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Abstract

β2-microglobulin (β2-m), a 11.8 kDa protein, pairs non-covalently with the α3 domain of the

major histocompatibility class (MHC) I α-chain and is essential for the conformation of the

MHC class I protein complex. Shed β2-m is measurable in circulation, and various disorders

are accompanied by increases in β2-m levels, including several viral infections. Therefore,

we explored whether β2-m levels could also be elevated in Coronavirus disease 2019

(Covid-19) and whether they predict disease severity. Serum β2-m levels were measured in

a cohort of 34 patients infected with SARS-CoV-2 on admission to a tertiary care hospital in

Riyadh, Saudi Arabia, as well as in an approximately age-sex matched group of 34 unin-

fected controls. Mean β2-m level was 3.25±1.68 mg/l (reference range 0.8–2.2 mg/l) in

patients (mean age 48.2±21.6) and 1.98±0.61 mg/l in controls (mean age 48.2±21.6). 17

patients (mean age 36.9± 18.0) with mean β2-m levels of 2.27±0.64 mg/l had mild disease

by WHO severity categorization, 12 patients (mean age 53.3±18.1) with mean β2-m levels

of 3.57±1.39 mg/l had moderate disease, and five patients (of whom 2 died; mean age 74.4

±13.8) with mean β2-m levels of 5.85±1.85 mg/l had severe disease (P < = 0.001, by

ANOVA test for linear trend). In multivariate ordinal regression β2-m levels were the only

significant predictor of disease severity. Our findings suggest that higher β2-m levels could

be an early indicator of severity of disease and predict outcome of Covid-19. As the main

limitations of the study are a single-center study, sample size and ethnicity, these results

need confirmation in larger cohorts outside the Arabian Peninsula in order to delineate the

value of β2-m measurements. The role of β2-m in the etiology and pathogenesis of severe

Covid-19 remains to be elucidated.
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Introduction

Immune responses to the infection with SARS-CoV-2, the causative pathogen of Covid-19,

were first described in China [1–3] and subsequently, in the wake of a global spread, in other

countries and ethnicities [4–12]. Covid-19 is preponderantly mild and self-limiting with rap-

idly developing anti-viral immunity. By contrast, progression to a well characterized cytokine

release syndrome resulting in acute lung injury or acute respiratory distress syndrome in crit-

ical cases with a high case fatality ratio occurs in many elderly and in the presence of comor-

bidities, similar to other (seasonal) viral infections [13–15]. Immunosenescence with

exhaustion of plasmacytoid dendritic cells, natural killer (NK) cells and cytotoxic CD8+ T

cells, which form the frontline of cellular innate and adaptive anti-viral immune defense,

would seem a plausible explanation of the inadequacy of the aging immune system to clear

this virus efficiently [16–19]. In severe or critical disease, a markedly impaired interferon

(IFN) type I response was associated with a persistent blood viral load and florid inflamma-

tion, which in some patients was also related to the presence of autoantibodies against IFN

type I [20, 21]. Host-pathogen interactions, distinct immunotypes and immune signatures

are determinants of pathogenesis and correlate with outcomes of Covid-19 [11, 12, 22]. A ful-

minant cytokine release syndrome or storm, including common protagonists of inflamma-

tion such as IL-1β, IL-1Ra, IL-2, IL-6, IL-7, IL-8, IL-9, IL-10, basic FGF, G-CSF, GM-CSF,

IFN-γ, IP-10, MCP-1, MIP-1α, MIP-1β, PDGF, VEGF and TNF-α, is made responsible for

life-threatening respiratory failure and multi-organ dysfunction or failure [1]. With regard to

outcome, the principal, known predictors of mortality are advanced age, comorbidities such

as diabetes, hypertension, cardiac disease, chronic lung disease, chronic kidney disease, cere-

brovascular disease, dementia, mental disorders, immunosuppression, obesity and cancer,

and laboratory parameters, i.e. CRP, LDH, cardiac troponin I, ferritin, D-dimers, and raised

levels of IP-10, IL-10, IL-1Ra, IL-6, as well as lymphopenia [23–29]. In combination with the

clinical presentation and radiographic findings, some of these variables have been used to

develop various prognostic models for risk stratification of patients admitted to hospital with

Covid-19, but a universally accepted and applicable scoring system has as yet not been estab-

lished [30].

With the intention to explore whether other plausible markers could be clinically useful for

assessing and predicting the response of the immune system to SARS-CoV-2, we determined

the blood levels of β2-microglobulin (β2-m) in patients with Covid-19 who were admitted to a

tertiary care hospital in Riyadh, Saudi Arabia. For comparison, β2-m levels were also measured

in an approximately age-sex matched healthy control group.

The hypothesis that β2-m measurements could be relevant was suggested by previous

findings of abnormal β2-m levels in a variety of viral infections, including those caused by

EBV, CMV and influenza virus [31]. β2-m concentrations were highest in patients with

CMV disease (6.5±2.0 mg/l), infectious mononucleosis (4.8±1.7 mg/l) and influenza A (4.2

±1.9 mg/l). In HIV infection, a serum β2-m level of >3 mg/l predicted the development of

AIDS within a period of 36 months [32]. Intriguingly, IL-1Ra, a biomarker of disease sever-

ity in Covid-19 [27], correlated positively with serum β2-m levels and negatively with circu-

lating CD4+ T lymphocyte counts in patients during different stages of AIDS, suggesting a

shared regulatory pathway among these two disparate viral infections [33]. The pathophysi-

ologic mechanisms which are widely accepted as the cause of elevated blood levels of β2-m

under these circumstances are an accelerated rate of shedding or dissociation of β2-m from

the MHC class I α-chain at the cell surface of immune and non-immune cells, which relates

to the cardinal function of the MHC class I system of presenting viral antigenic peptides to

cytotoxic CD8+ T cells. The ensuing death of antigen presenting cells releases cellular
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components collectively designated as “damage-associated molecular patterns” (DAMPs)

that evoke an innate and adaptive immune response which may harm the host if regulatory

mechanisms fail [34–37]. After engagement of the T-cell receptor with the trimeric MHC

class I complex, the α-chain dissociates from β2-m, then is internalized and degraded, while

β2-m is released from the cell surface [38, 39]. Apart from this mechanism of disintegration,

there is evidence that up-regulation of β2-m synthesis also occurs at the transcriptional level

in response to stimulation by a variety of cytokines, such as IFN type I, TNF-α and IL-1β
[40–42].

Methods

Setting

We conducted an observational study at the King Faisal Specialist Hospital & Research Centre

(KFSHRC), a large (~1.000.000 outpatient visits/year, 1.600 beds, ~1.000 doctors and ~13.500

employees), non-profit, tertiary referral hospital, located in the city center of Riyadh, Saudi

Arabia, where patients are referred from other hospitals from across Saudi Arabia and adjacent

regions. Participants were included consecutively in the period from 14 March to 8 April 2020.

All patients were Saudi nationals except two European expatriates. The Saudi nationals were

self-referrals, as these participants were long-term patients and therefore have direct access to

health care in this hospital. The two European patients were admitted after special arrange-

ments. The diagnosis of Covid-19 was suspected clinically and confirmed through the detec-

tion of SARS-Cov-2 in a nasopharyngeal sample with specific PCR (RealStar1SARS-CoV-2

RT-PCR Kit RUO altona-diagnostics, Germany), which was performed in the Section of Medi-

cal Microbiology of the Department of Pathology and Laboratory Medicine at KFSHRC. Upon

testing positive, the patients were admitted and isolated in negative pressure rooms. Severity of

disease, i.e. mild, moderate, severe or critical, was determined on admission and modified

according to the clinical course using the WHO categories of Covid-19 disease severity [43].

These are defined as follows: mild disease, no evidence of viral pneumonia or hypoxia; moder-
ate disease, clinical signs of pneumonia (fever, cough, dyspnea, fast breathing), but not severe

pneumonia, including SpO2� 90% on room air, cautioning that a SpO2 of>90–94% on

room air is abnormal in a patient with normal lung and can be an early sign of severe disease;

severe disease, clinical signs of pneumonia (fever, cough, dyspnea, fast breathing) plus one of

the following: respiratory rate >30 breaths/min, severe respiratory distress or SpO2<90% on

room air. Chest imaging (radiograph, CT scan, ultrasound) may assist in diagnosis and iden-

tify or exclude pulmonary complications in moderate and severe disease. Critical disease, not

distinguished from severe disease in our analyses (because of small numbers), is defined by

onset (within 1 week of a known clinical insult, i.e. pneumonia, or new or worsening respira-

tory symptoms), chest imaging (radiograph, CT scan or ultrasound showing bilateral opacities,

not fully explained by volume overload, lobar or lung collapse, or nodules), origin of pulmo-

nary infiltrates (respiratory failure not fully explained by cardiac failure or fluid overload by

objective assessment, e.g. echocardiography) and oxygenation impairment (mild, moderate or

severe acute respiratory distress syndrome). One patient with Covid-19 had β2-m levels

between 19.85 and 40.35 mg/l, but was on intermittent hemodialysis and was therefore

excluded from our analyses. For comparison, we also determined β2-m levels and other param-

eters in a group of approximately age-sex matched controls without evidence of any infection

who were recruited from hospital personnel, trainees or patients. The study was approved by

the Hospital’s ethics committee, the Research Advisory Council (RAC No: 2201052) and writ-

ten informed consent was obtained from all subjects.
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Data sources

Clinical, laboratory and radiographic data were handled via the electronic medical records sys-

tem (PowerChart; Cerner, USA), and included participants‘ demographic details, vital signs,

admission notes with chief complaint(s), history of present illness, previous diagnoses, medica-

tions, laboratory tests, radiography, and progress notes. These data were extracted from the

electronic medical records, deposited and further processed using REDCap [44]. Within this

project, each participant patient was assigned a unique research-specific ID number that was

password-protected and accessible to one of the investigators (R.S.A). Data were exported

from REDCap into a Microsoft Excel spreadsheet which is included as (S1 File. DataSetCov-

id_Saudia.Excel).

Variables assessed

For each patient with Covid-19, we obtained and recorded electronically the following data at

the time of admission to the hospital: age, sex, nationality, vital signs including SpO2, present-

ing symptom(s), comorbidities, medications, laboratory tests and chest X-ray. Laboratory

investigations included complete blood count (CBC), absolute counts of CD3+, CD3+CD4+

and CD3+CD8+ T cells, CD19+ B cells, CD56+CD16+ NK cells, levels of β2-m, ferritin, D-

dimer, CRP, estimated glomerular filtration rate (eGFR, CKD-EPI equation) [45]. In the con-

trol group, after exclusion of an infectious disease, the same hematologic and biochemical

parameters were measured. All variables are provided in the (S1 File. DataSetCovid_Saudia.

Excel).

Quantification of β2-m, ferritin, D-dimer and CRP levels

The tests for β2-m, ferritin, D-dimer and CRP were performed within two days of admission

in the Medical Laboratory of the Department of Pathology and Laboratory Medicine at

KFSHRC. Serum β2-m levels were quantified using an immunoturbidometric assay with a

latex-bound rabbit polyclonal anti-β2-m antibody on Roche/Hitachi cobas1 c system (TINA-

QUANT1 β2-microglobulin). The measuring linear range of this particular assay is 0.2–8.0

mg/l, and the reference range is 0.8–2.2 mg/l. Serum levels of ferritin were determined by elec-

trochemiluminescence immunoassay (Elecsys Ferritin1) using streptavidin-coated micropar-

ticles, biotinylated mouse monoclonal anti-ferritin antibody and ruthenium-complex-labeled

mouse monoclonal anti-ferritin antibody on the Roche/Hitachi cobas1 e 801 immunoassay

analyzer (measuring range: 0.50–2000 μg/l; reference range for men: 30–400 μg/l; for women:

13–150 μg/l). D-dimer levels were determined in plasma with an immunoturbidometric assay

(STA1-Liatest1D-DI PLUS) using latex microparticles coated with two different mouse

monoclonal anti-D-dimer antibodies (normal level< 0.5 μg/ml FEU) and analyzed on the

STA-R1Max2 instrument. CRP levels were measured in serum using an immunoturbido-

metric assay with latex particles coated with mouse monoclonal anti-CRP antibody

(CRPHS1) on the Roche/Hitachi cobas1 c system (measuring range: 0.15–20.0 mg/l). For this

high-sensitivity CRP assay, levels >10 mg/l indicate systemic inflammation.

Phenotyping of circulating lymphocytes

Flow cytometry for lymphocyte subsets was performed on heparinized whole blood using BD

Multitest™ 6-color TBNK reagent and a six-color direct immunofluorescence assay with BD

Trucount™ tubes on BD FACSCanto™ II flow cytometer instrument (Becton Dickinson Biosci-

ences, San Jose, CA, USA) using standard quality control and instrument settings [46]. At least

5,000 lymphocytes were acquired and analysis was performed using BD FACSDiva™ software
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version 10.0 (BD Biosciences). All results were expressed as absolute counts and percentages of

mature T, B, and NK lymphocyte populations as well as CD4+ and CD8+ T-cell subset ratios in

peripheral blood.

Statistical analysis

Tabulations, analysis of variance (ANOVA) including linear trend tests, ordinal logistic

regression (proportional odds model, stepwise manually, backward selection, p-value based,

p_out = 0.05), and Pearson’s correlation coefficients were used. A significance level (2-tailed)

of 0.05 was used throughout. As the distribution of CRP levels was highly skewed, its values

were 10log transformed. Analyses were carried out with SPSS v.22 (IBM SPSS Statistics for

Windows, Version 22.0. Armonk, NY: IBM Corp). The raw data used for statistical analysis

are included in the (S1 File. DataSetCovid_Saudia.Excel).

Results

Patients’ characteristics

Demographic characteristics, main comorbidities, clinical manifestations, medications and

vital signs on presentation are shown in Table 1. Individual data of each patient are presented

separately in a (S1 Table). 34 consecutive participants (mean age 48.2 ± 21.6; 12 m, 22 f) pre-

sented to the emergency department with one or more of the following chief complaints (in

descending order of frequency): fever, dry cough, sore throat, rhinorrhea, fatigue, headache,

diarrhea, anosmia, productive cough, dyspnea, ear pain, ageusia, anorexia, abdominal pain,

nausea, emesis, seizure, syncope, myalgia, rash and no symptoms. Fever and dry cough were

the principal manifestations in all patients, whereas other symptoms varied among severity

groups. One patient who progressed to severe disease was presymptomatic at presentation.

Among the patients, comorbidities were as follows: hypertension, diabetes mellitus, dyslipide-

mia, coronary artery disease, congestive heart failure, atrial fibrillation, chronic obstructive

pulmonary disease, cerebrovascular disease, leukemia in remission, colorectal cancer in remis-

sion, post-renal transplant, Hodgkin’s lymphoma in remission, and hypothyroidism. On

admission, 23 participants (68%) were on one or more of the following medications: lisinopril,

ramipril, perindopril, losartan, valsartan, amlodipine, diuretics (furosemide/thiazide),

metformin, liraglutide, atorvastatin, amiodarone, flecainide, apixaban, rivaroxaban, warfarin,

L-thyroxine, fluticasone/salmeterol, montelukast, imatinib, tacrolimus, prednisone, diphenyl-

hydantoin, paroxetine, pregabalin, escitalopram.

Outcome data

Serum β2-m levels were raised above reference range in 26 patients (76%) with a mean level of

3.25± 1.68 mg/l. The lowest β2-m level of 1.16 mg/l was observed in a 25-year old woman, the

highest 8.9 mg/l in a 90-year old man. The clinical impression was that those patients with

moderate (12 patients) or severe disease (5 patients) had higher β2-m levels. Two patients with

severe disease, a 71-year old man and a 90-year old man, did not survive respiratory failure.

Their β2-m levels on admission of 6.24 mg/l and 8.9 mg/dl, respectively, were the highest

observed. In an approximately age-sex matched control group of 34 individuals (mean age

48.2±21.6) without infection, mean β2-m level was 1.98±0.61 mg/l. Of interest was the strong

correlation (Pearson’s r = 0.77, p<0.001) of β2-m levels with age in the control group.

Therefore, further statistical analyses (ordinal logistic regression, correlation coefficients)

were performed on three groups: group A of 17 patients with mild disease, group B of 12

patients with moderate disease and group C of five patients with severe disease. Patients in
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Table 1. Demographic characteristics, comorbidities, clinical manifestations, medications and vital signs in patients admitted to the hospital with Covid-19.

All Patients (n = 34) Mild Disease (n = 17) Moderate Disease (n = 12) Severe Disease (n = 5)

Age (years), mean (±SD) 48.2 (21.6) 36.9 (18.0) 53.3 (18.1) 74.4 (13.8)

Range 20–90 20–79 22–78 54–90

Age by group, n (%)

<40 13 (38.2) 10 (58.8) 3 (25) 0 (0)

40–59 9 (26.5) 4 (23.5) 4 (33.3) 1 (20)

60–80 10 (29.4) 3 (17.6) 5 (41.7) 2 (40)

80+ 2 (5.9) 0 (0) 0 (0) 2 (40)

Sex, n (%)

Male 12 (35.3) 5 (29.4) 2 (16.7) 5 (100)

Female 22 (64.7) 12 (70.6) 10 (83.3) 0 (0)

Comorbidities, n (%)

Hypertension 12 (35.3) 2 (11.8) 6 (50) 4 (80)

Diabetes 6 (17.6) 0 (0) 3 (25) 3 (60)

Dyslipidemia 5 (14.7) 0 (0) 3 (25) 2 (40)

Coronary Artery Disease 3 (8.8) 0 (0) 0 (0) 3 (60)

Congestive Heart Failure 3 (8.8) 0 (0) 1 (8.3) 2 (40)

Atrial fibrillation 3 (8.8) 1 (5.9) 0 (0) 2 (40)

COPD 2 (5.9) 0 (0) 0 (0) 2 (40)

Cerebrovascular Disease 1 (2.9) 0 (0) 0 (0) 1 (20)

Other 4 (11.8) 2 (11.8) 1 (8.3) 1 (20)

Symptoms at presentation, n (%)

Fever 23 (67.6) 10 (58.8) 10 (83.3) 3 (60)

Dry cough 23 (67.6) 9 (52.9) 10 (83.3) 4 (80)

Sore throat 14 (41.2) 9 (52.9) 5 (41.7) 0 (0)

Rhinorrhea 12 (35.3) 8 (47.1) 3 (25) 1 (20)

Fatigue 10 (29.4) 5 (29.4) 3 (25) 2 (40)

Headache 8 (23.5) 3 (17.6) 4 (33.3) 1 (20)

Diarrhea 5 (14.7) 1 (5.9) 4 (33.3) 0 (0)

Anosmia 5 (14.7) 3 (17.6) 2 (16.7) 0 (0)

Productive cough 4 (11.8) 1 (5.9) 1 (8.3) 2 (40)

Dyspnea 3 (8.8) 2 (11.8) 1 (8.3) 0 (0)

Otalgia 2 (5.9) 1 (5.9) 0 (0) 1 (20)

Ageusia 2 (5.9) 1 (5.9) 1 (8.3) 0 (0)

Anorexia 2 (5.9) 1 (5.9) 1 (8.3) 0 (0)

Nausea 1 (2.9) 0 (0) 1 (8.3) 0 (0)

Vomiting 1 (2.9) 0 (0) 0 (0) 1 (20)

Abdominal pain 1 (2.9) 0 (0) 1 (8.3) 0 (0)

Seizure 1 (2.9) 0 (0) 0 (0) 1 (20)

Syncope 1 (2.9) 0 (0) 0 (0) 1 (20)

Myalgia 1 (2.9) 1 (5.9) 0 (0) 0 (0)

Rash 1 (2.9) 0 (0) 1 (8.3) 0 (0)

Asymptomatic 1 (2.9) 0 (0) 0 (0) 1 (20)

Medications, n (%)

Beta-Blocker 8 (23.5) 2 (11.8) 2 (16.7) 4 (80)

ACEI or ARB 7 (20.6) 1 (5.9) 2 (16.7) 4 (80)

Oral Hypoglycemic 5 (14.7) 0 (0) 3 (25) 2 (40)

Diuretic 4 (11.8) 0 (0) 1 (8.3) 3 (60)

(Continued)
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group A had initial mean β2-m levels of 2.27 ±0.64 mg/l, group B 3.57 ±1.39 mg/l and group C

5.85 ±1.85 mg/l. Mean age differed among groups, with 36.9± 18.0 in group A, 53.3±18.1 in

group B, and 74.4±13.8 in group C. All patients in group B and C had at least one comorbid

condition. As in the control group, age and β2-m levels were significantly correlated (Pearson’s

r = 0.71, p<0.001). In addition, β2-m levels were significantly correlated with several other risk

factors in our patients, notably WBC (r = 0.36), D-dimer (r = 0.54), 10log (CRP) (r = 0.62) and

eGFR (r = 0.75). The comparison of all groups, as well as the relationship between β2-m levels

and age, is graphically shown in Fig 1.

Table 1. (Continued)

All Patients (n = 34) Mild Disease (n = 17) Moderate Disease (n = 12) Severe Disease (n = 5)

Anticoagulant 3 (8.8) 1 (5.9) 0 (0) 2 (40)

Antidepressant 3 (8.8) 2 (11.8) 1 (8.3) 0 (0)

Immunosuppresant 2 (5.9) 0 (0) 1 (8.3) 1 (20)

Antiepileptic 1 (2.9) 0 (0) 0 (0) 1 (20)

Other 17 (50) 6 (35.3) 8 (66.7) 3 (60)

Vitals at presentation, mean (±SD)

Temperature 37.1 (0.53) 37 (0.5) 37.3 (0.5) 37.3 (0.8)

Heart Rate 83 (13.7) 82 (13.3) 86 (14.7) 82 (15.1)

Systolic Blood Pressure 124 (15.3) 119 (16.3) 130 (12.7) 126 (13.8)

Diastolic Blood Pressure 76 (10.7) 75 (10.6) 81 (11.7) 70 (1.8)

Respiratory Rate 20 (1.8) 20 (0.7) 20 (0.8) 22 (4.2)

O2 saturation 97% (2.5) 98% (1.7) 96% (1.9) 94% (3.2)

BMI 27.8 (4.3) 27 (3.5) 29 (4.7) 28.2 (6.3)

Mean age (±SD), sex, comorbidities, symptoms and signs, medications and means of vital signs (±SD) on presentation to the hospital are listed in a cohort of 34 patients

diagnosed with Covid-19 (2nd column). The patients were further categorized according to WHO criteria of disease severity as mild (n = 17; 3rd column), moderate

(n = 12; 4th column) and severe disease (n = 5; 5th column).

https://doi.org/10.1371/journal.pone.0247758.t001

Fig 1. β2-m levels in Covid-19 on admission to the hospital. Serum β2-m levels (mg/l) measured at the time of first

SARS-Cov-2 detection are shown in relation to age in a group of 17 patients with mild (magenta ), 12 patients with

moderate (green ) and five patients with severe Covid-19 (red ) and 34 approximately age-sex matched uninfected

controls (light blue ). Each dot represents one participant. Linear regression lines of β2-m levels on age per group are

also included.

https://doi.org/10.1371/journal.pone.0247758.g001
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Our analysis suggests that β2-m levels appear to be more proximate causes or correlates of

disease severity than age or renal function [47], as stepwise (backward selection) ordinal logis-

tic regression of group on age, sex, eGFR, 10log (CRP) and β2-m identified β2-m as the only

significant predictor. The odds ratio of having severe disease versus mild/moderate disease per

unit (mg/l) β2-m was estimated at 4.22 (95% CI:1.86–12.94). Based upon other reports we also

measured the following parameters which have been implicated in disease severity: counts of

WBC, lymphocytes and CD8+ T cells as well as serum levels of ferritin, D-dimer and CRP.

Table 2 summarizes the values of these parameters and other lymphocyte subsets in the differ-

ent groups. No variable except for age and β2-m levels was statistically different between the

three severity groups, as calculated by ANOVA (significance level = 0.05).

Discussion

In a cohort of 34 patients (32 Arabs, two Europeans), who were recently diagnosed and admit-

ted with Covid-19, increased serum levels of β2-m were found at the time of presentation to

the hospital, a hitherto unreported abnormality [48]. As of February 2021, a PubMed search

using the term “β2-m AND Covid-19” has resulted in three hits. In two reports, β2-m level was

measured and found raised in the cerebrospinal fluid of patients with Covid-19-related

encephalitis [49, 50], while in the third communication, measurement of β2-m was used as

human cellular control in Covid-19 testing in samples from the respiratory tract [51]. The

results of our study were predictable as other viral infections were also accompanied by

increases in β2-m concentrations [31]. However, higher levels were noted in those participants

who had severe disease with viral pneumonia, resulting in respiratory failure, invasive mechan-

ical ventilation and death in some. This clinical observation induced us to compare patients

with mild disease with those who had moderate or severe disease. A statistically significant dif-

ference in mean β2-m levels was found between the three groups (2.27 ±0.64 mg/l versus 3.57

Table 2. Group comparison of reported predictors of outcome including lymphocyte subsets in mild (A) versus moderate (B) versus severe (C) Covid-19 on admis-

sion to the hospital.

Controls Mild (A) Moderate (B) Severe (C)

n = 34 n = 17 n = 12 n = 5

Mean ±SD Mean ±SD Mean ± SD Mean ± SD Reference range

Age 48.2 21.6 36.9 18 53.3 18.1 74.4 13.8

WBC x 109/l 6.6 2.1 5.1 1.7 4.9 1.7 5.9 2.0 3.9–11.0

CD3+ T cells/μl 1766 520 1344 629 1035 255 930 390 1500–4300

CD3+ CD4+ T cells/μl 1074 378 780 354 649 144 539 219 322–1750

CD3+ CD8+ T cells/μl 654 296 513 312 367 124 358 261 338–1086

CD4+/CD8+ ratio 1.9 0.8 1.8 1.1 1.9 0.9 1.9 0.9 0.8–2.4

CD19+ B cells/μl 273 135 201 140 140 72 342 607 67–555

NK cells/μl 238 141 132 67 171 92 197 139 150–645

Ferritin μg/l 137 162 205 253 254 199 258 184 f:13–150; m:30–400

D-dimer μg/ml 0.47 0.49 0.45 0.42 0.39 0.28 1.18 1.0 <0.5

CRP mg/l 5.31 8.35 7.83 16.6 21.6 25 70.3 102.6 <10

eGFR ml/min/1.73m2 104 21 107 16 101 23 64 24 >90

β2-m mg/l 1.98 0.61 2.27 0.64 3.57 1.39 5.85 1.86 0.8–2.2

Means ± SD for age, counts of WBC, CD3+ T lymphocytes, CD3+CD4+ T cells, CD3+CD8+ T cells, CD19+ B cells, NK cells, ferritin, D-dimers, CRP, eGFR (CKD-EPI)

and β2-m are shown in a group of 34 age-sex matched controls and a group of 17 patients with mild (A), 12 patients with moderate (B) and five patients with severe

Covid-19 (C). Apart from age and β2-m levels, none of the variables was statistically different between the three severity groups by ANOVA test for linear trend

(significance level = 0.05).

https://doi.org/10.1371/journal.pone.0247758.t002
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±1.39 mg/l versus 5.85±1.86 mg/l) suggesting that severe Covid-19 is associated with preceding

higher circulating β2-m levels. Age, which consistently represents the strongest risk factor for

adverse outcomes in other populations, was also associated with severity (mean age 36.9±18.0

in mild, 53.3±18.1 in moderate and 74.4±13.8 in severe disease), and there was a significant

correlation between age and β2-m levels. In addition, another observation deserves attention,

namely the point in time when raised β2-m levels were first determined, which was within the

first 48 hours after diagnosis. The time between the first measurement of β2-m levels and criti-

cal clinical deterioration, i.e. mechanical ventilation and transfer to ICU, was shortest (24–48

hours) in the two patients who had the highest β2-m levels in this cohort and later died,

whereas we observed a time lag of seven, eight and 11 days, respectively, between first β2-m

measurement and deterioration of respiratory function requiring ICU transfer in the other

three patients with severe Covid-19 who survived, favoring initial β2-m levels as a predictor

not only of disease severity but also outcome. In contrast, other known parameters associated

with disease severity and outcome that were measured at admission, such as counts of lympho-

cytes and CD8+ T cells, levels of ferritin, D-dimer, CRP and eGFR did not reach statistically

significant differences between groups in our analysis, corroborating a potential unique role of

β2-m in risk assessment very early in the disease course.

In our study, a significant correlation was found between β2-m levels and renal function

(measured by eGFR). Both parameters are univariately significant correlates of disease severity.

In multivariate analysis, however, it was β2-m rather than eGFR that explained disease severity.

To explain this, we surmise that the kidney could, beside its pivotal role in the metabolism of

β2-m, become a source of β2-m in Covid-19 for various reasons, including the fact that SARS-

CoV-2 has demonstrated an exquisite tropism for the kidney since its receptor, membrane-

bound angiotensin-converting enzyme 2 (ACE2), is highly expressed in the brush border of

proximal tubular cells, and to some extent in podocytes, but neither in endothelial nor mesan-

gial cells of the glomerulus [52, 53]. It would be interesting to study the urinary excretion of

β2-m in patients with Covid-19, in order to better understand and assess the renal responses to

such an intricate viral infection [54–56].

Given the obvious limitations of a single-center study and the small sample size, larger

cohorts, preferably in areas of the world other than the Arabian Peninsula, are needed to defin-

itively assess the value of β2-m levels as an independent biomarker of disease severity and pre-

dictor of outcomes with the advantage of having less fluctuations or extraneous influences

than other parameters, such as iron stores for ferritin, coagulopathies for D-dimers and sec-

ondary bacterial infections for CRP.

β2-m level measurements on presentation, possibly in combination with lymphocyte count-

ing and differentiation as described by others, could be useful to foretell the short-term out-

come of Covid-19 [57]. This seems important as the progression to acute respiratory failure

commonly occurs rapidly within days after disease onset. Testing this hypothesis in different

cohorts seems warranted as the result could facilitate early risk stratification, and thereby opti-

mize the timing of hospitalization for close monitoring and timely therapeutic interventions

[58–62].

Supporting information

S1 File. DataSetCovid_Saudia. Clinical, laboratory and radiographic data were handled via
the electronic medical records system (PowerChart; Cerner, USA), and included participants‘

demographic details, vital signs, admission notes with chief complaint(s), history of present ill-

ness, previous diagnoses, medications, laboratory tests, radiography, and progress notes. These

data were extracted from the electronic medical records, deposited and further processed
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using REDCap. Within this project, each participant patient was assigned a unique research-

specific ID number that was password-protected and accessible to one of the investigators

(R.S.A). Data were exported from REDCap into a Microsoft Excel spreadsheet as “Raw Covid

Data”. With regard to age-sex matched uninfected controls only laboratory data were extracted

from electronic medical records and entered separetely into the Excel spreadsheet as”Raw

Control Data”. “Raw Covid Data” and “Raw Control Data” were used for statistical analysis.

(XLSX)

S1 Table. Covid-19 patients’ individual information. Demographic data, comorbidities,

symptoms at presentation and medications are shown for each patient enrolled in the study.

(XLSX)
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