR) particles
(Figure 5). A negative correlation was
found between FEV1 and LDLNMR particle
size (Figure 3), and the concentration of
total LDLNMR particles (Figure 5) and total
very-low-density lipoprotein (VLDLNMR)
particles (Figure 6). In addition, the
concentrations of large and small LDLNMR

particles (Figure 5), and the concentrations
of large and small VLDLNMR particles
(Figure 6) were negatively correlated
with FEV1. We also performed linear
regression analyses to assess whether
serum TG concentrations, which can
modify the composition of HDL and LDL
particles (24), could have influenced the

correlations between FEV1 and HDLNMR

size or LDLNMR size. As shown in Table 4,
the significant associations between FEV1

and HDLNMR size and LDLNMR size
persisted regardless of serum TG
concentrations.

We then divided the subjects with
asthma into those with mild to moderate
asthma and those with severe asthma, to
assess whether the correlations between
serum lipids and FEV1 persisted when
subjects with asthma were grouped by
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Figure 1. The FEV1 in subjects with atopy and asthma is inversely correlated with serum

triglyceride and low-density lipoprotein cholesterol (LDL-C) levels. Correlations between

FEV1% predicted and serum levels of total cholesterol, triglycerides, LDL-C, and log

apolipoprotein E (apoE) levels in subjects without asthma and subjects with atopy and asthma

are shown. Pearson correlation coefficients and associated P values are shown for significant

relationships only.
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disease severity. Because of the small
number of subjects in the severe asthma
group, only the mild to moderate asthma
group was analyzed, which showed that

many of the statistically significant
correlations with FEV1 persisted in this
subgroup (see Figures E1 and E2 in the
online supplement).

Lastly, a sensitivity analysis was
performed to determine whether use of
medications that could alter the serum lipid
profile affected the correlation between
FEV1 and serum lipid and lipoprotein
levels. After excluding the 14 subjects (four
in the NN, one in the AN, and nine in the
AA group) who were known to be taking
a statin, niacin, gemfibrozil, cholesterol
absorption inhibitor, or another lipid
profile–altering agent, correlation analyses
using the Pearson method were repeated.
Again, no significant associations between
FEV1 and any of the serum lipids were
found in the group with no asthma. In the
AA group, all of the previously described
significant relationships persisted when
only those subjects who were not taking
any lipid profile–altering medications were
analyzed. In addition, a significant negative
association was now found between
medium VLDLNMR particles and FEV1 in
the AA group (Pearson, r =20.19; P =
0.046).

Discussion

In this study, we show that serum levels of
apoA-I and HDL-C are positively correlated
with FEV1 in subjects with atopy and
asthma, whereas an inverse correlation was
found between FEV1 and serum levels of
TG, LDL-C, apoB, and the apoB/apoA-I
ratio. Furthermore, NMR spectroscopy
identified a positive correlation between
FEV1 and both HDLNMR particle size
and the concentration of large HDLNMR

particles. A positive correlation was
also found between the FEV1 and the
concentration of total IDLNMR particles in
subjects with atopy and asthma. In contrast,
LDLNMR size and the concentration of large
and small LDLNMR particles, and the
concentration of large and small VLDLNMR

particles, were negatively correlated with
FEV1 in subjects with atopy and asthma.
Thus, these findings support the hypothesis
that pathways involving serum lipids
and specific lipoprotein particles may
influence the severity of airflow obstruction
in atopic asthma, with apoA-I and
HDL-C potentially having a protective
effect, whereas TG, LDL-C, and apoB
are associated with more severe airflow
obstruction.

A typical HDL particle is comprised
of two to five molecules of apoA-I
and approximately 100 molecules of
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Figure 2. The FEV1 in subjects with atopy and asthma is positively correlated with serum

high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A-I (apoA-I) levels, but

inversely correlated with serum levels of apolipoprotein B (apoB) and the apoB/A-I ratio. Correlations

between FEV1% predicted and serum levels of HDL-C, apoA-I, and apoB, and apoB/A-I ratio in

subjects without asthma and subjects with atopy and asthma are shown. Pearson correlation

coefficients and associated P values are shown for significant relationships only.
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phosphatidylcholine, which form an
amphipathic shell around a hydrophobic
core of cholesterol esters and TGs (2). The
composition of HDL is heterogeneous,
containing varied amounts of different
lipids, proteins, and microRNAs (2, 25).
Both apoA-I and HDL mediate a wide
variety of atheroprotective functions, such
as acting as an acceptor for cholesterol
that is transported out of lipid-laden
macrophages in the vascular wall by the
reverse cholesterol transport pathway (26).
Other protective functions of HDL involve
its antiinflammatory, antioxidative,
antithrombotic, and antifibrotic properties,
as well as its ability to down-regulate
adhesion molecule expression and bind
endotoxins (2, 27). HDL-C has long been
identified in population-based studies as
being inversely associated with the risk of
coronary heart disease and death (2, 3, 28).
However, not all HDL is cardioprotective,
because HDL from some patients with
coronary artery disease, diabetes, or
chronic renal disease may be dysfunctional
with reduced antiinflammatory and
endothelial repair functions (2). In
addition, apoA-I in human atheromas may
also become dysfunctional because of
myeloperoxidase-dependent oxidation
with resultant loss of cholesterol
acceptor activity and increase in
proinflammatory activity (29). Thus,
a more detailed characterization of HDL
besides its cholesterol content (HDL-C)
may be essential in defining its
relationship to airflow obstruction and
asthma.

Lipoprotein particles are typically
classified according to size and density, with
HDL particles that contain apoA-I being the
smallest and most dense (1). LDL, IDL,
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Figure 3. The FEV1 in subjects with atopy and asthma is positively correlated with the size of

HDLNMR particles and negatively correlated with the size of LDLNMR particles. Correlations

between FEV1% predicted and lipoprotein particle sizes as measured by NMR spectroscopy

in subjects without asthma and subjects with atopy and asthma are shown. Pearson correlation

coefficients and associated P values are shown for significant relationships only. HDL = high-density

lipoprotein; LDL = low-density lipoprotein; NMR= nuclear magnetic resonance; VLDL= very-low-density

lipoprotein.

Table 4. Intercepts and Parameter Estimates of HDL, LDL, and VLDL Particle Sizes from Linear Regression with FEV1 Incorporating

Log Serum Triglyceride Levels for Subjects with and without Asthma

Variable

Nonasthmatic Atopic Asthmatic

Intercept Parameter Estimate6 SE P Value Intercept Parameter Estimate6 SE P Value

HDLNMR size 92.46 1.2956 1.96 0.51 7.79 10.0036 3.05 0.001*
Log LDLNMR size 164.27 219.0676 48.16 0.69 554.93 2138.5746 50.71 0.008*
VLDLNMR size 117.63 20.0096 0.13 0.95 122.71 0.5846 0.25 0.02*

Definition of abbreviations: HDL = high-density lipoprotein; LDL = low-density lipoprotein; NMR= nuclear magnetic resonance; VLDL = very-low-density
lipoprotein.
*Statistically significant relationship between lipid particle size and FEV1 after adjusting for log serum triglyceride levels.
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VLDL, chylomicron remnants, and
chylomicrons, which are all progressively
larger and less dense than HDL, all contain
apoB and are largely viewed as being
proatherogenic (1). Each of these major
classes of lipoproteins is further composed
of subgroups of heterogeneous particles

of varying size and composition. By
measuring the NMR proton signal from
the terminal methyl groups on lipids,
one can determine not only the amount
of each type of lipoprotein particle
present but also their size because of
characteristic differences in the chemical

shift associated with different-sized
lipoprotein particles (30). This allows
NMR-derived concentrations to be
quantified for each of the different-sized
lipoprotein subfractions.

Recent studies have suggested that
NMR measurements of LDL-P and HDL-P
particle numbers (which we have referred to
as the total concentration of LDLNMR and
HDLNMR particles) may have advantages
for the prediction of cardiovascular events
over the traditional measurement of LDL-C
or HDL-C (31). However, it is important to
note that although NMR measurements
seem to be strongly correlated with HDL
number and size, the absolute accuracy of
this approach for the true abundance of
HDL particles in plasma has not been
clearly established, and that lipoprotein
particle size measured by NMR
spectroscopy and other laboratory methods
has produced different results (32).

Here, we demonstrated that HDL
particle size (HDLNMR size) and the
concentration of large HDLNMR particles, as
well as the concentration of total IDLNMR

particles, were positively correlated with
FEV1 in atopic subjects with asthma. These
results extend our findings from the
standard lipid profile analysis regarding
the positive correlation between serum
HDL-C and FEV1, and also demonstrate
a similar correlation with serum IDLNMR.
Furthermore, these results suggest that any
possible protective effect of HDL-C on
airflow obstruction in atopic asthma may
be specifically mediated by large HDLNMR

particles. Interestingly, in a prior study of
healthy women, only the number of large
HDLNMR particles was associated with
a reduction in risk of cardiovascular disease
(33). Our results also show that in contrast
to other apoB-containing lipoprotein
particles, such as VLDLNMR and LDLNMR,
the concentration of total IDLNMR particles
is positively, rather than negatively,
correlated with FEV1 in subjects with atopy
and asthma. We hypothesize that, as
compared with VLDLNMR and LDLNMR

particles, IDLNMR particles may possess
distinct lipid or protein constituents that
may mediate the positive correlation with
FEV1.

We also demonstrated a negative
correlation between FEV1 and LDLNMR

size, and with the concentration of total,
and large and small subfractions of
LDLNMR particles. A negative correlation
was also demonstrated between FEV1
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and the concentration of total, and large
and small subfractions of VLDLNMR

particles. These results similarly confirm
and extend our findings from the
standard lipid profile analysis regarding
a negative correlation between serum

LDL-C or apoB levels and FEV1 in atopic
asthma. In contrast to HDL-C, raised
levels of LDL-C and, more recently, TGs
have been linked with increased risk of
cardiovascular disease (1, 34). LDL
particles and their associated apoB

molecules are the primary carriers
of cholesterol to tissues where the
cholesterol cargo is internalized into
cells via LDLR (1, 35). Plasma TGs are
a marker for remnant cholesterol,
which is the cholesterol content of all
TG-enriched lipoproteins, including
chylomicron remnants, VLDL, and IDL
(34). The role of LDL-C in cardiovascular
disease is well established, because
multiple randomized trials have shown
that statin-mediated reductions in LDL-C
significantly reduce the risk of coronary
events (36). Additionally, data from
epidemiologic and genetic studies support
a role for raised serum TG levels,
and remnant cholesterol or TG-rich
lipoproteins as a cause of cardiovascular
disease (34). Consistent with the
deleterious effects of LDL-C, apoB,
and TGs in vascular cells, our results
show that serum levels of LDL-C,
apoB, apoB/apoA-I ratio, and TG are
negatively correlated with FEV1 in atopic
asthma.

A correlation between serum lipid levels
and airflow obstruction has not previously
been reported in subjects with asthma.
However, an association between FEV1 and
lipid profiles has been shown in an analysis of
14,135 subjects without respiratory disease
who participated in the Third National
Health and Nutrition Examination Survey
(37). In this study, serum levels of HDL-C
and apoA-I were positively correlated with
FEV1, whereas LDL-C, apoB, and apoB/
apoA-I ratio were negatively correlated.
Serum TG levels were not reported. The
Third National Health and Nutrition
Examination Survey findings are similar to
our results where we found that a positive
correlation existed between serum levels of
HDL-C or apoA-I with FEV1 and a negative
correlation between FEV1 and serum levels of
LDL-C, apoB, or TG in subjects with atopy
and asthma. Although we did not find an
association between FEV1 and any of the lipid
parameters in our subjects without asthma,
we cannot exclude the possibility that our
sample size for this group may have been
too small to identify an association.

It is also important to note that
samples from subjects with and without
asthma in our study were collected in the
nonfasting state. It has previously been
demonstrated that, except for serumTGs,most
other lipid and lipoprotein parameters, such as
apoA-I, apoB, ratio of apoB/apoA-I, and
non–HDL-C, do not significantly change with
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fasting status (38). Nonfasting lipid profiles,
however, are predictive of an increased
risk of cardiovascular events, including
myocardial infarction, ischemic heart
disease, ischemic stroke, and death (38–40).
Additionally, nonfasting TG levels are
considered superior to fasting TG levels for

the prediction of cardiovascular events (1, 41).
Based on the advantages of nonfasting
lipid levels, the measurement of nonfasting
serum lipids has now become a standard
practice for cardiovascular risk screening,
particularly in pediatric populations
(34, 42).

Our study also found that serum
HDL-C levels were increased in the AA
group as compared with the NN group,
whereas there were no differences in LDL-C,
TC, TG, or apoB between NN and either the
AN or AA groups. Although prior studies
have also assessed the relationship between
serum HDL-C and asthma, the results have
been heterogeneous with serum HDL-C
levels either being increased, decreased, or
unchanged in subjects with asthma (20,
43–50). Similar to our findings, prior
studies have also not found a change in
serum LDL-C in subjects with asthma,
whereas TC was either decreased or
unchanged and TG levels were either
increased or unchanged. Potential
explanations for these disparate results
could include the various definitions of
asthma used in the studies, differences in
lipid and lipoprotein assays, differences in
age and genetic backgrounds, and cultural
and environmental influences (20). Thus,
these cumulative data have only clearly
established that LDL-C levels do not differ
between subjects with and without asthma.

Furthermore, although the adjusted
mean HDL-C was higher and the FEV1 was
lower in subjects with asthma than control
subjects in our study, we do not believe this
is inconsistent with a positive correlation
between FEV1 and HDL-C. The overall
group mean for each parameter may not be
reflective of the relationship between the
FEV1 and lipid levels for each individual
subject. Therefore, we propose that in
addition to assessing whether serum lipid
levels differ between subjects with and
without asthma, it is also important to
determine whether serum lipids levels
modify airflow obstruction as a measure of
disease severity in asthma on an individual
basis.

Although our study has notable
strengths, it also has several limitations. One
strength of our study was the definitive
establishment of asthmatic versus
nonasthmatic clinical phenotypes using
objective criteria, thus minimizing
confounding interpretations caused by
subject misclassification. Second, this is the
first study describing a correlation between
the severity of airflow obstruction and
serum lipid profiles in subjects with atopy
and asthma. Third, our study is the first to
use NMR spectroscopy to analyze serum
lipoprotein particle subfractions in
asthma, and correlate them with the
severity of airflow obstruction. However,
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similar to many previously published
studies, we could not account for
differences in diet or exercise levels
among study groups.

We acknowledge that other metabolic
factors, such as the metabolic syndrome
and obesity, could potentially be modifying
the association between FEV1 and serum
lipids and lipoproteins. Additionally,
although the relationships between FEV1

and HDLNMR size or LDLNMR size
remained significant even after adjusting
for serum TG concentrations in our study,
we cannot exclude the possibility that
these relationships may be altered
in individuals with more severe

hypertriglyceridemia, because only 18 of
our subjects with asthma had high levels of
serum TGs (200–499 mg/dl) and none had
very high serum TGs (.500 mg/dl).
Furthermore, our study is a cross-sectional
analysis which does not describe how
serum lipids in subjects with asthma may
vary over time. To address this, we are
currently conducting a longitudinal study
of subjects with asthma to assess whether
the associations reported in this study
persist over time.

Although our cohort was very well
characterized regarding disease phenotype
and severity, our relatively small sample size
can also be considered a shortcoming.

Therefore, additional studies involving
larger cohorts of subjects will be important
to confirm and extend the findings from
our study, which is the first investigation
using NMR spectroscopy as a novel
technique to identify a correlation between
serum apolipoprotein particle size and the
severity of airflow obstruction in atopic
asthma. n
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